
Exploring Large Profiles with Calling Context Ring Charts

Philippe Moret
Faculty of Informatics
University of Lugano

Switzerland
philippe.moret@usi.ch

Walter Binder
Faculty of Informatics
University of Lugano

Switzerland
walter.binder@usi.ch

Alex Villazón
Faculty of Informatics
University of Lugano

Switzerland
alex.villazon@usi.ch

Danilo Ansaloni
Faculty of Informatics
University of Lugano

Switzerland
danilo.ansaloni@usi.ch

ABSTRACT

Calling context profiling is an important technique for analyzing
the performance of object-oriented software with complex inter-
procedural control flow. A common data structure is the Calling
Context Tree (CCT), which stores dynamic metrics, such as CPU
time, separately for each calling context. As CCTs may comprise
millions of nodes, there is need for a condensed visualization that
eases the location of performance bottlenecks. In this paper, we
discuss Calling Context Ring Charts (CCRCs), a compact visu-
alization for CCTs, where callee methods are represented in ring
segments surrounding the caller’s ring segment. In order to reveal
hot methods, their callers, and callees, the ring segments can be
sized according to a chosen dynamic metric. We describe a case
study where CCRCs help detect and fix performance problems in
an application. An evaluation confirms that our implementation ef-
ficiently handles large CCTs with millions of nodes.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of Sys-
tems—Measurement Techniques; I.3.8 [Computing Methodolo-

gies]: Computer Graphics—Applications

General Terms

Measurement, Performance

Keywords

Performance analysis, visualization, calling context profiles, Call-
ing Context Tree (CCT), dynamic metrics

1. INTRODUCTION
Calling context profiling is a common technique to explore the

dynamic behavior of programs and to find the reasons for perfor-
mance problems. Calling context profiling yields dynamic metrics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
Copyright 2009 ACM 978-1-60558-563-5/10/01 ...$10.00.

separately for each calling context, such as the number of method
invocations or the CPU time spent in a calling context. A calling
context is a sequence of methods that were invoked but have not
yet completed; that is, a calling context corresponds to the meth-
ods represented on the call stack at some moment during program
execution.

Calling context profiling helps analyze the dynamic inter-
procedural control flow of applications. This technique is partic-
ularly important for understanding and optimizing object-oriented
software, where polymorphism and dynamic binding often hinder
static analyzes. Typically, object-oriented applications make use of
many short methods such that the inter-procedural control flow can
become very complex.

The Calling Context Tree (CCT) [1] is a prevailing datastructure
for representing calling context profiles. Each node in the CCT cor-
responds to a calling context and stores the measured dynamic met-
rics for that calling context. There is a large body of work dealing
with different techniques to generate CCTs [1, 7, 2, 4], highlighting
the importance of the CCT for calling context profiling.

CCTs are often huge trees, sometimes comprising millions of
nodes. Furthermore, the depth of CCTs can be high; CCTs with 50–
400 levels are common in practice. Hence, there is need for a com-
pact representation of CCTs helping the developer analyze dynamic
program behavior. Prevailing tools supporting calling context pro-
filing typically present the CCT as an expandable tree. However,
exploring large and deep CCTs, such as for locating invocations of
a particular method in various calling contexts, is cumbersome with
an expandable tree representation.

In this paper, we discuss Calling Context Ring Charts

(CCRCs) [3], a way of visualizing and analyzing CCTs. In a
CCRC, the CCT root is represented as a circle in the center. Callee
methods are represented by ring segments surrounding the caller’s
ring segment. With CCRCs it is possible to display all calling con-
texts of a CCT in a single chart, preserving the caller/callee re-
lationships conveyed in the CCT. For a detailed analysis of certain
calling contexts, CCT subtrees can be selected to be visualized sep-
arately and the tree depth can be limited [3].

In this paper we present two CCRC visualizations; for more de-
tails see [3]. First, for each caller, the ring segments of the callees
have the same size and completely surround the caller’s ring seg-
ment. While this representation eases the analysis of caller/callee
relationships, it does not convey any information on dynamic met-
rics collected within the different calling contexts. In the second vi-
sualization, the angle covered by each ring segment is proportional
to the contribution of the corresponding calling context to a cho-

63

void main (String[] args) {
for (int j=0; j<20; j++) {

f(j);
g(j);
for (int k=1; k<j/2; k++) {

h(k);
}

}
}
void f(int n) {

int k = g(n);
k=h(k)*k;

}
int g(int n) {

if (n%2==0)
return h(n/2);

else
return g(n+1);

}
void i(int n) {

n=n*n;
}
int h(int n) {

i(n);
return n-1;

}

(a) Example code

main(String[])

invocations: 1

bytecodes: 1066

ag(bytecodes): 3238

f(int)

invocations: 20

bytecodes: 180

ag(bytecodes): 890

g(int)

invocations: 20

bytecodes: 180

ag(bytecodes): 490

h(int)

invocations: 72

bytecodes: 432

ag(bytecodes): 792

g(int)

invocations: 20

bytecodes: 180

ag(bytecodes): 490

h(int)

invocations: 20

bytecodes: 120

ag(bytecodes): 220

h(int)

invocations: 10

bytecodes: 60

ag(bytecodes): 110

g(int)

invocations: 10

bytecodes: 90

ag(bytecodes): 200

i(int)

invocations: 10

bytecodes: 50

ag(bytecodes): 50

h(int)

invocations: 10

bytecodes: 60

ag(bytecodes): 110

i(int)

invocations: 10

bytecodes: 50

ag(bytecodes): 50

i(int)

invocations: 20

bytecodes: 100

ag(bytecodes): 100

h(int)

invocations: 10

bytecodes: 60

ag(bytecodes): 110

g(int)

invocations: 10

bytecodes: 90

ag(bytecodes): 200

i(int)

invocations: 10

bytecodes: 50

ag(bytecodes): 50

h(int)

invocations: 10

bytecodes: 60

ag(bytecodes): 110

i(int)

invocations: 10

bytecodes: 50

ag(bytecodes): 50

i(int)

invocations: 72

bytecodes: 360

ag(bytecodes): 360

(b) Generated CCT (conceptual representation)

Figure 1: Sample Java code and the CCT generated for one execution of method main(String[]). As dynamic metrics, each CCT

node stores the number of method invocations and the number of executed bytecodes in the corresponding calling context. For each

CCT node n, the aggregated metric ag(bytecodes) sums up the executed bytecodes in the whole subtree rooted at node n [3].

sen dynamic metric, relative to the respective caller’s contribution.
For example, if CPU time is chosen as metric, this representation
reveals the invoked hot methods, for each calling context.

The original, scientific contributions of this paper are twofold.
1. We present one case study where CCRCs are successfully ap-

plied to locate performance problems in an application, which is
optimized afterwards. The chosen application is a cryptography
library.

2. We present our implementation of CCRC and evaluate its per-
formance on visualizing the CCTs resulting from the execution of
the DaCapo benchmarks for Java.

2. BACKGROUND: THE CALLING CON-

TEXT TREE (CCT)
The CCT was first introduced by Ammons et al. [1] as runtime

data structure for calling context profiling.
Each node in the CCT represents a calling context and stores the

measured dynamic metrics for that calling context; it also refers to
a unique identifier of the method in which the metrics were col-
lected. The parent of a CCT node represents the caller’s context,
while the children nodes correspond to the callee methods. If the
same method is invoked in distinct calling contexts, the different
invocations are represented by distinct nodes in the CCT. In con-
trast, if the same method is invoked multiple times in the same call-
ing context, the dynamic metrics collected during the executions of
that method are stored in the same CCT node.

The CCT does not restrict which dynamic metrics are stored in
the tree nodes. Common metrics include the number of method
invocations, the CPU time, the number of cache misses, the num-
ber of object allocations, or the amount of allocated memory. Our
CCRC implementation does not constraint which and how many

different metrics are stored in a CCT node. All stored metrics must
be represented by numeric values.

For some metrics M, it is useful to consider also the aggregated
metrics ag(M) for subtrees of the CCT, in order to explore the over-
all costs of method executions (i.e., including the costs incurred by
all direct and indirect callees).

For each CCT node n, ag(Mn) is computed as the sum of the
metric values Mx of all nodes x in the CCT subtree rooted at node n.

For instance, for a given CCT node n, the metric CPUn shows
the CPU time spent executing the instructions within the body of
the method mn represented by the node n, excluding the CPU time
spent in callees of mn. In contrast, the metric ag(CPUn) gives
the overall CPU time spent in the calling context corresponding
to node n and in all callees.

Common metrics where aggregation for subtrees helps locate
performance problems include the CPU time spent in a calling con-
text or the amount of memory allocated in a calling context. Some
other metrics, such as the number of method invocations, are rarely
aggregated.

The example in Figure 1(b) shows a conceptual representa-
tion of the CCT resulting from executing the Java code sample
in Figure 1(a); the used colors differentiate the distinct meth-
ods. The illustrated CCT represents one invocation of method
main(String[]). For instance, such a CCT may be created with
the profiler described in [2, 4]. In this example, we assume that two
dynamic metrics are collected for each calling context, the number
of method invocations and the number of executed bytecodes (in
a Java Virtual Machine). Regarding the latter metric, which is a
rather platform-independent alternative to the common CPU time
metric, we are also computing the aggregated number of executed
bytecodes ag(bytecodes) for subtrees of the CCT.

64

θ1

θn

s

c1

cnα

Figure 2: Representation of a CCT node as a ring segment s

3. CCT VISUALIZATION
In this section we describe two ways of visualizing CCTs as Call-

ing Context Ring Charts, as introduced in [3]. Both visualizations
use an onion-like structure with circular layers, each layer corre-
sponding to a level in the CCT. Nodes are ring segments, and chil-
dren nodes (callees) are represented on the outer ring of their parent
(caller).

3.1 Ring Segments of Equal Length
Figure 2 illustrates a ring segment s and its n children nodes

c1, . . . ,cn. In this first visualization, given α the angle covered by s,
the angle θi covered by its ith child ci is computed as follow:

θi = α
1

n
(1)

Figure 3 shows this first visualization for our example code from
Figure 1. As a consequence of equation (1), the children com-
pletely surround their parent. For instance, in the second layer the
ring segments representing the callees of main(String[]) (i.e.,
f(int), g(int), and h(int)) have the same length and com-
pletely surround the ring segment of main(String[]). The root
node of the CCT is represented by the central circle.

This visualization gives a condensed view of the overall CCT and
eases the analysis of caller/callee relationships. However, the visu-
alization does not convey any dynamic metric stored in the CCT.

3.2 Ring Segment Length Proportional to a
Selected Aggregated Metric

In order to ease locating performance problems, we support a
second visualization, where each ring segment is sized proportion-
ally to an aggregated metric ag(M) chosen by the user. In this
visualization, θi is computed with the following equation:

θi = α
ag(Mci

)

ag(Ms)
(2)

Using equation (2), the sum of all θi can be less than α; that is,
the children ring segments do not entirely surround the parent ring
segment. The remaining portion of the parent ring segment repre-
sents the metrics contribution of the parent excluding its callees.

Figure 4 presents a ring chart where ring segments are sized ac-
cording to the aggregated metric ag(bytecodes). In this example,
only about 67% of the ring segment of main(String[]) are sur-
rounded by the callees’ ring segments, and the remaining 33% il-
lustrate the contribution of method main(String[]) to the overall
bytecode execution.

This visualization helps locate hot calling contexts, since the
length of ring segments is proportional to an aggregated metric.
However, ring segments representing calling contexts with a low

metric contribution can be very small such that the user may not
be able to see all callees of a method. Hence, our different visu-
alizations are complementary, and the user can switch between the
different views.

i(int)

f(int)

g(int)

h(int)

main(String[])

i(int)

i(int)

i(int)

i(int)

i(int)

g(int)

h(int)

g(int)

h(int)h(int)

h(int)

g(int)

h(int)

Figure 3: First CCT visualization: Callees are represented by

ring segments of equal length

main(String[])

g(int)

f(int)

g(int)

g(int)

g(int)

h(int)

h(int)

h(int)

h(int)

h(int)

h(int)

i(int)

i(int)

i(int)

Figure 4: Second CCT visualization: Ring segment length is

proportional to the aggregated bytecode metric

4. IMPLEMENTATION
We implemented three versions of our CCRC visualization tool.

The first version is based on JavaScript and on the standard XML-
based Scalable Vector Graphics (SVG)1

format, whereas the second version is a Java application using
the Swing toolkit. The third version is also implemented in Java
using Eclipse’s Standard Widget Toolkit (SWT)2.

1http://www.w3.org/Graphics/SVG/
2http://www.eclipse.org/swt/

65

Our first implementation uses JavaScript to create and dynam-
ically transform the CCT, which is represented as an XML struc-
ture. This implementation allows visualizing CCRCs directly in
any standard web browser. The rendered page consists of two parts,
one part is showing the ring chart, while the other part presents
detailed calling context information of the currently selected CCT
node (a node is automatically selected when pointed by the mouse),
such as the complete call stack and collected dynamic metrics. The
navigation in the CCT representation is implemented using events
which are handled by the browser and trigger calls to JavaScript
routines that update the displayed information. On the one hand,
this implementation is well suited for integration in web-based col-
laboration tools. On the other hand, JavaScript execution engines
embedded in currently available browsers are often unable to han-
dle very large structures as those required for representing CCTs.
Moreover, the limited performance of Javascript for complex tree
manipulations can result in poor user experience.

In our second, Java-based implementation, the GUI has the same
structure and similar behavior as in the first implementation. How-
ever, in contrast to the first implementation, it has been designed
to handle very large CCTs comprising millions of nodes. Addi-
tional features were added, such as an advanced search to find and
highlight CCT nodes with certain properties.

For instance, the user can search for calling contexts represent-
ing execution in a particular package, class, or method. It is also
possible to quickly locate CCT nodes where the collected metrics
meet given constraints (e.g., exceeding some thresholds).

Our third implementation based on SWT has the same advanced
features as the Swing-based version. In addition, it can be used
in the Eclipse IDE. We integrated our CCRC visualization in the
Senseo Eclipse plugin [5], which enriches Eclipse’s static source
view with dynamic metrics from a running application. Senseo pro-
vides the developer with various dynamic metrics, such as runtime
receiver, argument, and return types of invoked methods, the num-
ber of allocated objects, an estimation of total memory consump-
tion, etc. The integration of CCRC enhances Senseo with complete
calling context information. It also supports interactions between
the CCRC and the corresponding methods in the source code, such
as highlighting the calling contexts in the CCRC corresponding to
a chosen method, respectively showing the method source code of
a selected calling context in the CCRC.

5. CASE STUDY
In this section we present a study where CCRCs have been suc-

cessfully applied to locate performance problem in an application,
which was optimized afterwards.

In our case study, the calling context profiles are collected with
the profiler described in [2, 4], which collects the number of ex-
ecuted bytecodes in each calling context (in addition to other dy-
namic metrics); this metric is largely platform-independent. This
profiler has the advantage to profile overall application execution,
including the execution of methods in the Java class library.

For CCRC visualization, we use our Java-based Swing imple-
mentation. For the CCRCs in this case study, we use our second
visualization, where the ring segment length is proportional to the
aggregated bytecode metric (see Section 3.2). The CCRCs show
the main(String[]) method as root in the center, that is, we use
subtree selection [3] in order to concentrate on application execu-
tion, disregarding the execution of system threads, which is also
conveyed in the profiles generated by our profiler. For all shown
CCRCs, we limit the depth to 10 levels [3].

The primary contribution of this case study is to show that
CCRCs help quickly locate hotspots in calling context profiles. As

PUT: input: key value pair < k,v >

• calculate T unique participant share keys pk j by hashing k

with the participant’s id

• split v by calculating T points p j from f (x)

• return T key/value pairs < pk j, p j >

GET: input: key k

• calculate T unique participant share keys pk j by hashing k

with the participant’s id

• join T shares from participants using the pk j keys into v

• return v

Figure 5: Algorithms used to split the secret into T shares and

to reconstruct the secret

Total number of executed bytecodes 29,568,435,996

Figure 6: CCRC for the initial implementation of SSS

secondary contribution, the case study also demonstrate that pro-
filing using a platform-independent metric (i.e., the number of ex-
ecuted bytecodes) – instead of the common CPU time metric – is
a useful technique for detecting hotspots and for optimizing appli-
cations. The resulting optimized application not only executes less
bytecodes, but it also performs significantly better in terms of exe-
cution time.

Shamir’s Secret Sharing (SSS) [6] is a cryptography algorithm,
where a secret is divided into parts. Each participant receives its
own unique part, where some of the parts or all of them are needed
in order to reconstruct the secret.

SSS is based on the idea that a polynomial’s coefficient and
points generated by the polynomial are interchangeable. A poly-
nomial function f is constructed (see equation (3)), such that the
constant term S is the secret to share, and T is the minimum num-
ber of shares required to reassemble the secret. Ki are randomly
generated numbers. The shares given to the participants are tuples
< x, f (x) >, that is, points in the polynomial curve.

f (x) = S+
T−1

∑
i=1

Kix
i (3)

In our case study, we analyze an SSS implementation developed
by Ricardo Padilha at the University of Lugano, which handles S

of arbitrary size (whereas most available implementations limit S

66

Figure 7: SSS using java.security.SecureRandom (top) versus SSS using java.util.Random (bottom)

to 128 bit). We let the developer analyze his implementation with
CCRCs, in order to validate the soundness of his design choices
and to optimize his code.

To generate the Ki random values, the original implementation
uses the java.security.SecureRandom class. It associates a
specific key value k to each secret S. Each share distributed to the
participants is also associated with a key pk j , calculated with the
SHA-1 hashing algorithm, by hashing k with the participant’s id.
This feature aims at obfuscating the relation between the key and
the value, which is useful, for instance, when storing the shares in
an insecure repository. The algorithms to “put” respectively “get”

the secret are outlined in Figure 5.
Figure 6 shows a CCRC corresponding to one hundred thousand

put and get operations. It illustrates the bytecode distribution of
the different computations. We observe a symmetry between the
calculations of the hash value and the join to put, respectively to
get the shares. Thanks to our visualization, this symmetry becomes
immediately apparent. The reader may wonder why a join opera-
tion is also needed for the put operation. This is due to the API
used to store the shares. When replacing a stored value, the old
value must be returned, forcing the join to be calculated also upon
the put operation.

First, the developer observed that the execution
of the split operation was dominated by the use of
java.security.SecureRandom. As an optimization, the
developer decided to use the non-secure class java.util.Random
instead. Figure 7 shows the CCRCs before and after the change.

The highlighted segments in Figure 7 (top and bottom) correspond
to BigInteger.randomBits(), which is the common code exe-
cuted when using SecureRandom respectively Random. Thanks to
this optimization, the calculation of the random coefficients was
reduced from 5.96% to 0.43% of the overall executed bytecodes.

Second, the developer noticed that a high percentage of executed
bytecodes were used to calculate the hash function for the obfusca-
tion feature (see Figure 6). He decided to reengineer SSS in order to
make this feature optional, since it was not required in common use
cases. Figure 8 shows the CCRC for the final SSS version. Com-
pared to the original implementation (see Figure 6), the total num-
ber of executed bytecodes has been reduced from 29,568,435,996
to 15,129,000,509.

In order to confirm that the optimizations based on profiles with
bytecode metrics also result in a speedup, we measured the ex-
ecution times of the three different versions (initial version, ver-
sion without secure random, and final version with neither secure
random nor hash), with JDK 1.6_11 running on an Intel Core 2
Duo 2.33Ghz computer with 2GB RAM (Linux Fedora 10). The
original implementation took 9150ms. The implementation with-
out secure random took 7579ms (speedup of 20.7%). Finally, the
implementation with neither secure random nor hash took 5557ms
(speedup of 64.7%).

6. EVALUATION
In order to validate our CCRC implementation with large pro-

files, we generated and visualized the CCTs for the standard Da-

67

Total number of executed bytecodes 15,129,000,509

Figure 8: CCRC of the final implementation of SSS (without

hashing and without secure random)

DaCapo Method Different CCT Max. Time

Bench. Calls Methods Nodes Depth [ms]

antlr 165,465,913 2,498 627,577 164 41

bloat 1,055,927,864 3,033 645,316 128 42

chart 404,140,995 4,554 92,272 65 81

eclipse 941,528,217 11,555 2,166,169 131 58

fop 43,143,714 4,013 149,492 76 111

hsqldb 214,764,027 2,507 66,391 62 61

jython 945,580,102 4,574 1,941,246 223 46

luindex 443,252,127 1,969 58,834 52 51

lusearch 502,521,414 1,768 33,189 46 63

pmd 462,558,862 3,663 800,071 416 44

xalan 636,834,930 3,679 211,213 79 42

Table 1: CCT statistics and CCRC rendering time

Capo benchmark suite.We computed the rendering time for the full
CCTs using our Java Swing implementation of CCRC. The mea-
surements correspond to the rendering of the CCTs generated by
the execution of one run of the benchmarks with the default prob-
lem size. We use the same measurement environment as in the case
study. The CCTs were generated beforehand using the same calling
context profiler used in our case study [2, 4].

Table 1 presents the CCRC rendering time for the benchmark
CCTs, as well as some statistics computed from the CCTs.

Column “Method Calls” shows the total number of method invo-
cations (in all CCT nodes), which can be very high (over 1 billion
for the ‘bloat’ benchmark). Column “Different Methods” gives the
number of different methods that were invoked at least once. The
number of CCT nodes (column “CCT Nodes”) and the maximum
depth (column “Max Depth”) give an idea of the size of the CCTs
to be visualized. For ‘eclipse’, the CCT consists of more than 2
million nodes, and for ‘pmd’ the maximum tree depth exceeds 400
layers.

Table 1 shows the time for rendering the CCRCs representing
the CCTs (using our second visualization where the length of ring
segments is proportional to the aggregated bytecode metric), which
is between 41ms and 111ms. Interestingly, the rendering time is
not directly proportional to the number of nodes in the CCT be-
cause of various optimizations, such as rendering very small ring
segments as single lines. Therefore, rendering is perceived almost
as instantaneous by the user, even for very large CCTs.

7. CONCLUSION
Calling context profiling is an important technique for exploring

the dynamic behavior of programs. However, the resulting pro-
files, usually represented as CCTs, can be huge, comprising up to
millions of calling contexts and typically reaching tree depths of
50–400 layers. Such large profiles can hardly be analyzed in a tex-
tual representation, and prevailing visualizations, such as expand-
able trees used in several profiling tools, are too verbose and do not
make good use of space.

In order to ease handling large calling context profiles, we pre-
sented Calling Context Ring Charts (CCRCs). A CCRC visualizes
a CCT in a compact way, correctly representing all caller/callee
relationships. Each calling context is displayed as a ring segment,
surrounded by the ring segments representing the callees. Ring seg-
ments can be sized according to a chosen dynamic metric in order
to ease the location of hotspots.

We presented a case study where CCRCs were successfully ap-
plied to locate and fix performance problems in an application. An
evaluation confirms that our CCRC implementation easily handles
very large calling context profiles.

Acknowledgements: The work presented in this paper has been supported
by the Swiss National Science Foundation.

We thank Ricardo Padilha and Fernando Pedone for using our platform-
independent calling context profiler and CCRC visualization tool, in order
to optimize their Java implementation of Shamir’s Secret Sharing algorithm,
and for providing us the results of their analysis and optimizations.

8. REFERENCES
[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware

performance counters with flow and context sensitive
profiling. In PLDI ’97: Proceedings of the ACM SIGPLAN

1997 conference on Programming language design and

implementation, pages 85–96. ACM Press, 1997.

[2] W. Binder, J. Hulaas, P. Moret, and A. Villazón.
Platform-independent profiling in a virtual execution
environment. Software: Practice and Experience,
39(1):47–79, 2009.
http://dx.doi.org/10.1002/spe.890.

[3] P. Moret, W. Binder, D. Ansaloni, and A. Villazón. Visualizing
Calling Context Profiles with Ring Charts. In VISSOFT 2009:

5th IEEE International Workshop on Visualizing Software for

Understanding and Analysis, pages 33–36, Edmonton,
Alberta, Canada, Sep. 2009. IEEE Computer Society.

[4] P. Moret, W. Binder, and A. Villazón. CCCP: Complete
calling context profiling in virtual execution environments. In
PEPM ’09: Proceedings of the 2009 ACM SIGPLAN

Workshop on Partial Evaluation and Program Manipulation,
pages 151–160, Savannah, GA, USA, 2009. ACM.

[5] D. Röthlisberger, M. Härry, A. Villazón, D. Ansaloni,
W. Binder, O. Nierstrasz, and P. Moret. Augmenting Static
Source Views in IDEs with Dynamic Metrics. In ICSM ’09:

Proceedings of the 2009 IEEE International Conference on

Software Maintenance, pages 253–262, Edmonton, Alberta,
Canada, 2009. IEEE Computer Society.

[6] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[7] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi.
Accurate, efficient, and adaptive calling context profiling. In
PLDI ’06: Proceedings of the 2006 ACM SIGPLAN

conference on Programming language design and

implementation, pages 263–271, New York, NY, USA, 2006.
ACM.

68

