
Rapid Development of Extensible Profilers for the
Java Virtual Machine with Aspect-Oriented Programming

Danilo Ansaloni
Faculty of Informatics
University of Lugano

Switzerland
danilo.ansaloni@usi.ch

Walter Binder
Faculty of Informatics
University of Lugano

Switzerland
walter.binder@usi.ch

Alex Villazón
Faculty of Informatics
University of Lugano

Switzerland
alex.villazon@usi.ch

Philippe Moret
Faculty of Informatics
University of Lugano

Switzerland
philippe.moret@usi.ch

ABSTRACT

Many profilers for Java applications are implemented with
low-level bytecode instrumentation techniques, which is te-
dious, error-prone, and complicates maintenance and ex-
tension of the tools. In order to reduce development time
and cost, we promote building Java profilers using high-level
aspect-oriented programming (AOP). We show that the use
of aspects yields concise profilers that are easy to develop,
extend, and maintain, because low-level instrumentation de-
tails are hidden from the tool developer. Our profiler re-
lies on inter-advice communication, an extension to common
AOP languages that enables efficient data passing between
advice woven into the same method. We illustrate our ap-
proach with two case studies. First, we show that an exist-
ing, instrumentation-based tool for listener latency profiling
can be easily recast as an aspect. Second, we present an as-
pect for comprehensive calling context profiling. In order to
reduce profiling overhead, our aspect parallelizes application
execution and profile creation.

Categories and Subject Descriptors

D.1.2 [Programming Techniques]: Automatic Program-
ming; D.2.8 [Software Engineering]: Metrics—Perfor-
mance measures

General Terms

Algorithms, Languages, Measurement, Performance

Keywords

Profiling, aspect-oriented programming, bytecode instru-
mentation, Calling Context Tree, concurrency, Java

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
Copyright 2010 ACM 978-1-60558-563-5/10/01 ...$10.00.

1. INTRODUCTION
Bytecode instrumentation techniques are widely used

for profiling [9, 8, 11, 6, 14, 7]. Java supports byte-
code instrumentation using native code agents through
the Java Virtual Machine Tool Interface (JVMTI) [18],
as well as portable bytecode instrumentation through the
java.lang.instrument API. Several bytecode engineering
libraries have been developed, such as BCEL [19] and
ASM [15]. However, because of the low-level nature of byte-
code and of bytecode engineering libraries, it is difficult and
error-prone to implement new profilers, which often requires
high effort for development and testing. Moreover, profilers
based on low-level instrumentation techniques are difficult
to maintain and extend.

In order to ease, speed up, and reduce the cost of pro-
filer development, maintenance, and extension, we resort
to aspect-oriented programming (AOP) [13]. AOP allows
concisely specifying instrumentations in a high-level man-
ner. For example, an aspect can be used to specify profiling
code to be executed before or after the invocation of some
methods of interest, hiding the low-level details of bytecode
instrumentation from the tool developer [16].

Profiling usually requires instrumentation with full
method coverage, that is, comprehensive instrumentation
reaching all methods executed in the Java Virtual Machine
(JVM); otherwise, part of the program execution may be
missing in the generated profiles. Prevailing aspect weavers,
such as AspectJ [12] or abc [2], do not support comprehen-
sive aspect weaving, notably because they prevent aspect
weaving in the Java class library. Even though weaving of
the Java class library can be forced in AspectJ, weaving core
Java classes usually results in JVM crashes upon bootstrap-
ping [5, 21].

Our approach to aspect-based profiler development relies
on MAJOR [21, 22], an aspect weaver that complements
AspectJ with support for comprehensive weaving. To this
end, MAJOR leverages FERRARI1 [5], a bytecode instru-
mentation framework that ensures full method coverage of
any user-defined instrumentation.

We present an inter-advice communication model [20]
for AOP, which has been integrated into MAJOR. Inter-

1 http://www.inf.usi.ch/projects/ferrari/

57

advice communication allows for efficiently passing data be-
tween advice that are woven into the same method. With
the aid of annotations, the aspect programmer can declare
invocation-local variables, which correspond to local vari-
ables with the scope of a woven method. The inter-advice
communication model is complementary to AspectJ con-
structs and enables important optimizations in our aspect-
based profilers.

We demonstrate our approach with two case studies.
First, we illustrate how the listener latency profiler LiLa [11],
which is based on bytecode instrumentation using ASM [15],
can be recast as an aspect using MAJOR and inter-advice
communication.

Second, we present an aspect for calling context profiling.
Calling context profiling helps analyse the dynamic inter-
procedural control flow of applications. It is particularly
important for understanding and optimizing object-oriented
software, where polymorphism and dynamic binding hinder
static analyses. The Calling Context Tree (CCT) [1] is a
prevailing data structure for calling context profiling. It
provides dynamic metrics, such as the number of method
invocations, for each calling context. There is a large body
of related work dealing with different techniques to generate
CCTs [1, 17, 23], highlighting the importance of the CCT for
calling context profiling. Our aspect yields complete CCTs
representing overall program execution. In order to speed
up CCT construction on multicores, we refine the aspect so
as to parallelize CCT construction and program execution.

2. BACKGROUND
In this section we give a brief overview of AOP and sum-

marize our prior work on which this paper builds.

2.1 Aspect-Oriented Programming
AOP [13] enables a clean modularization of crosscutting

concerns in applications, such as error checking and han-
dling, synchronization, monitoring, or logging. AOP helps
avoid related code that is scattered throughout methods,
classes, or components.

AspectJ [12] is a popular AOP language for Java, allow-
ing new functionality to be systematically added to existing
programs. In AspectJ, an aspect is an extended class with
additional constructs. A join point is any identifiable exe-
cution point in a system (e.g., method call, method execu-
tion, object creation, or field assignment). Join points are
the places where a crosscutting action can be inserted. The
user can specify weaving rules to be applied to join points
through so-called pointcuts and advice. A pointcut identifies
or captures join points in the program flow, and the action
to be applied is called advice.

AspectJ supports three kinds of advice: before(),
after(), and around(), which are executed prior, following,
or surrounding a join point’s execution. Aspects are com-
piled into standard Java classes. In the aspect class, advice
are compiled into methods. During the weaving process, the
weaver inserts code in the woven class to invoke these advice
methods. Advice can receive some context information, e.g.,
to identify which join point has been captured.

During the execution of a woven class, by default, a sin-
gleton instance of the aspect is instantiated. Several aspects
can be woven simultaneously and can therefore coexist dur-
ing the execution.

2.2 Prior Work
Our approach to profiler development relies on

MAJOR [21, 22], an aspect weaver that enhances AspectJ
with support for comprehensive weaving. That is, MAJOR
is able to weave aspects into all classes loaded in the JVM,
including dynamically loaded or generated classes, as well
as the standard Java class library. MAJOR can weave
aspects into all classes in the Java class library in a portable
way, compatible with any standard, state-of-the-art JVM.

MAJOR deals with issues such as bootstrapping the JVM
with a woven Java class library and preventing infinite re-
cursions when an advice invokes methods in the woven
Java class library [21]. To this end, MAJOR leverages
FERRARI [5], a generic bytecode instrumentation frame-
work that guarantees complete method coverage of user-
defined instrumentations (after an initial JVM bootstrap-
ping phase, which is completed before the application’s
main(...) method is invoked).

BMW [4] is a profiler generator based on bytecode instru-
mentation techniques. In contrast to MAJOR, the program-
ming model of BMW is very much restricted. It provides
only a small set of low-level pointcuts, which severely limits
the kind of profilers that can be specified. Hence, BMW can-
not be considered an AOP framework. In addition, BMW
does not support instrumentation of the Java class library.

In [6, 14], we addressed platform-independent calling con-
text profiling using a hard-coded, low-level instrumentation
that was difficult to extend. Thanks to AOP and to our
new inter-advice communication model, we can now con-
cisely express profilers as aspects in just a few lines of code.
The high-level specification of aspect-based profilers eases
the implementation of optimizations, such as the parallelized
CCT construction presented in this paper.

2.3 Inter-Advice Communication
In AspectJ, the around() advice, in conjunction with a

proceed() statement, allows storing data in local variables
before a join point, and accessing that data after the join
point. The invocation of proceed() within an advice causes
the execution of the captured join point. Hence, one com-
mon use of the around() advice can be regarded as commu-
nicating data produced in a before() advice to an after()

advice, within the scope of a woven method.
However, there are two severe limitations when using the

around() advice for communicating data across a join point:

1. The AspectJ weaver implements the around() advice
by inserting wrapper methods in woven classes [10].
However, wrapping certain methods in the Java class
library breaks stack introspection in many recent
JVMs, including Sun’s HotSpot JVMs and IBM’s
J9 JVM [14, 22].

2. The around() advice does not constitute a gen-
eral mechanism for efficiently passing data in lo-
cal variables between arbitrary advice that are wo-
ven into the same method body. For instance,
it is not possible to pass data in local vari-
ables from one “before() execution()” advice to an
“after() call()” advice.

Inter-advice communication [20] allows efficient data pass-
ing in local variables between advice bodies. This solves the
two aforementioned problems, since it does not require the

58

insertion of any wrapper methods and it enables data pass-
ing between arbitrary advice woven into the same method
body. To make use of inter-advice communication, we mark
public static fields in an aspect with the Java annotation
@InvocationLocal. Within advice bodies woven on the
same method, invocation-local variables are mapped to local
variables.

3. CASE STUDY 1: LISTENER LATENCY

PROFILING
In this section we show how an existing profiler that uses

low-level bytecode instrumentation can be recast as a com-
pact aspect. With this case study, we also illustrate how
a common use of the around() advice can be replaced by a
combination of before() and after() advice in conjunction
with inter-advice communication.

Listener latency profiling (LLP) [11] helps developers lo-
cate slow operations in interactive applications, where the
perceived performance is directly related to the response
time of event listeners. LiLa2 is an implementation of LLP
based on ASM [15], a low-level bytecode engineering library.

The LiLaAspect in Figure 1 is an implementation of LLP
providing the functionality of LiLa. In contrast to LiLa,
the aspect is concisely implemented in a few lines of code.
Figure 1 shows two versions of the LiLaAspect; one version
relying on the around() advice, and a second version lever-
aging inter-advice communication.

To calculate the response time of events, the aspect in
Figure 1(a) uses the around() advice to surround the ex-
ecution of methods on instances (target objects) of any
subtype of the EventListener interface, which is specified
by the “execution(* EventListener+.*(..))” expression
of the allEvents() pointcut. The start time is computed
before the execution of the intercepted method, which is
triggered by the call to proceed(...). After (normal or
abnormal) method completion, the actual execution time is
computed. Whenever the execution time exceeds a given
threshold (indicating high latency), the event is profiled.
The method profileEvent(...), which is not shown in the
figure, logs an identifier of the intercepted method (conveyed
by the static join point, which is accessed through AspectJ’s
pseudo-variable thisJoinPointStaticPart), the execution
time, and the target object. This information helps devel-
opers locate the causes of potential performance problems
due to slow event handling.

Unfortunately, as described in Section 2.3, the use of the
around() advice compromises comprehensive aspect weav-
ing. Therefore, in general, the aspect in Figure 1(a) cannot
be used to capture events in classes of the Java class library.
However, it is of paramount importance that LLP covers the
Java class library, because it includes many implementations
of the EventListener interface. Our inter-advice communi-
cation mechanism solves this problem.

Figure 1(b) shows the LiLaAspect using inter-advice com-
munication to emulate the functionality of the around() ad-
vice with before() and after() advice. The invocation-
local variable start is used to pass the time information
from the before() advice to the after() advice. The
before() advice is simpler because it does not need to access
the target object. Thanks to inter-advice communication,

2 http://www.inf.usi.ch/phd/jovic/MilanJovic/
Lila/Welcome.html

(a) LiLaAspect with around() advice:

public aspect LiLaAspect {

// only calls lasting at least 100ms are profiled
public static final long THRESHOLD_NS = 100L * 1000L * 1000L;

pointcut allEvents() : execution(* EventListener+.*(..));

Object around(EventListener l) : target(l) && allEvents() {
long start = System.nanoTime();
try {

return proceed(l); // proceed with the execution
} finally {

long exectime = System.nanoTime() - start;
if (exectime >= THRESHOLD_NS)

profileEvent(thisJoinPointStaticPart, exectime, l);
}

}

...
}

(b) Equivalent aspect using inter-advice communication:

public aspect LiLaAspect {
public static final long THRESHOLD_NS = 100L * 1000L * 1000L;

pointcut allEvents() : execution(* EventListener+.*(..));

@InvocationLocal

public static long start;

before() : allEvents() {

start = System.nanoTime();
}

after(EventListener l) : target(l) && allEvents() {
long exectime = System.nanoTime() - start;

if (exectime >= THRESHOLD_NS)
profileEvent(thisJoinPointStaticPart, exectime, l);

}
...

}

Figure 1: Simplified LiLaAspect implementing LLP

the aspect can be comprehensively woven, thus providing
the basic functionality of the original LiLa tool in a com-
pact and extendible way.

4. CASE STUDY 2: CALLING CONTEXT

PROFILING
In this section we illustrate our approach to profiler devel-

opment with aspects that generate complete CCTs covering
all method execution in an application, including methods
in the Java class library. We leverage MAJOR’s ability of
weaving with full method coverage and inter-advice commu-
nication for efficiently passing state between advice.

First, we discuss our data structure representing a CCT.
Second, we present a simple aspect for CCT creation. Third,
we show that the aspect can be easily extended to collect
additional dynamic metrics. Fourth, we optimize CCT con-
struction by parallelizing it with program execution.

4.1 CCT Representation
Before presenting an aspect that creates CCTs, we briefly

discuss our data structure representing CCTs at runtime. In
a multithreaded environment, there are two options: Each
thread may create a separate, thread-confined CCT, and the
per-thread CCTs may be integrated after termination of the
corresponding threads. Alternatively, the CCT under con-
struction may be shared between all threads, and access to

59

public aspect CCTProf {
public static final CCTNode root = new CCTNode();

public static final ThreadLocal<CCTNode> currentNode =
new ThreadLocal<CCTNode>() {

protected CCTNode initialValue() { return root; }
};

@InvocationLocal
public static CCTNode caller, callee;

pointcut execs() : execution(* *.*(..)) && !within(CCTProf);

before() : execs() {
caller = currentNode.get();

callee = caller.profileCall(thisJoinPointStaticPart);
currentNode.set(callee);

}

after() : execs() { currentNode.set(caller); }
...

}

Figure 2: Simplified profiling aspect that generates

a CCT using inter-advice communication

the CCT has to be thread-safe. While the first approach en-
ables efficient access to the thread-local CCTs, it can result
in high memory consumption if several concurrent threads
execute the same code. Therefore, we chose the second op-
tion, a single, shared, thread-safe CCT.

Thread-safety of a shared CCT can be achieved in dif-
ferent ways. Synchronizing every access to the CCT is too
expensive. Hence, we rely on a non-blocking data structure
using atomic Compare-And-Swap (CAS) instructions [3].
Each CCT node has a reference to a method identifier, a
reference to callee nodes, as well as counters to store the
dynamic metrics collected within the corresponding calling
context, such as the number of method invocations.

Each node in the CCT is represented by an in-
stance of type CCTNode, which stores the dynamic met-
rics collected for the corresponding calling context and
offers a simple interface to update the profiling data in
the form of methods profileM(...), where M corre-
sponds to a dynamic metric (profileTime(long time),
profileAllocation(Object o), etc.). The method
profileCall(JoinPoint.StaticPart mid) plays a special
role; it returns the child CCT node representing a callee re-
spectively creates such a node if it does not already exist.
The argument mid (method identifier) is the static join point
identifying the callee method.

4.2 Simple Profiling Aspect for CCT Creation
Figure 2 illustrates a simple aspect for generating a

CCT (for simplicity, we do not consider constructors in
this example). The aspect keeps the root of the shared
CCT in a static field and defines the thread-local vari-
able currentNode representing the current position in the
CCT for each thread. The two advice in Figure 2 build
the CCT. The before() advice is woven in method en-
tries. It loads the caller’s CCTNode instance from the thread-
local variable currentNode, looks up the callee’s CCTNode

(profileCall(...)), and stores it into the thread-local vari-
able. The static join point representing the woven method
(i.e., the method identifier of the callee) is accessed through
AspectJ’s thisJoinPointStaticPart pseudo-variable.

The fields caller and callee are declared as
@InvocationLocal. That is, thanks to our inter-advice

public aspect AllocCCTProf {
... // same code as in CCTProf (see Figure 2)

pointcut allocs() : call(*.new(..)) && !within(AllocCCTProf);

after() returning(Object o) : allocs() {
callee.profileAllocation(o);

}
}

Figure 3: Extended aspect to collect also object al-

location metrics

communication mechanism, both the caller node and the
callee node can be efficiently accessed from local variables
in other advice that are woven into the same method body.

The after() advice, woven before (normal and abnormal)
method completion, restores the caller’s CCTNode, which is
referenced by the invocation-local variable caller, into the
thread-local variable currentNode.

Note that without inter-advice communication, direct ac-
cess to the caller’s CCTNode instance would be impossible
in the after() advice. However, the aspect programmer
has two other options: (1) In the after() advice, the
callee’s CCTNode is loaded from the thread-local variable
in order to to access the parent node (assuming that each
CCTNode instance keeps a reference to the parent node in the
tree). (2) Instead of the before() and after() advice, an
around() advice is used. Both options have drawbacks. The
first option causes higher overhead because of extra memory
read accesses. The second option results in code transfor-
mations that introduce wrapper methods, which can cause
problems when weaving the aspect in the Java class library
(see Section 2.3).

In order to highlight the flexibility of our AOP-based ap-
proach to profiler development, Figure 3 illustrates an exten-
sion of the CCTProf aspect, called AllocCCTProf, in order to
collect also object allocation metrics for each calling context.

The additional after() advice is woven after construc-
tor invocations, and the newly created object is passed
to the advice as argument. We assume that the method
profileAllocation(...) updates object allocation metrics,
such as the number of allocated instances and an estimate
of the total allocated bytes in a calling context.

In Figure 3 the invocation-local variable callee is
read in order to directly access the CCTNode instance
corresponding to the current calling context. Hence,
thanks to inter-advice communication, the thread-local
variable currentNode need not be accessed in the given
advice. Note that in the AllocCCTProf aspect, the
invocation-local variable callee is used to efficiently pass
data from a “before(): execution()” advice to an
“after(): call()” advice. Prevailing AOP languages,
such as AspectJ, do not offer any mechanism to this end.

4.3 Parallelizing CCT Creation
In order to reduce the overhead of calling context profil-

ing on multicores, we parallelize application code and CCT
construction [3]. Each thread maintains a calling context
representation that does not require access to the shared
CCT upon update, but preserves enough information that
allows another thread to asynchronously perform the corre-
sponding CCT updates. To this end, each thread produces
“packets”of method calls and returns. When a packet is full,
it is passed to the “CCT manager” through a queue. The

60

public class TC { // thread context
// shadow stack
public static final int STACK_SIZE = 10000;

public final Object[] stack = new Object[STACK_SIZE];
public int sp = 0; // next free entry on shadow stack

// current packet

public static final int PACKET_SIZE = 40000;
public Object[] packet = new Object[PACKET_SIZE];
public int nextFree = 1; // next free entry in packet

}

public aspect ParCCTProf {
public static final ThreadLocal<TC> currentTC =

new ThreadLocal<TC>() {

protected TC initialValue() { return new TC(); }
};

@InvocationLocal

public static TC tc;

pointcut execs() : execution(* *.*(..))

&& !within(ParCCTProf);

before() : execs() {
tc = currentTC.get();

if (tc.nextFree >= TC.PACKET_SIZE) { // current packet full
CCTManager.submitPacket(tc.packet);
tc.packet = new Object[TC.PACKET_SIZE];

for (int i = 0; i < tc.sp; ++i) // create packet header
tc.packet[i] = tc.stack[i];

tc.nextFree = tc.sp + 1;
}
tc.stack[tc.sp++] = thisJoinPointStaticPart;

tc.packet[tc.nextFree++] = thisJoinPointStaticPart;
}

after() : execs() { tc.sp--; tc.nextFree++; }

...
}

Figure 4: Simplified aspect for parallelized CCT cre-

ation

CCT manager has a thread pool to process incoming pack-
ets and to update the CCT. In order to enable parallel and
possibly out-of-order processing of packets, the packets must
be independent of each other. Each packet corresponds to
a partial CCT, and the integration of these partial CCTs
must be a commutative and associative operation.

Figure 4 shows the aspect ParCCTProf, implementing par-
allelized CCT creation. The thread-local variable currentTC
of type TC (thread context) keeps calling context informa-
tion for each thread. The state of a TC instance includes
a shadow stack (stack), a “stack pointer” (sp), which indi-
cates the next free element on the shadow stack, a packet
of method calls and returns (packet), and the index of the
next free entry in the packet (nextFree). The invocation-
local variable tc helps reduce (relatively expensive) access
to the thread-local variable currentTC, which is read only
once in each woven method.

Each packet consists of a header and a sequence of method
calls and returns. The header corresponds to the calling
context of the first method call in the packet. It can be
regarded as routing information that describes a path in
the shared CCT, starting from the root. The header ends
with a null value. In the following sequence, method calls
are represented by the corresponding method identifiers (i.e.,
JoinPoint.StaticPart instances), whereas returns are sim-
ply indicated by null values. Since returns at the end of a
packet have no effect on the partial CCT corresponding to
the packet, we allow nextFree to exceed the packet size.

Figure 4 specifies how the packet is updated upon method
entry and completion. On method entry, the method identi-
fier of the callee method has to be appended to the packet.
Hence, if the current packet is full, it is submitted to the
CCT manager (CCTManager.submitPacket(...)). After-
wards, a new packet is created, where the header is a copy of
the current shadow stack. On method completion, nextFree
is simply incremented, creating null entries in the packet.

When a thread terminates, its last packet is usually incom-
plete and has not been submitted to the CCT manager. We
address this issue by registering each thread upon creation in
the CCT manager. The CCT manager is responsible for de-
tecting thread termination (e.g., by periodically polling the
thread state), to collect the last packet from the TC instance
of a terminated thread, and to put it into the queue.

Each thread in the CCT manager’s thread pool repeatedly
takes a packet from the queue and integrates the correspond-
ing partial CCT into the shared CCT. The thread first cre-
ates a thread-local, partial CCT representing the method
calls in the packet. Afterwards, the partial CCT is inte-
grated into the shared CCT using a recursive method. This
approach helps reduce the number of accesses to nodes in the
shared CCT, because packets frequently include repetitive
call patterns (e.g., methods invoked in a loop). Instead of
accessing the shared CCT upon each method call, we need to
access it only once for a series of accumulated method calls.
Note that the packet format can be extended to support also
other events than method call and return. For example, in
order to profile object allocation, the packet could store a
class reference for each allocated object (in addition to the
method identifiers upon method invocation).

5. CONCLUSION
Bytecode instrumentation techniques are very useful in

the development of profilers, but mastering them requires
deep knowledge of the virtual machine and of low-level byte-
code engineering libraries. The resulting profilers are often
complex, require considerable development effort, and are
hard to extend. As an alternative to bytecode instrumenta-
tion, we promote AOP for the rapid development of extensi-
ble profilers. With the aid of AOP, many important profilers
can be concisely specified in a few lines of code.

However, current AOP frameworks, such as AspectJ, lack
some features that are essential for building useful and effi-
cient aspect-based profilers. For instance, aspect-weaving in
the standard Java class library is seriously restricted or even
impossible. Furthermore, it is not possible to efficiently pass
data in local variables from one join point to another within
the same woven method. To overcome these limitations, we
leverage MAJOR, an aspect weaver that ensures comprehen-
sive weaving in all classes loaded in a JVM. Furthermore,
we use inter-advice communication, a novel mechanism for
passing data in local variables between woven advice bod-
ies. Inter-advice communication is complementary to the
features offered by current AOP languages, and we have in-
tegrated it into MAJOR.

To illustrate our approach to profiler development, we pre-
sented two case studies, an aspect for listener latency profil-
ing, as well as an extensible and efficient aspect for calling
context profiling.

Acknowledgements: The work presented in this paper has been

supported by the Swiss National Science Foundation.

61

6. REFERENCES

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting
hardware performance counters with flow and context
sensitive profiling. In PLDI ’97: Proceedings of the
ACM SIGPLAN 1997 conference on Programming
language design and implementation, pages 85–96.
ACM Press, 1997.

[2] P. Avgustinov, A. S. Christensen, L. J. Hendren,
S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. abc: An
extensible AspectJ compiler. In AOSD ’05:
Proceedings of the 4th International Conference on
Aspect-Oriented Software Development, pages 87–98,
New York, NY, USA, 2005. ACM Press.

[3] W. Binder, D. Ansaloni, A. Villazón, and P. Moret.
Parallelizing Calling Context Profiling in Virtual
Machines on Multicores. In PPPJ ’09: Proceedings of
the 7th International Conference on Principles and
Practice of Programming in Java, pages 111–120, New
York, NY, USA, 2009. ACM.

[4] W. Binder and J. Hulaas. Flexible and efficient
measurement of dynamic bytecode metrics. In Fifth
International Conference on Generative Programming
and Component Engineering (GPCE-2006), pages
171–180, Portland, Oregon, USA, Oct. 2006. ACM.

[5] W. Binder, J. Hulaas, and P. Moret. Advanced Java
Bytecode Instrumentation. In PPPJ’07: Proceedings
of the 5th International Symposium on Principles and
Practice of Programming in Java, pages 135–144, New
York, NY, USA, 2007. ACM Press.

[6] W. Binder, J. Hulaas, P. Moret, and A. Villazón.
Platform-independent profiling in a virtual execution
environment. Software: Practice and Experience,
39(1):47–79, 2009.
http://dx.doi.org/10.1002/spe.890.

[7] W. Binder, M. Schoeberl, P. Moret, and A. Villazón.
Cross-profiling for embedded Java processors. In Fifth
International Conference on the Quantitative
Evaluation of SysTems (QEST-2008), pages 287–296,
Saint-Malo, France, Sept. 2008. IEEE Computer
Society.

[8] M. Dmitriev. Profiling Java applications using code
hotswapping and dynamic call graph revelation. In
WOSP ’04: Proceedings of the Fourth International
Workshop on Software and Performance, pages
139–150. ACM Press, 2004.

[9] B. Dufour, L. Hendren, and C. Verbrugge. *J: A tool
for dynamic analysis of Java programs. In
OOPSLA ’03: Companion of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 306–307, New York, NY, USA, 2003. ACM
Press.

[10] E. Hilsdale and J. Hugunin. Advice weaving in
AspectJ. In AOSD ’04: Proceedings of the 3rd
International Conference on Aspect-Oriented Software
Development, pages 26–35, New York, NY, USA, 2004.
ACM.

[11] M. Jovic and M. Hauswirth. Measuring the
performance of interactive applications with listener
latency profiling. In PPPJ ’08: Proceedings of the 6th
international symposium on Principles and practice of

programming in Java, pages 137–146, New York, NY,
USA, 2008. ACM.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In J. L. Knudsen, editor, Proceedings of the
15th European Conference on Object-Oriented
Programming (ECOOP-2001), volume 2072 of Lecture
Notes in Computer Science, pages 327–353, 2001.

[13] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In M. Akşit and
S. Matsuoka, editors, Proceedings of European
Conference on Object-Oriented Programming, volume
1241, pages 220–242. Springer-Verlag, Berlin,
Heidelberg, and New York, 1997.

[14] P. Moret, W. Binder, and A. Villazón. CCCP:
Complete calling context profiling in virtual execution
environments. In PEPM ’09: Proceedings of the 2009
ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, pages 151–160, Savannah, GA,
USA, 2009. ACM.

[15] ObjectWeb. ASM. Web pages at
http://asm.objectweb.org/.

[16] D. J. Pearce, M. Webster, R. Berry, and P. H. J.
Kelly. Profiling with AspectJ. Software: Practice and
Experience, 37(7):747–777, June 2007.

[17] J. M. Spivey. Fast, accurate call graph profiling. Softw.
Pract. Exper., 34(3):249–264, 2004.

[18] Sun Microsystems, Inc. JVM Tool Interface (JVMTI)
version 1.1. Web pages at http://java.sun.com/

javase/6/docs/platform/jvmti/jvmti.html, 2006.

[19] The Apache Jakarta Project. The Byte Code
Engineering Library (BCEL). Web pages at
http://jakarta.apache.org/bcel/.

[20] A. Villazón, W. Binder, D. Ansaloni, and P. Moret.
Advanced Runtime Adaptation for Java. In GPCE ’09:
Proceedings of the Eighth International Conference on
Generative Programming and Component Engineering,
pages 85–94. ACM, Oct. 2009.

[21] A. Villazón, W. Binder, and P. Moret. Aspect
Weaving in Standard Java Class Libraries. In PPPJ
’08: Proceedings of the 6th International Symposium
on Principles and Practice of Programming in Java,
pages 159–167, New York, NY, USA, Sept. 2008.
ACM.

[22] A. Villazón, W. Binder, and P. Moret. Flexible Calling
Context Reification for Aspect-Oriented
Programming. In AOSD ’09: Proceedings of the 8th
International Conference on Aspect-oriented Software
Development, pages 63–74, Charlottesville, Virginia,
USA, Mar. 2009. ACM.

[23] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D.
Choi. Accurate, efficient, and adaptive calling context
profiling. In PLDI ’06: Proceedings of the 2006 ACM
SIGPLAN conference on Programming language
design and implementation, pages 263–271, New York,
NY, USA, 2006. ACM.

62

