
State Dependence in Performance Evaluation
of Component-Based Software Systems

Lucia Kapova?, Barbora Buhnova†, Anne Martens?, Jens Happe‡ and Ralf H. Reussner?,‡
?Universität Karlsruhe (TH), 76131 Karlsruhe, Germany

Email: {kapova, martens, reussner}@ipd.uka.de
†Masaryk University, 60200 Brno, Czech Republic

Email: buhnova@fi.muni.cz
‡Forschungszentrum Informatik (FZI), 76131 Karlsruhe, Germany

Email: {reussner, jhappe}@fzi.de

ABSTRACT
Integrating rising variability of software systems in perfor-
mance prediction models is crucial to allow widespread in-
dustrial use of performance prediction. One of such vari-
abilities is the dependency of system performance on the
context and history-dependent internal state of the system
(or its components). The questions that rise for current pre-
diction models are (i) how to include the state properties in a
prediction model, and (ii) how to balance the expressiveness
and complexity of created models.

Only a few performance prediction approaches deal with
modelling states in component-based systems. Currently,
there is neither a consensus in the definition, nor in the
method to include the state in prediction models. For these
reasons, we have conducted a state-of-the-art survey of ex-
isting approaches addressing their expressiveness to model
stateful components. Based on the results, we introduce
a classification scheme and present the state-defining and
state-dependent model parameters. We extend the Palla-
dio Component Model (PCM), a model-based performance
prediction approach, with state-modelling capabilities, and
study the performance impact of modelled state. A practi-
cal influences of the internal state on software performance
is evaluated on a realistic case study.

Categories and Subject Descriptors: C.4 [Computer
Systems Organization]: Performance of Systems – perfor-
mance attributes; D.2.2 [Software Engineering]:Design Tools
and Techniques
General Terms: Design, Performance

1. INTRODUCTION
During the last years, many approaches dealing with per-

formance prediction and measurement were introduced. In
the area of Component-Based Software Engineering (CBSE),
systems are build out of reusable black-box components (im-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
Copyright 2010 ACM 978-1-60558-563-5/10/01 ...$10.00.

plementing sets of services) interconnected to a component
architecture. Specialised component performance prediction
and measurement approaches introduce modelling languages
with the aim to understand the performance (i.e. response
time, throughput, resource utilisation) of a full architecture
based on code-specific performance properties of individual
components. It is generally accepted that performance is a
pervasive quality of software systems. Everything affects it,
from the software itself to all underlying layers, such as op-
erating system, middleware, hardware, communication net-
works, etc. [26]. Moreover, the difficulty of understanding
system performance comes from the propagation of the ef-
fects of these factors throughout system control flow, includ-
ing the influence of the usage profile and history-dependent
information defining system state. While the influence of
usage profile on system control flow and subsequent perfor-
mance has been studied and is commonly understood [15],
not much attention has been paid to the influence of system
stateful information. When speaking about a state, we mean
a context or history-dependent information remembered in-
side a component or system, and used to coordinate system
behaviour. State of a component or system can origin from
its initialisation or previous executions, and can be changed
at different stages of system life-cycle, including system ini-
tialization, deployment or runtime. Currently, there is no
consensus in the definition and method to model stateful in-
formation in component-based systems and its performance
impact, which limits the accuracy of existing performance
models [17, 16].

1.1 Motivating Example
Consider a messaging system, implementing the Java Mes-

sage Service standard [12], and supporting transaction for
messages. The transactions guarantee that all messages are
delivered to all receivers in the order they have been send.
To achieve such a behaviour, Sun’s JMS implementation
MessageQueue 4.1 [1] waits for all incoming messages of a
transaction and, then, delivers them sequentially. Figure 1
shows the measured delivery times for a series of transac-
tions with 1000 messages each (the sender initiates a new
transaction (as part of a session), passes 1000 messages to
the MOM, and finally, commits the transaction). All mes-
sages arrive within the first 0.4 seconds and are delivered
sequentially within the next second. This behaviour leads
to delivery times of 0.4 seconds at minimum. The delivery

37

Figure 1: Time series of a transaction with 1000
messages per transaction set.

times grow linearly until the transaction is completed. In
this example, the position of a message in the transaction set
determines its delivery time. Thus, the measured delivery
times are not independent and identically distributed but
strongly depend on the number (and size) of messages that
have already been sent. As a consequence, we need to keep
track of the messages that are part of a transaction. Addi-
tionally, the periodical utilisation of resources (e.g., CPU)
influences performance. To model such a behaviour, we need
a notion of state as part of our performance model.

1.2 Challenges of Stateful Analysis
The question that rises for current performance models is

how to include the software application properties identified
above in a performance model, and how to build more ac-
curate and expressive models of stateful component-based
systems. In this respect, we can identify four main issues.

• State definition: The property of statefullness can
be identified in various artifacts of component-based
systems, varying over several system life-cycle stages.
Existing literature lacks the localization of state-holding
information identifiable in component-based systems [3,
16, 26], and their classification into a transparent set
of categories. Available surveys consider the capability
to model state only partially or not at all.

• Performance impact: The benefits of state mod-
elling include increased expressive power of the models
and higher accuracy of predictions. It is however not
well studied, as observed by a number of authors [16,
4, 26, 16], what is the increase of prediction accu-
racy achieved by state modelling, especially in compar-
ison to the increased effort for modelling and analysis.
A discussion on how the existing performance-driven
models deal with the interpretation and analysis of
stateful prediction models is elaborated in section 3.1.

• Prediction difficulty: The balance between expres-
siveness (state modelling) and complexity (model size
increase) is a challenging research question. Only when
it is understood what costs need to be paid for the
increase in prediction accuracy, we can competently
decide on the suitable abstraction of state modelling
(to what extent we aim to include stateful information
present in the analysed system).

• State support in component models: The lack of
work addressing the discussed issues can be explained
by insufficient support of stateful information in exist-
ing performance-prediction models. Industrial models
(like EJB, CCM or Corba) have been designed to sup-
port internal state, since it is one of the crucial im-
plementation details, but lack the support of broad
analysis capabilities with respect to system proper-
ties. Academic research-oriented stateful component
models (like SOFA [7]) are often accompanied with
a special analysis method for a set of functional sys-
tem properties (model checking), but not for perfor-
mance, which is of our interest. The performance-
driven research-oriented component models (see de-
tailed survey in section 3.1) either lack support for
state modelling or model state only partially (see ta-
ble 2).

1.3 The Contribution of the Paper
This paper addresses the challenges via three main contri-

butions: (i) identification of stateful information in compo-
nent-based systems and their classification into a set of cat-
egories, (ii) critical evaluation of state modelling in current
performance prediction models, and an extension to a chosen
performance-prediction language to provide sufficient state-
modelling capability, and (iii) state-dependency analysis dis-
cussing performance impact of state-modelling. As a proof
of the concept, we provide a realistic case study demonstrat-
ing the influences of internal state on a real system mea-
surements compared to prediction based on state modelling
abstractions.

The paper is organized as follows. Section 2 realizes the
first contribution. It identifies and discusses state-specific
properties of component-based systems, localizes stateful in-
formation, and classifies them along two dimensions into a
categorization. Section 3 realizes the second contribution. It
surveys existing performance-driven component-based mod-
els with respect to state support, and extends one of the
models, Palladio Component Model (PCM), to sufficiently
support the identified state categories. Section 4 realizes the
third contribution via discussing the observations from a set
of experiments performed on stateful PCM models for indi-
vidual state categories, and section 5 presents results from
the analysis of a realistic case study. Finally, section 6 dis-
cusses the results and section 7 concludes the paper.

2. STATEFUL COMPONENT-BASED
SYSTEMS (SCBSs)

In this paper, we understand the state as an information
remembered inside the system. A state is typically con-
text or history-dependent, and is used to navigate system
behaviour depending on the current state value. There-
fore, a state influences system control flow, which propagates
into resource-demand sequences, and finally to performance
properties (such as response time, throughput, and resource
utilisation). A typical example of a state is an attribute of
an object in object-oriented programming, which is used to
store information (updated by the methods of the object)
and which is employed for customizing object’s response to
incoming calls.

In literature, two main streams of understanding a state
can be found. In the first one [16, 11, 14], the authors attach

38

a state as an additional information to behavioural mod-
els. A state can be used in behavioural decisions. The be-
havioural model set and read state explicitly. In the second
one [7], a state is encoded implicitly in the current position
in system execution (behaviour). The main difference be-
tween the two is that in the first case, an update of a state
is possible, and can be used to adapt the behaviour of the
element. In the second case, the state cannot be changed
explicitly. When we assume that a system comprises of in-
teracting components, the impact of the state rises in the
case of parallel usage of components, when all users share
the same stateful information coordinating their behaviour.

2.1 Specifics of CBSs with Respect to a State
The state-relevant information influencing system perfor-

mance can be found at different stages of system life-cycle.
As distinct to classic software systems, the life-cycle of a
component-based system constitutes of two separate abstrac-
tion lines—life-cycle of a component and life-cycle of a com-
posite system [8, 25]. Moreover, components can be of two
types: primitive and composite. Primitive components di-
rectly encapsulate implemented functionality, and are typ-
ically viewed as black boxes. Composite components are
constituted by a composition of existing components, and
are often viewed as grey boxes. In a similar fashion, we
assume that the state of a composite component is simply
a composition (an ordered n-tuple) of the states of its sub-
components. In this sense, a complete composite system has
two kinds of states: (i) the implicit state inherited from the
(primitive) components in the system, and (ii) an explicit
state containing additional information specific to the full
system.

Life-cycle stages of a component:

• Specified component: represents a component frame
with known provided or required interfaces.

• Implemented component: defines how the provided
services of the implementation call the required ser-
vices.

• Instantiated component: is an identifiable compo-
nent instance derived from the implemented compo-
nent, and ready to be executed (in its initial configu-
ration).

• Deployed component: is a component instance al-
located on a hardware.

• Running component: is an actually executed com-
ponent that serves client requests (not necessarily in
its initial configuration).

Life-cycle stages of a composite system

• Specified system: is a frame of the system with
known access points and services required from the
environment.

• Assembled system: is an executable system assem-
bled from implemented (instantiated) components, and
ready to be launched (in its initial configuration).

• Deployed system: is an assembled system deployed
on underlying software and hardware.

• Running system: is a system at any moment of its
execution.

The responsibility to model stateful information and ini-
tialise suitable state abstraction is based on CBSE devel-

Table 1: Identified state categories.

opment process. We divide the responsibility to model the
state between development roles considering the moment in
the development when certain role has enough information
to refine the model with required state definition. The over-
all development process, integrating the evolution on both
component and system level can be understood in terms
of involved developer roles, which are component develop-
ers, software architects, system deployers, and domain ex-
perts [18]. Component developers (CD) code the compo-
nents, and annotate their interfaces with abstract behavioural
specifications, to facilitate the usage by third parties. Soft-
ware architects (SA) assemble selected components into ar-
chitectures forming the system. System deployers (SD) de-
sign the resource environment (e.g. CPUs, network links),
and allocate the components in the architecture to the re-
sources. Finally, domain analysts (DA) communicate and
specify the system-level usage profiles (call frequencies and
expected input parameter values), which then can be em-
ployed in formal reasoning about system properties.

2.2 State Categorisation for CBSs
To find a definition of a state in the context of CBSs and

performance predictions, we studied different categories of
states in existing component-based systems and component
models (see section 3.1). We observed that the notion of
component/system state involves various properties and is
dependent on different execution processes in the system.
With respect to these, we have identified two dimensions,
along which we categorise observed state types.

(i) Place dimension answers the question: Is the state
proprietary to a component/system/user?

(ii) Time dimension answers the question: Is the state
initialised or changed at run/deployment/instantiation
time?

Table 1 outlines the identified state categories. Along the
place dimension, it distinguishes component-, system- and
user-specific states, all defined below. With respect to the
time dimension, we studied all stages of component-system
life-cycle, and observed that a state is by nature a dynamic
information that evolves independently for individual ele-
ments in the system. If it is fixed along a life-cycle, it is not
set before the element gains its identity (instantiation stage
in case of a component, assembly stage in case of a system).
We refer to this moment as instantiation time. The follow-
ing moments are the deployment time, which corresponds to
the deployment stage of the life-cycle, and run time, which
belongs to the run-time stage.

The rest of this section presents the identified state cat-
egories, structured to three sections along the place dimen-
sion, and for each category, it outlines a demonstrating ex-
ample, and comments on its modelling.

39

2.2.1 Component-Specific State

Component-specific state is an information remembered
for each component, and used inside the component to ad-
just component’s behaviour to incoming requests. Compo-
nent state can be modified only by the services of the com-
ponent, not by other components.

(a) Protocol State: This state holds an information about
currently acceptable service calls of a component. It is typ-
ically part of an interface contract between service provider
and its client [25].

Example: Consider a component managing a file, which can
be opened, modified and closed. The component is initially
in the state when it accepts only the command for opening
the file. After that, it moves to the state, where the file can
be either modified or closed. Closing takes the component
again to the initial state. The indication for a protocol state
performance impact is, for example, rate of rejected requests
(contenting the communication link). Analogically, the pro-
tocol state uses to be employed also for modelling com-
ponent life-cycle, including stages like inactive, initialised,
replicated, or migrated component.

Modelling: The protocol state uses to be identified by com-
ponent developer, and attached to a component via a proxy,
filtering the calls on component interfaces. Illegal calls are
either dropped or returned to the caller with an exception.

(b) Internal State: This state holds an internal informa-
tion set by the services of the component (at run time), and
used to coordinate the behaviour of the component with re-
spect to the current value of the state. Internal state is
externally invisible, and externally unchangeable.

Example: Consider a component that can be in either full
or compressed mode, based on the remaining capacity of its
database. If it is in the compressed mode, all insert queries
on the database are additionally compressed.

Modelling: The internal state is defined by component de-
veloper, and stored internally as a local variable of each com-
ponent instance. To reflect the state in a component model,
there must be a possibility to define such a local variable,
set its value at run time, and query its current value.

(c) Allocation State: This state holds component prop-
erties specified at deployment time, based on the allocation
environment of the component.

Example: An example of a performance-relevant deployment
property is for instance the maximal length of a queue used
by the component. Such a property is set at deployment
time, and remains fixed along the execution of a compo-
nent.

Modelling: The component-specific allocation state can be
modelled with a static component parameter, and is identi-
fied and set by the system deployer role.

(d) Configuration State: This state holds instance-specific
component properties, fixed during instantiation of the com-
ponent.

Example: The configuration state may specify a selected
parallel-usage strategy (like rendezvous or barrier synchro-
nization), which may differ for each component instance.

Modelling: Similarly to the component allocation state, the
configuration state can be modelled with a static component
parameter. In this case, it is typically set by a software ar-
chitect, who decides on the configuration of the primitive
components forming the assembled architecture.

2.2.2 System-Specific State

System-specific state is an information remembered in one
copy for the whole system, and used to customize or coor-
dinate joint behaviour of individual components. This state
abstraction gains on importance with analysing the state
of virtualised systems, cloud computing or systems sharing
deployment environment.

(e) Global State: This (run-time) state holds a global in-
formation shared and accessed by all components.

Example: A typical example of this kind of state is a global
counter, remembering for instance the number of service
calls executed in the system since the last back-up of the
system, and triggering the back-up process after a certain
number is reached.

Modelling: Global state is specified by a software architect
during system assembly, in terms of a modifiable system at-
tribute (global variable). It can be either managed directly
by the execution environment, or be encapsulated within a
component that manages it as its internal state, update its
value on request, and answers the questions on its current
value.

(f) Allocation State: This state holds deployment-specific
information shared by all components in the system.

Example: The examples include the availability of support-
ive services of the underlying infrastructure (e.g., middle-
ware), parameters of employed thread pool, or selected com-
munication or replication strategies.

Modelling: The system-specific allocation state can be mod-
elled with a static system parameter, and is identified and
set by a system deployer.

(g) Configuration State: This state defines system con-
figuration properties specified before launching the system.

Example: This may be for example an upper bound on the
number of component instances that may resist in the sys-
tem at the same time. This is an information of a configu-
ration character, and utilized by all components whenever a
new component instance is to be created.

Modelling: The system-specific configuration state can be
modelled analogically to the configuration state, and is iden-
tified and set by a software architect.

2.2.3 User-Specific State

User-specific state is an information remembered for each
user, and used to customize system behaviour to the user.

(h) Session State: This state holds a user-specific infor-
mation for a single session. The information defining the
state is forgotten when the session terminates.

Example: A session can represent one sale performed in a
supermarket system. Each sale may start with scanning a
customer card, which then customizes system processing of
the sale. The system may for instance dynamically recom-

40

pute during the shopping process the prices of some products
or their combination, which may be time consuming and can
influence the system response time for a user.

Modelling: This kind of state is derived from the informa-
tion given by a domain analyst, and could be modelled by
additional input parameter in usage model or by more spe-
cific component state parameters. The behaviour in system
per user/session could depend on the history of actions in
the session, this history information could be traced in com-
ponent internal parameters, what builds together with the
persistent state an overlap with component state definition.

(i) Persistent State: This state holds a user-specific infor-
mation throughout the whole existence of user in the system,
independently on an existence of a session belonging to the
user.

Example: Each user of an online Media Store has a different
limit on data for download under full downloading speed.
The system needs to remember this information to control
the attempts of users to download data over the limit, and
regulate downloading speed accordingly.

Modelling: The persistent state can be modelled analogical
to the session state, with a persistent data store involved.

3. PERFORMANCE MODEL FOR SCBSs
This section surveys existing performance-prediction com-

ponent models with respect to their state-related capabili-
ties, and summarizes their coverage of identified state cate-
gories in table 2.

3.1 State of the Art Evaluation
Existing performance-driven component models can be

based on their analytical methods classified into four main
streams: design-time, formal-specification, measurement, and
simulation models.

In the group of design-time performance prediction meth-
ods these are few that partially support state modelling.
First of them is the CB-SPE approach by Bertolino and Mi-
randola [6] that uses UML extended with SPT annotations
profile to model component state or configuration in a static
way. The component model based on a proprietary meta-
model Palladio Component Model (PCM) [4] builds on stat-
ical state abstractions too. Additionally this model allows
to model session state through additional input data in an
usage profile of a system. Despite of these state abstractions
a need of further extensions for state modelling was identi-
fied in PCM [17]. The PECT model [14] deals with state
modeling in a more detail and addresses the performance
predictability properties of components with runtime sys-
tem assembly variability. Even though the notion of state
is partially included there is no full support for including
of this state-based variability in performance predictions.
This model builds on a Component Composition Language
(CCL) that allows to model component behaviour based on
statecharts. The performance impact of state is not fur-
ther investigated, the focus of state modeling is directed
on model checking of functional properties. Additionally,
based on statecharts and certain behaviour claims, reliabil-
ity of the system can be verified. Similarly, state is modelled
in the Component-Based Modeling Language (CBML) with
the possibility to statically configure component parameters.
In the component model ProCom [23] designed for embed-

ded systems, state is modelled only statically by a set of com-
ponent parameters. Further, the component architecture of
COMQUAD [20] is using Petri nets as a system behaviour
model, however, the dependency of the service call on input
data is ommited. A lot of other models claim an ability to
express state changes but in many cases they refer to the be-
havior protocol checking [14], state changes monitoring [21]
or performance annotations based on measurements [5].

The formal specification model for testing of performance
and reliability HAMLET [11] suggest to model state as an
additional input (additional floating point external variables
loaded in the time of component execution) and provide
tests showing functional aspects of a state. The measure-
ment approach called AQUA [10] inherently monitors state
impact (component description is given by the specification
of EJBs) and showed how important it is to understand how
system state is interpreted. Another approach to measure
EJB applications NICTA [19] provides benchmarking meth-
ods to get platform-independent information, such as thread
pool size etc. The simulation-based approach MIDAS [2] de-
termines performance characteristics of the system through
state estimation or computation during simulation, for ex-
ample queueing characteristics.

3.2 Palladio Component Model (PCM)
Based on the evaluation in the section 3.1 we decided to

extend the Palladio Component Model (PCM) [4] with fur-
ther capabilities to model stateful information. This ex-
tension is one of the contributions we introduce in the sec-
tion 3.2.1. The advantage of this model is its component-
based nature, already partial support for state modelling
and possibility to model usage profile in detail.

First, the related foundations will be introduced. Fig-
ure 2 shows a condensed example of a PCM instance. In
this section, we informally describe the features of the PCM
meta-model and focus on its capabilities for state modelling.
The division of work targeted by CBSE is enforced by the
PCM, which structures the modelling task to four indepen-
dent languages reflecting the responsibilities of the four dif-
ferent developer roles outlined already in section 2.1.

Component developers are responsible for the specification
of components, interfaces, and data types. Interfaces are
first class entities in the PCM, consist of multiple service sig-
natures, and follow the CORBA IDL syntax. Each provided
service of a component is defined by abstract behavioural
specification (so-called service effect specification (SEFF)),
which abstractly models the usage of required services by
the provided service (i.e., external calls), and the consump-
tion of resources during component-internal processing (i.e.,
internal actions). Component developers can annotate ex-
ternal calls as well as control flow constructs with parame-
ter dependencies. This allows the model to be adjusted for
different system-level usage profiles. Parameter values can
be of different type (e.g., string, int, real, composite) and
can be characterised with random values to express the un-
certainty when modelling large user groups. Further, each
component (or composed component) can have static com-
ponent parameters defined. Software architects compose the
component specifications into an architectural model. They
create assembly connectors, which connect required inter-
faces of components to compatible provided interfaces of
other components. They usually do not deal with compo-
nent internals, but instead fully rely on the service effect

41

Table 2: Component Performance Models Comparison.

specifications supplied by the component developers. Fur-
thermore, software architects define the system boundaries
and expose some of the provided interfaces to be accessible
by users. System deployers model the resource environment
(e.g., CPUs, network links) and allocate the components in
the architectural model to the resources. Resources have
different attributes, such as processing rates or scheduling
policies. Finally, domain experts specify the system-level
usage model in terms of stochastic call frequencies and in-
put parameter values for each called service, which then can
be automatically propagated through the whole model and
define non-persistent user session parameters.

The PCM already provides certain abstractions or approx-
imations to model state: (i) static component parameters (or
properties) characterize the state of a component in an ab-
stract and static way and hence offer a more flexible param-
eterization of the model. These parameters are propagated
through development process differently, they are defined
and initialized by a component developer and can not be
changed at runtime. (ii) Limited passive resources, such as
semaphores, threads from a pool, or memory buffers result
in waiting delays and contentions due to concurrently exe-
cuted services. (iii) Input data from usage profile allows to
express session state. Table 2 illustrates the capabilities of
PCM to model identified state categories.

3.2.1 PCM Stateful Extension
We extended the component behaviour model of the PCM

(the SEFF) to allow the modelling of component internal
state as described in section 2.2.1(b). With this extension,
also system specific global state (cf. section 2.2.2(e)) can be
modelled by adding a blackboard component that makes its
internal state available to other components in the system.
Only two additions to the PCM metamodel are required
to model component internal state and global system state.
First, we declare a set of state variables for a component.

Only a declared state variables can be used within a SEFF.
Second, we add a SetStateAction to the SEFF, which al-
lows to set the state variable to a given expression. Input
data of the SEFF, other state variable values and the previ-
ous state variable value can be used in the expression. Now,
the state variable can be used in branch conditions or re-
source demands as a parameter. The use of PCM Stateful
extension is illustrated in section 5.

We can analyse an extended PCM model with an extended
version of the SimuCom simulation presented in [4] to obtain
the performance metrics. At simulation runtime, each com-
ponent is instantiated and holds its state variables. When
a SetStateAction is evaluated, its expression is evaluated
and stored in the state variable. If BranchActions and In-

ternalActions access state variables, the value is retrieved.
The extension increases the expression power of SEFFs and
allows programming, although the language does not be-
come Turing complete (all loops are bounded). As multiple
requests to the system are analysed concurrently, we can en-
counter race conditions and resulting unexpected behaviour.
In our example above, race conditions are excluded because
the branch condition and SetStateAction are evaluated in
the same simulation event (no time passes in simulation).
However, in general, if a resource demand is executed be-
tween reading the state in a BranchAction and setting the
state in one of the branches, both actions are executed in
separate simulation events. Here, a second request to the
component could read or change the state in between, lead-
ing to race conditions. With the extended state modelling,
steady-state behaviour is not guaranteed any more. While
this limits analysability, it also can help to detect problems
in a software design.

For example, assume a system service that becomes the
more expensive the more requests have been served. Then,
the response time of the system will ever increase (“The
Ramp”antipattern [24]) and no steady state can be reached.

42

Component 1 Component 2

CPU HDCPU

Resource Container 1 Resource Container 2

Parameter:
TP.Size,
Asynch.Proactor

Configuration:
SchedulingPolicy

Configuration:
Protocol

5 calls to Service 1
P(X=1) = 1.0
P(Y=0) = 0.1
P(Y=3)= 0.7
P(Y=5) = 0.2

Call
Service 2

Call
Service 3

Y > 3Y <= 3

CPU HD

Input:
Z = X + 5

Input data:
X, Y

Input:
Z = 27*X+3

Count =
Z + 2

Input data:
Z

Behaviour
Service 2

Behaviour
Service 3

<<allocated>> <<allocated>>

CPU

Behaviour
Service 1

Component Developer 1 Component Developer 2

System Deployer

Software Architect

Domain Expert

<<uses>>

Service 1

Service 2

Service 3

Service 2

Service 3

<<allocated>>

<<implements>>
<<implements>>

Component Parameter:
A, B

Input data:
S.session

Figure 2: PCM example.

With the extended state modelling, this performance an-
tipatterns can be detected in the simulation results.

4. STATE DEPENDENCY ANALYSIS
After identifying state types in component-based systems,

and extending the PCM performance-prediction model to
support them, this section elaborates the third contribution
of the paper—a study of the performance impact of identi-
fied state types, and observations about the influences that
should drive the decision on the abstraction level of state
modelling. The states in the system should be modelled
only if the increase in the accuracy they bring outbalances
the price that needs to be paid for the increased model com-
plexity [17].

In design-time performance prediction, this issue has al-
ready been addressed for various other constructs, including
service parameters, return values, or usage-profile propaga-
tion. This section gives an insight into the issue for state
modelling, which has not been addressed so far, and hence
tries to help the software engineers to find the balance be-
tween accuracy and complexity of models more competently.

4.1 Quantification of Model Complexity
The complexity of a model can be best understood when

translated to a low-level formal language with clearly de-
finable size. One of the formalisms most commonly em-
ployed for this purpose are labelled transition systems. In
the case of component-based systems are particularly dif-
ferent kinds of interacting automata [28, 27] used. Allow-
ing to form labelled transition systems via composition of

automata-based models of individual components. In [27],
the inclusion of a stateful information in a model is studied in
terms of Component-Interaction Automata. It is shown that
a component/system state can be encoded as an automa-
ton interacting with the automata for component services—
answering their queries of its current value, and accepting
their commands to change the value. The model of a system
is then a composition of not only the models of individual
services (implemented by the components), but includes also
the models of all states (whose size correspond to the num-
ber of possible state values).

Since the size of a composite component-interaction au-
tomaton is defined over a cartesian product of the vertices
of composed automata, the size of the composite model can
be in the worst case a multiplication of the initial stateless
model with the size of the internal-state model. We have ob-
served, however, that not only that this case is very unlikely
to occur, but the model that includes stateful information
can be even smaller than the initial stateless model, due to
higher certainty about future behaviour of the system.

4.2 Diversity Among State Categories
In section 2.2 we have identified nine state categories.

Though they all embody the same construct (defined in sec-
tion 2) and theoretically bring analogical performance im-
pact, their practically observed performance impact differs,
and is influenced by diverse criteria. However, one can also
observe strong similarities among some of the categories:

• Allocation vs. Configuration state: Both the allo-
cation and configuration state (consider the component-
specific case for now) are fixed before the actual system
execution. Thus from the performance point of view,
both of them can be understood as fixed component
parameters, often usable in an interchangeable way.

• System vs. Component-specific states: Even if
the component-based system behaviour is encapsulated
in components, and structured to architectures, its
core is in the interaction of system services. If we abs-
tract from component boundaries, we can find a strong
analogy between component internal state and sys-
tem global state, and between component- and system-
specific allocation and configuration state.

• Session vs. Persistent state: Note that from the
point of view of performance analysis, the persistent
state can be understood as a session state for one life-
lasting session.

The identified similarities separate the defined state types
into four classes, with the following representatives1: (a)
Protocol state, (b) Internal state, (c) Allocation state, and
(h) Session state.

4.3 Performance Impact of State Classes
For each of the four representatives identified above, we

performed a number of experiments and draw a number of
observations on the performance impact and costs of the
state class, which we present in this section. For both the
performance impact and the cost, we compared the stateful

1Any other members of the classes could be chosen as the
representative, we chose the first ones from the line of their
definition.

43

<<GuardedBranchAction>>

State.VALUE == closed state.VALUE ==
opened

<<InternalAction>>
open

<<State>>

state = closed

<<SetStateAction>>
state.VALUE = opened

Figure 3: A SEFF of open().

model of a PCM instance to the stateless model of the same
example, where the state-dependent decisions are guarded
by probabilities.

(a) Protocol State: Recall the protocol-state example out-
lined in section 2.2. The protocol state in the example can
have two values: closed, when the only acceptable call is
open(), and opened, when the component can accept calls
modify() and close(). Both the stateful and probabilistic
model of the example in PCM consist of three SEFF mod-
els and one usage profile. Each SEFF starts with a branch
condition deciding if the service is going to be executed or
rejected (see figure 3). While in the stateful version, the
branch is guarded by a current value of the protocol state,
updated after executing open() and close(), the proba-
bilistic model fixes the probabilities of the branches based
on expected likehood of the alternatives.

Performance impact: A number of performed experiments
with different variations of the probabilistic model showed
two important observations about accuracy of the stateful
model comparing to the stateless model:

• The performance impact of the protocol-state mod-
elling highly depends on the a-priori knowledge of the
usage profile, which in general cannot be guaranteed
since component behaviour and usage profile are de-
fined independently by different developer roles.

• Even if the usage profile is known, the actual prob-
abilities of service triggering depend on component’s
environment through which the usage profile is propa-
gated, and thus can be very hard to quantify.

We can conclude that the importance of protocol-state mod-
elling raises with the lower knowledge of usage profile, and
higher complexity of component’s environment.

Model-size costs: The stateful model of each service has a
unified form, having two independent alternatives: the first
(complex one) if the service is executable, and the second
(trivial one) if the call is rejected (see figure 3). In a stateful
model of such a service, two sources of model-size increase
can be identified.

• An increase due to state update after service execution,
which is negligible.

• An increase due to remembering the actual state value,
and accordingly executing only the right alternative. If
the size of the model is understood in terms of a la-
belled transition system (a graph describing the paths
of possible system behaviour), then the size remains
unchanged as far as there is always only one state value
for which each service can be executed. If a service can
be executed in more than one values of the protocol
state, the number of vertices in the model can be mul-
tiplied with the number of such state values. On the
other hand, the complexity of the paths throughout

<<GuardedBranchAction>>

processed >= limit processed < limit

<<InternalAction>>
cleanUp

<<State>>

processed = 0

<<ComponentParam>>

limit = 10

<<SetStateAction>>
processed = 0

<<GuardedBranchAction>>

processed >=
limit processed < limit

<<InternalAction>>
processData

<<SetStateAction>>
processed = processed + 1

...
A B C D

Figure 4: A SEFF of processData().

the transition system remains unchanged.

(b) Internal State: Consider an example outlined in fig-
ure 4, with internal state processed remembering the amount
of processed data, and coordinating a component to either
process additional data or perform cleanup. A probabilistic
model would be analogical, with the branches guarded with
the probabilities of state values.

Performance impact: This example was selected to disclose
an additional influencing factor (besides the two identified
for the protocol state), specific to this state category. It is
connected to a possible correlation of state values in subse-
quent branches guarded by the internal state (typically with
additional execution in between of the branches). Recall
the example in figure 4 with strongly positively correlated
branches (let us denote the alternatives in the first branch A
and B, and in the second branch C and D). Note that while
in the stateful model, there are only two possible service ex-
ecutions (either A followed by C, or B followed by D), in the
probabilistic model, four alternatives are possible (both A
and B can be followed by anything). The observation can
be summarized as follows:

• The importance of internal-state modelling raises with
the higher correlation of subsequent state-driven deci-
sions. In such a situation, it is very unlikely that the
system can be modelled faithfully without the internal-
state construct.

Model-size costs: The model of a service involving internal
state can have much more variability than in the case of
protocol state, since the state-guarded branches and state
updates can be present anywhere in the model. This in the
worst case implies multiplication of the model size with the
size of the state (number of its possible values). In practice
however, this case is very unlikely to occur. The likehood is
decreased by the following factors:

• A high connection of component behaviour to a state
value. The model does not grow to the worst case if
some of the behaviours are possible only under a par-
ticular state value. Then the combinations of these be-
haviours with the infeasible state values do not appear
in the model and restrict the size increase (analogically
to the argument for the protocol state).

• A low number of independent state-guarded branches.
On the other hand, a high number of independent
branches does not increase the number of vertices in
the model, but increases the number of transitions,

44

and hence the number and complexity of behaviour-
describing paths.

• A small number of state updates.

(c) Allocation State: Recall the allocation-state examples
outlined in 2.2. Their most important property (shared with
the configuration state) is that they are fixed at deployment
time (resp. instantiation time) and do not change during
system execution.

Performance impact: Thanks to this specific, there are two
main observations influencing the effect of allocation-state
modelling:

• As distinct to so far discussed categories, the general
influence of the allocation state to system performance
is independent on the usage and the environment. This
is because the state-guarded branches are evaluated in
a fixed way, irrespective of the usage.

• On the other hand, the prediction accuracy is critically
dependent on the knowledge of component/system de-
ployment parameters, which allows to cut off the be-
havioural branches that go against the value of the
parameter. When such an information is not available
to the component developer (since it is determined by
a different role), the probabilistic model exhibits high
inaccuracies.

Model-size costs: As the value of the allocation state does
not change along system execution, there is no increase in
model size, quite the contrary. Since all infeasible branches
are never executed, the reachable space of the stateful model
is even smaller than in its probabilistic variant.

(h) Session State: Consider the session-state example
from section 2.2, with sessions connected to individual sales,
parameterized by an information about the customer. The
PCM model can be very simple, propagating the user-specific
state in terms of an input value throughout the whole ses-
sion.

Performance impact: The session state exhibits some simi-
larities, but also differences to all the state classes discussed
above. It is very similar to the allocation state, but is not
fixed along the whole execution (differs for individual ses-
sions). It changes very rarely, and is updated only on a
specific place (similarly to the protocol state). On the other
hand, it may guard behavioural branches anywhere in the
execution, as distinct to the protocol state but similar to the
internal state. This implies the following:

• The impact is not very dependent on the usage profile
and environment, but highly dependent on the knowl-
edge of the distribution of the session state values (sim-
ilarly to the knowledge of deployment parameters in
case of the allocation state).

• Since the subsequent queries on the state value are
highly correlated, probabilistic models can hardly model
session-state dependent behaviour faithfully.

In summary, this construct is crucial in the model, because
of strong correlation of subsequent state-guarded branches,
and changeability of the state value along the system execu-
tion.

Model-size costs: The observations on the size of the model
follow:

• The increase due to remembering the actual state value
is similarly to the internal state dependent on the con-
nection of component behaviour to the state value.
The weaker the connection is, the closer the model
can grow to the worst case.

• Thanks to the correlation of subsequent branches, there
is basically no complexity increase in terms of the be-
havioural paths.

• There is basically no size increase due to state update,
since the state is not updated inside the system, and
occurs very rarely.

5. VALIDATION
In this section, we use the state model introduced in sec-

tion 3.2.1 to predict the delivery time of transactional mes-
sages observed on our motivating example in section 1.1.
Transactional messages are common in today’s enterprise
applications, such as implemented by SPECjms2007 Bench-
mark [9]. However, the transactions used in the supply chain
management supermarket of the benchmark are limited to
small, predefined transaction sizes. To provide a better eval-
uation, we implemented an application that allows to config-
ure the number of messages send in one transaction following
the philosophy of SPECjms2007. We excluded external dis-
turbances (such as database accesses) and focussed on the
evaluation of the messaging system. For performance predic-
tion, we extended our performance completion for message-
oriented middleware called messaging completion in the fol-
lowing [13]. The messaging completion subsumes several
components that reflect the influence of different middle-
ware configurations such as guaranteed delivery, competing
consumers, or selective consumers. A model to model trans-
formation (implemented in QVT Relational [22]) generates
the necessary completion components and integrates them
into the software architecture. We have already demon-
strated that the messaging completion can predict the per-
formance of a SPECjms2007 scenario with an accuracy of
5% to 10% [13]. In the subsequent paragraphs, we present
an extension of our messaging completion that enables the
prediction of influences of transactions on the delivery time
of a message.

Completion for Message-oriented Middleware: Fig-
ure 5 shows the components and connections that are gen-
erated by the messaging completion (see [13] for details).
The completion consists of adapter components and middle-
ware components. The first forwards requests and calls the
middleware components that issue platform-specific resource
demands. The Marshalling component computes the mes-
sage size based on the method’s signature. The message
size is passed to subsequent adapters as an additional pa-
rameter, so that the original interface (IFoo) needs to be ex-
tended (IFoo’). The Sender Adapter calls the Sender Mid-

dleware which loads the resources of the sender’s node and
forks the call to the MOM Adapter to reflect the asynchronous
behaviour of the messaging system. The MOM Adapter re-
alises the transactional behaviour of the messaging system.
The Receiver Adapter calls the Receiver Middleware and,
thus, loads the resources of the receiver’s node. It forwards
the requests to Demarshalling which maps the extended
interface (IFoo’) back to the original interface (IFoo).

Modelling transactional behaviour of the MOM Adap-

ter: In order to start a transaction, the sender has to explic-
itly call method startTransaction. Its behaviour (see fig-

45

Sender
Middleware

Receiver
MiddlewareMessaging System

Sender
Adapter

Receiver
Adaper

Messaging Completion

Marshalling DeMarshallingMOM
Adapter

IFoo IFoo’ IFoo’ IFoo’ IFoo’ IFoo

IMomIMarshalling IMarshallingISender IReceiver

Platform-specific Middleware Components

Figure 5: Components of the MOM completion.

Figure 6: Starting a new transaction.

ure 6) consists of a single SetStateAction, which resets the
number of messages to zero (numberOfMessages.VALUE = 0)
and enables the transactional message transfer (isTransac-
tional.VALUE = true). When startTransaction has been
called, all messages send in the following will be part of the
transaction until commitTransaction is executed. The be-
haviour of the MOM Adapter varies for transactional and non-
transactional messages (see figure 7). If the message is not
part of a transaction, the adapter simply calls the Messaging
System, which loads its local resources with the service de-
mands necessary for transferring the message, and forwards
the messages. Otherwise, if the message is part of a transac-
tion, then the MOM Adapter increases the current number of
messages of the transaction (numberOfMessages.VALUE =
numberOfMessage.VALUE + 1) and queues the message.
The queueing is modelled by two actions. The first ex-
ternal call action (IMOM.queueMessage) loads the resources
of the Messaging System. The second action acquires the
passive resource transactionQueue, which blocks the mes-
sage transfer until the transactionQueue is released. When
the transaction is committed and the messages blocked at
the transactionQueue are released, the MOM Adapter pro-
cesses the message transfer (IMOM.processMessageTrans-
fer). Furthermore, it notifies the behaviour of commitTran-
saction that the message has been transfered (transfer-
Completed is released). Finally, the MOM Adapter forwards
the message to the Receiver Adapter. This behaviour en-
sures that all messages are delivered in the same order as
they have been send. Figure 8 shows the behaviour ex-
ecuted to commit a transaction. The RD-SEFF reflects
the successful execution of a transaction and neglects pos-
sible rollbacks and re-executions. To commit a transac-
tion and deliver all messages to the receivers, a loop ac-
tion iterates over all messages blocked during the transaction
(numberOfMessages.VALUE). For each message, it unblocks
its transfer (releases passive resource transactionQueue. To
ensure the sequential delivery of messages, it waits for the
successful transfer of the message (aquires passive resource

<<GuardedBranchAction>>

isTransactional.VALUE == true isTransactional.VALUE == false

<<ExternalCallAction>>
IMOM.processMsgTransfer

<<ExternalCallAction>>
IMOM.queueMessage

<<ExternalCallAction>>
IFoo’.service

<<AcquireAction>>
waitForTransferStarted

<<ReleaseAction>>
notifyTransferCompleted

<<ExternalCallAction>>
IFoo’.service

 << InputVariableUsage >>
message.BYTESIZE =

stream.BYTESIZE

 << InputVariableUsage >>
p1.Characterisation = p1.Characterisation

[…]
pn.Characterisation = pn.Characterisation
stream.BYTESIZE = stream.BYTESIZE

<<PassiveResource>>
transactionQueue

capacity = 0

<<PassiveResource>>
synchronisationPoint

capacity = 0

<<SetStateAction>>
numberOfMessages.VALUE =

numberOfMessages.VALUE + 1

<<ExternalCallAction>>
IMOM.processMsgTransfer

Figure 7: MOM Adapter: Message Transfer.

synchronisationPoint) before it continues. Finally, the
transaction is terminated (isTransactional.VALUE = false)
and the number of queued messages is reset (numberOfMes-
sages.VALUE = 0).

Results: Figure 9 shows the prediction results for trans-
actional messages using the models presented in this section.
The corresponding real measurement is shown in figure 1.
The predictions correctly reflect the dependency of a mes-
sage’s delivery time on its position in the transaction. Fur-
thermore, the predicted delivery times range from 400 ms to
1400 ms which corresponds to the observed delivery times.
Table 3 lists the predicted and measured median values for
different transaction sizes. Due to the high variance of the
delivery times, the median serves as a representative value
for a specific transaction size. However, the median can only
be considered as an indicator for the prediction accuracy. In
table 3, predictions and measurements deviate less than 4%.

46

startMsgTransfer

waitForTransferCompleted

Figure 8: MOM Adapter: Commit Transaction.

Figure 9: Predicted delivery times for messages.

These results indicate, that the extension of our messaging
completion based on PCM Stateful can accurately predict
the influence of (successfully completed) transactions on the
delivery time of a message.

6. DISCUSSION
The increased expressiveness of stateful models comes at

a cost. Stateful models may have much higher complexity
and size, which may complicate their analysis. Even if the
models are not analysed fully, and are examined with sim-
ulation methods (like in the case of PCM), model complex-
ity may have an impact on the time needed for sufficiently
accurate performance prediction (duration of a simulation
run). The time necessary to execute a simulation run is
further influenced by the variability of simulation results.
The state-dependent system variability mirrors in the vari-

Table 3: Measurement/Prediction Comparison.

ance of the results and consequently influences the number
of measurements necessary to achieve results with a high
confidence. The cost of a single simulation measurement
depends on the length of the simulated trace. Explicitly
modelled states have only little effect on the length of simu-
lation traces, which mainly depend on the modelled software
architecture (e.g., loops dependent on a state value). On the
other hand, one should to keep in mind that the confidence
about the correctness of predicted values will be higher if
a low-coverage simulation is run on a more accurate (state-
ful) model, than if a high-coverage simulation is run on an
unrealistic (stateless) model.

When studying the performance impact of state modelling
in section 4, we have compared stateful models to their ap-
proximations with probabilistic models. It is clear that if
the influence of state is known a priori, probabilistic models
can approximate the stateful models very closely. In order
to achieve this, all states and their influence on performance
must be known in advance. For example, the influence of
transactions (described in section 5) can be approximated
probabilistically, if the waiting time of a message is known
and modelled as an explicit delay that depends on the num-
ber of messages sent within the transaction. To achieve this,
performance analysts have to know in advance the number
of messages in a transaction as well as the influence of a
message on the transaction’s delay. Modelling transactional
messages probabilistically results in a comparable distribu-
tion of response times. However, the model does not reflect
the stochastic dependency of sequentially arriving messages.
Furthermore, it provides less flexibility since delays caused
by transactional behaviour have to be known in advance. In
most cases, such information is not available or the delays
are changing constantly. In these cases, an explicit state
model eases the design of performance models and allows
accurate predictions with the necessary flexibility. Addi-
tionally, approximating state by a probabilistic abstraction
results in decreased possibility of reuse of the component
prediction model because the probabilities are specific for
one system, one allocation and one usage profile.

7. CONCLUSION
The paper addresses the challenges of performance pre-

diction for stateful component-based software systems. To
achieve this aim, we have elaborated a number of tasks.
We investigated the requirements and the offered expressive-
ness of prediction models for stateful systems. We surveyed
the state of the art and extracted a classification scheme of
various state-defining and state-dependent model parame-
ters. After that, we critically evaluated the possibility of
modelling introduced categories using state abstractions in
current performance prediction models. As a result, we
extended Palladio Component Model to provide sufficient
state-modelling capability, and evaluated the benefits and
costs it brings in a state-dependency analysis. In the state-
dependency analysis, we further identified the similarities
and differences of individual state categories with respect to
their performance impact and model-size increase, and pre-
sented our observations gained from a number of performed
experiments.

The future work includes further analysis of user-specific
persistent session state, its abstractions and propagating this
state dependency on a usage profile through the hierarchy of
the model. Similarly, a deeper analysis how different state

47

types affect the prediction accuracy of introduced modelling
methods is needed. The next question is how to define state
of the system assembly (e.g., service composition) automat-
ically. The analysis of composability of the state abstrac-
tions on the component level to the state abstraction on the
system level will answer this question. New challenges rise
from the introduction of dynamic architectures and support
of virtualisation scenarios and dynamic allocation. Addi-
tionally, a set of more detailed analyses based on industrial
case studies illustrating impact of state introduction could
disclose new interesting observations.

Acknowledgment
The work has been partially supported by the Academy of
Sciences of the Czech Republic (grant No. 1ET400300504).

8. REFERENCES
[1] Java System Message Queue -Version 4.3.

http://www.sun.com/software/products/message-
queue/index.xml, last retrieved: July
2009.

[2] R. Bagrodia and C. Shen. Midas: Integrated design
and simulation of distributed systems. Transactions
on Software Engineering, 1991.

[3] S. Becker, J. Happe, and H. Koziolek. Putting
Components into Context: Supporting
QoS-Predictions with an explicit Context Model. In
Proc. of Workshop on Component Oriented
Programming (WCOP), 2006.

[4] S. Becker, H. Koziolek, and R. Reussner. The palladio
component model for model-driven performance
prediction. Journal of Systems and Software, 2009.

[5] A. Bertolino and R. Mirandola. Modeling and analysis
of non-functional properties in component-based
systems. Elsevier, 2003.

[6] A. Bertolino and R. Mirandola. CB-SPE Tool: Putting
Component-Based Performance Engineering into
Practice. LNCS. Springer, 2004.

[7] T. Bures, P. Hnetynka, and F. Plasil. Sofa 2.0:
Balancing advanced features in a hierarchical
component model. In Proc. of Conference on Software
Engineering Research, Management and Applications
(SERA). IEEE, 2006.

[8] J. Cheesman and J. Daniels. UML Components: A
Simple Process for Specifying Component-based
Software. 2000.

[9] S. P. E. Corp. SPECjms2007 Benchmark.
http://www.spec.org/jms2007/, last visit: January,
2009, 2007.

[10] A. Diaconescu and J. Murphy. Automating the
performance management of component-based
enterprise systems through the use of redundancy. In
Proc. of Conference on Automated software
engineering (ASE). IEEE, 2005.

[11] D. Hamlet. Subdomain testing of units and systems
with state. In Proc. of symposium on Software testing
and analysis (ISSTA). ACM, 2006.

[12] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and
K. Stout. Java Message Service Specification -Version
1.1. http://java.sun.com/products/jms/, last
retrieved: January 2009.

[13] J. Happe, S. Becker, C. Rathfelder, H. Friedrich, and
R. H. Reussner. Parametric Performance Completions
for Model-Driven Performance Prediction.
Performance Evaluation, 2009.

[14] S. Hissam, G. Moreno, J. Stafford, and K. Wallnau.
Enabling predictable assembly. Journal of Systems
and Software, 2003.

[15] H. Koziolek. Parameter Dependencies for Reusable
Performance Specifications of Software Components.
PhD thesis, University of Oldenburg, 2008.

[16] H. Koziolek. Performance evaluation for
component-based software systems: A survey.
Submitted to Performance Evaluation (Special Issue
on Software and Performance), 2009.

[17] H. Koziolek and S. Becker. Transforming Operational
Profiles of Software Components for Quality of Service
Predictions. In Proc. of Workshop on Component
Oriented Programming (WCOP), 2005.

[18] H. Koziolek and J. Happe. A QoS Driven Development
Process Model for Component-Based Software
Systems. In Proc. of Symposium on Component-Based
Software Engineering (CBSE). Springer, 2006.

[19] Y. Liu, A. Fekete, and I. Gorton. Design-level
performance prediction of component-based
applications. Transactions on Software Engineering,
2005.

[20] M. Meyerhöfer and K. Meyer-Wegener. Estimating
non-functional properties of component-based software
based on resource consumption. Electronic Notes in
Theoretical Computer Science, 2005.

[21] A. Mos and J. Murphy. Performance management in
component-oriented systems using a model driven
architecture approach. In Proc. of Enterprise
Distributed Object Computing Conference. IEEE, 2002.

[22] Object Management Group. MOF 2.0
Query/View/Transformation, version 1.0, 2008.

[23] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and
I. Crnković. A component model for control-intensive
distributed embedded systems. In 11th International
Symposium on Component-Based Software
Engineering (CBSE). Springer, 2008.

[24] C. U. Smith and L. G. Williams. New software
performance antipatterns: More ways to shoot
yourself in the foot. In Proc. of International CMG
Conference. Computer Measurement Group, 2002.

[25] C. Szyperski. Component Software – Beyond
Object-Oriented Programming. Addison-Wesley, 2002.

[26] M. Woodside, G. Franks, and D. C. Petriu. The
Future of Software Performance Engineering. In Proc.
of Conference on Software Engineering (ICSE). IEEE,
2007.

[27] B. Zimmerova. Modelling and Formal Analysis of
Component-Based Systems in View of Component
Interaction. PhD thesis, Masaryk University, Czech
Republic, 2008.

[28] B. Zimmerova et al. The Common Component
Modeling Example: Comparing Software Component
Models, chapter 7. LNCS. Springer, 2008.

48

