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ABSTRACT
This paper describes our joint research on performance engi-
neering methods for services in shared resource utilities. The
techniques support the automated sizing of a customized
service instance and the automated creation of performance
validation tests for the instance. The performance tests per-
mit fine-grained control over inter-arrival time and service
time burstiness to validate sizing and facilitate the devel-
opment and validation of adaptation policies. Our novel
research on sizing also takes into account the impact of
workload factors that contribute to such burstiness. The
methods are automated, integrated, and exploit an algebraic
approach to workload modelling that relies on per-service
benchmark suites with benchmarks that can be automati-
cally executed within utilities. The benchmarks and their
performance results are reused to support a Benchmark-
driven Algebraic method for the Performance (BAP) engi-
neering of customized services.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Performance evaluation
(efficiency and effectiveness); B.8.2 [Performance and Re-
liability]: Performance Analysis and Design Aids; D.2.8
[Metrics]: Performance Measures

General Terms
Performance, Measurement, Design
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1. INTRODUCTION
Virtualization has enabled the dynamic provisioning of

Software as a Service (SaaS) in large shared resource utili-
ties. Service instances can be configured in portals and auto-
matically rendered onto shared resource pools of computing,
network, and storage resources. In such utilities capacity
sizing for a service is less risky than when provisioning dedi-
cated hardware because the capacity offered to a service can
be adjusted quickly on the fly post-deployment. However
significant performance risks still remain. Each instance of
a service may be customized to use a subset of features so
that its performance behaviour is unique. A utility may sup-
port hundreds or thousands of service instances so perfor-
mance management methods must be automated, the meth-
ods must satisfy each instance’s performance requirements,
and the methods must be accurate enough to make efficient
use of resources. This is a challenge because the relationship
between the performance of each service instance and its ca-
pacity can be complex, particularly in multi-tier applications
with many potential bottlenecks. Furthermore utilities may
dynamically vary the capacity associated with services to
make more efficient use of resources and to decrease energy
costs. Our joint research has focused on the development of
automated techniques to support performance management
of customized service instances in shared resource utilities.
This paper describes our progress and experiences to date.

The methods we are developing exploit an algebraic ap-
proach to workload modelling. Basically, each service is
characterized using a number of service-specific benchmarks
that can be run and measured in an automated manner
within a utility environment. Each benchmark acts as a
semantically correct workload with a particular business ob-
ject mix, where business objects of the service contain logic
that causes demands on the system. It is important that
such workloads are semantically correct, i.e., that they use
business objects in a correct sequence. A customized ser-
vice instance also has a particular business object mix that
is likely different from the mix of any of the benchmarks.
Thus it is likely to cause different demands on the system.
However the customized business object mix may be esti-
mated as a linear combination of the pre-existing business
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object mixes of the benchmarks. Thus we can reuse a subset
of benchmarks in certain combinations and in certain orders
to match the customized workload mix and other workload
properties. The subset of benchmarks acts as an algebraic
basis [16]. This enables an algebraic and automated ap-
proach to performance engineering for customized service
instances.
We have found that by matching a business object mix

using the algebraic approach we are able to estimate the
resource demands of a customized service instance. This
provides workload specific demand values for parameters of
a performance model for the customized service instance.
We assume that each service has a pre-existing performance
model that has been prepared by a performance analyst.
The automation step saves effort by assigning appropriate
parameter values for the model for each separate customized
service instance. The same linear combination of bench-
marks can also be used to automatically prepare customized
performance validation tests for a service instance. We have
enhanced the tests to consider various aspects of inter-arrival
time and service demand burstiness. The tests are used to
study the sensitivity of system performance to such work-
load features. Finally, the burstiness examples shed light on
the complexity of the relationship between response times
and capacity. We describe a technique we have developed
to take into account such burstiness to improve the predic-
tive accuracy of performance models so they can be used to
better support performance management.
Section 2 gives an overview of related work. Section 3 de-

scribes a method for customizing service instances of SAP
ERP systems in a service on demand environment. The
method provides a practical motivation for our algebraic ap-
proach for workload modelling. Sections 4 and 5 describe
recent work on demand estimation and synthesizing perfor-
mance validation tests. Section 6 demonstrates the use of
a layered queueing model (LQM) to predict the behaviour
or a SAP ERP system for a sales and delivery workload. It
also presents a study for a TPC-W system that shows how a
recently developed technique named the Weighted Average
Method (WAM) can use traces from performance validation
tests with burstiness to improve the accuracy of predictive
models. Summary and concluding remarks are offered in 7.

2. RELATED WORK
This section describes key works that are related to or

have contributed directly to this paper. We refer to reader
to more complete related works in [13][28][6][27][14].
This paper presents techniques we have developed using

the notion of an algebraic approach to workload modelling.
Litoiu et. al [18][19] consider mixes of workloads that cause
combinations of bottlenecks in distributed systems to satu-
rate. They employ a linear programming based approach to
find combinations of workloads that achieve certain proper-
ties. Dujmovic [8] describes benchmark design theory that
models benchmarks using an algebraic space and minimizes
the number of benchmark tests needed to provide maximum
information. Dujmovic’s work also informally describes the
concept of interpreting the results of a ratio of different
benchmarks to better predict the behaviour of a different
but unmeasured system however no formal method is given
to compute the ratio. Krishnaswamy and Scherson [15] also
model benchmarks as an algebraic space but also do not
consider the problem of finding such a ratio.

Krishnamurthy et al. [12][13] introduce the Synthetic Web
Application Tester (SWAT) which includes a method that
automatically selects a subset of pre-existing user sessions
from a session based e-commerce system, each with a par-
ticular URL mix, and computes a ratio of sessions to achieve
specific workload characteristics. For example, the tech-
nique can reuse the existing sessions to simultaneously match
a new URL mix and a particular session length distribu-
tion and to prepare a corresponding synthetic workload to
be submitted to the system. They showed how such work-
load features impact the performance behaviour of session
based systems. We consider results from [13] in Sections 5.1
and 5.2. BAP exploits the ratio computation technique in
this work to automatically find a basis of benchmarks and to
compute a ratio of the benchmarks that enables the creation
of customized performance model and performance valida-
tion test for a service instance.

Bard and Shatzoff studied the problem of characteriz-
ing the resource usage of operating system functions in the
1970’s [3]. The system under study did not have the ability
to measure the resource demands of such functions directly.
The execution rates of the functions and their aggregate
resource consumption were measurable and were recorded
periodically. This data served as inputs to a regression prob-
lem. Bard used the least squares technique to successfully
estimate per-function resource consumption for the study.
We summarize results for a new Demand Estimation method
with Confidence intervals (DEC) that solves the same prob-
lem [28] in Section 4. DEC has certain advantages. We refer
to that paper’s related work for more on the topic.

Burstiness in service demands has recently been shown to
be responsible for major performance degradations in multi-
tier systems [23]. Service demand burstiness differs substan-
tially from the well-understood burstiness in the arrival of
requests to a system. Arrival burstiness has been system-
atically examined in networking [17] and there are many
benchmarking tools that can shape correlations between ar-
rivals [4, 11, 22, 13]. In contrast, service demand burstiness
can be seen as the result of serially correlated service de-
mands placed by consecutive requests on a hardware or soft-
ware system [26, 23, 21], rather than a feature of the inter-
arrival times between requests. It is much harder to model
and predict system performance for workloads with service
demand burstiness than for traditional workloads [7]. This
stresses the need for benchmarking tools that support ana-
lytic and simulation techniques to study the performance im-
pact of service demand burstiness. Casale et. al [6] present
an approach for supporting the generation of performance
validation tests that control service demand burstiness for
session based systems. We refer to this approach here as a
Burstiness eNabing method (BURN). A summary of results
from the approach are considered in Section 5.3.

Queueing Network Models (QNMs) [5] and Mean Value
Analysis (MVA) [25] have been used to study computer sys-
tem performance since the early 1970’s. Researchers have
recently applied them directly to the study of multi-tier sys-
tems [32]. Layered Queueing Models (LQM) [29][33] are
based on QNMs, and were developed starting in the 1980’s
to consider the performance impact of software interactions
in multi-tier software systems, e.g., systems that have con-
tention for software resources such as threads. Tiwari et
al.[31] report that layered queuing networks were more ap-
propriate for modeling a J2EE application than a Petri-
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(a) Customized Business Object Mix

(b) Customized Model and Performance Valiation Test

Figure 1: Customized Service Business Object Mix,
Performance Model, and Validation Test

Net based approach because they better addressed issues of
scale. Balsamo et al. conclude that extended QNM-based
approaches, such as LQMs, are the most appropriate mod-
eling abstraction for multi-tiered software environments [2].
Rolia et al. describe the validation of an LQM for a SAP

ERP system [27]. A summary of results are offered in Sec-
tion 6.1. The Weighted Average Method (WAM) was re-
cently proposed as a method for taking into account the
impact of inter-arrival time burstiness in predictive analytic
models [14]. A summary of results of [14] is presented in
Section 6.2 and we refer to that paper for more extensive
related work.

3. CUSTOMIZING SERVICE INSTANCES
This section gives an example of a method for customiz-

ing a service instance for an on-demand business process
platform. The example motivates the algebraic approach to
workload modelling.

Figure 1 illustrates the method. Figure 1(a) shows a ser-
vice that supports business processes for customers. Ex-
amples of business processes include customer relationship
management, supply chain management, and sales and dis-
tribution [30]. These can be complex processes that imple-
ment how a business interacts with its partners and cus-
tomers.

The service in Figure 1(a) has many business processes
each with many process variants such as order entry, sale,
and return. A service could have hundreds or thousands of
process variants. Each process variant has a number of pro-
cess steps each of which uses business objects1 in application
servers and database servers. The business objects imple-
ment application and database logic that determine resource
demands on the system. Process variants can be profiled to
discover the average number of visits by a variant to each
business object. A customized service instance defines which
process variants are to be used by a customer. This deter-
mines which software modules are available to the end users
of the service instance. From a performance perspective, it
is also necessary to specify the throughput for each of the
variants, e.g., the number of times per hour the variant is
started, and a goal for mean response time for interactions
with the system. A simple cross product of the through-
puts specified when customizing the system and visit values
found when profiling the system gives the expected number
of visits to each business object, e.g., per hour, and when
normalized with respect to one to gives the probability of
invocation for each business object. This is the customized
business object mix M for the customized service instance.
It specifies the relative proportion of system functions for
the customized service instance in terms of business objects.

Figure 1(b) illustrates how the customized business object
mixM can be used to automatically compute parameters for
a customized performance model and to automatically pre-
pare a performance validation test. Our approach assumes
that the service has a performance model that is prepared
by an analyst. Further, each service has a suite of bench-
marks that can be automatically executed and measured in
the utility. For example, there may be N benchmarks. Each
benchmark is executed and measured to obtain its business
object mix and resource demand values, e.g., CPU time per
request, for the service’s performance model. It is possible
to automate the execution of such benchmarks in shared
resource utilities during times when resources are under-
utilized. The measured values can be reused to support
performance engineering for different customized service in-
stances.

An Algebraic Approach
The customized business object mix M and benchmark

business object mixes can be thought of as vectors. A linear
programming algorithm can be used to find a basis Q of the
N benchmarks. The basis enables the customized business
object mix M to be estimated as a linear combination R
of the object mixes of the Q benchmarks. For example, a
customized service instance with business object mixM may
be similar to a workload with R = 50%, 30%, and 20% of
sessions from Q = 3 benchmarks named Ben1, Ben2, and
Ben3, respectively. The SWAT algorithm [13] can be used
to find the Q benchmarks and to estimate R. SWAT also
permits the specification of a matching tolerance for each

1Our use of business object refers to a class of business ob-
ject rather than any instance of the class of business object.
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business object so that those that affect performance most
can be matched more exactly.
Once the ratio R of benchmarks is known, R can be used

to estimate the demands for the customized performance
model corresponding to the customized business object mix.
The demands are simply a linear combination, using R, of
the measured benchmark demands. Furthermore, replay-
ing benchmark sessions in proportion R synthesizes the cus-
tomized object mix. Therefore the benchmarks can also be
reused to automatically create performance validation tests.
The following two sections give case study results for this
approach.

4. DEMAND ESTIMATION WITH
CONFIDENCE (DEC)

Demand estimation in software performance is often con-
ducted using regression techniques. However, regression
makes certain assumptions that can lead to inaccuracies
in demand predictions. For example, in the current con-
text, regression assumes that visits to objects are not cor-
related. Yet software systems typically use objects in cor-
related ways. For example, functions such as add to cart
and buy are often used together. This introduces the prob-
lem of multi-colinearity into the regression problem which
can lead to inaccurate estimates for per-object demands.
Furthermore, for confidence interval calculations, regression
assumes that the demand caused by a particular mix of ob-
jects is deterministic, any variation is assumed to be due
to measurement error. The variation is allocated to an er-
ror term that is assumed to have values that are Normally
distributed and are used to compute a confidence interval.
Yet computing system resource demands are rarely deter-
ministic and the corresponding errors are not always Nor-
mally distributed. Thus confidence interval estimates from
regression for computing system applications are not always
statistically sound or reliable.
We have proposed a Demand Estimation method with

Confidence intervals (DEC) for estimating demands that
overcomes these problems [28]. DEC uses the ratio of bench-
marks R to estimate demands as illustrated in Figure 1(b).
With DEC, confidence interval calculation is straightfor-
ward. Several independent experiment replications are con-
ducted for each benchmark. Each benchmark replication
yields a benchmark replication demand. The mean of the
benchmark replication demands is computed as the overall
benchmark mean demand. From the central limit theorem
a benchmark mean demand is Normally distributed if the
number of replications is large [10]. Furthermore, a linear
combination of Normally distributed independent random
variables results in a random variable that is also Normally
distributed. Since DEC uses a linear combination of mea-
sured benchmark mean demands to predict the resource de-
mand of a business object mix, the predicted demand is also
Normally distributed. This allows confidence intervals to be
computed with certainty for the predictions from DEC.
Figure 2 compares DEC with the Least Squares (LSQ)

and Least Absolute Deviation (LAD) regression techniques
that are often cited in the literature [28]. The results were
obtained from a multi-tier TPC-W system deployed at the
University of Calgary that consists of a Web server node,
a database server node, and a client node connected by a
non-blocking Ethernet switch that provides a dedicated 1

Gbps connectivity between any two machines in the setup.
The Web and database server nodes are used to execute
the TPC-W bookstore application. The client node is ded-
icated for running the httperf [24] Web request generator
that was used to submit benchmarks to the TPC-W sys-
tem. All nodes in the setup contain an Intel 2.66 GHZ Core
2 CPU and 2 GB of RAM. We used the Windows perfmon
utility to collect resource usage information from the Web
and database server nodes using a sampling interval of 1
second. The CPU demands are much larger than disk and
network demands for this system so we focus on demand
estimation for these values.

Figures 2(a) and 2(b) give cumulative distribution func-
tions (CDF) for estimated CPU demands as compared to
measured CPU demands for customized business object mix
for the server and database nodes. The figures present re-
sults for thirty cases. Figures 2(c) and 2(d) give the CDF of
two-sided confidence intervals for the same cases.

In Figure 2(a), the results of DEC, LSQ and LAD are
very similar with a maximum error below 15%. It must be
noted that for all the cases the server node demand only
changed by a factor of 1.5. There is no clear advantage for
any technique.

Figure 2(b) gives the corresponding results for the DB
CPU demand estimates. The demand value varied by a
factor of over 200 for these cases and were important for
the performance of the system. The figure shows that DEC
offered much lower errors for 30% of the cases.

Figures 2(c) and (d) show that DEC’s confidence inter-
val predictions are more in line with measured confidence
intervals than those predicted by the LSQ and LAD meth-
ods. DEC’s confidence interval calculations are statistically
sound. Note that LAD’s reported confidence intervals are
tighter than LSQ confidence intervals due to the nature of
the LAD algorithm.

To summarize, DEC is a new technique for estimating
resource demands that relies on the algebraic approach to
workload modelling. It does not suffer from the problem of
multi-colinearity and provides statistically sound confidence
interval calculations that appear to be tighter and closer
to measured confidence intervals than the regression based
techniques. The demands predicted by DEC can be used in
customized performance models. The next system considers
the creation of performance validation tests.

5. CUSTOMIZED PERFORMANCE
VALIDATION TESTS

Just as it is possible to automatically render service in-
stances into shared resource pools, it is also possible to au-
tomatically generate and execute performance tests that val-
idate the performance of such instances [9]. Customized per-
formance validation tests can be used to stress such systems
to verify that they are able to satisfy performance require-
ments.

The section gives examples of performance validation tests
that match a customized workload mix, that match a mix
and session length distribution, that match a mix and think
time distribution, and that match a mix and service demand
burstiness. The techniques are based on the algebraic ap-
proach to workload modelling.

Sections 5.1 and 5.2 rely on case study data from a multi-
tier TPC-W system at Carleton University as described
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(a) Web CPU Demand Error CDF
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(b) DB CPU Demand Error CDF
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(c) Web CPU Demand CI CDF
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(d) DB CPU Demand CI CDF

Figure 2: Comparison of Demand Prediction and CI Errors between DEC and Regression Techniques

in [13]. The Carleton system had topology similar to the
University of Calgary system described in Section 4 but with
different software and hardware. Section 5.3 relies on case
study data from the multi-tier TPC-W system at the Uni-
versity of Calgary.

5.1 Matching Functional Mix with SWAT
Once computed, the ratio R of the Q chosen benchmarks

can be used to automate the creation of a performance val-
idation test. As illustrated in Figure 1(b), sessions in the
test are simply drawn from the Q benchmarks according to
the probabilities in R. Figure 3 compares two experiment
runs for the TPC-W system. The original workload is gener-
ated using the TPC-W emulated browser workload genera-
tor. Forty thousand sessions were generated with 838 unique
business object mixes and a certain overall business object
mix. Next we treated the 838 unique sessions from the origi-
nal workload, i.e., sessions with different object mixes, as our
set of benchmarks. Using the linear programming method,
a subset of Q = 420 of the benchmarks were chosen as the
basis along with the ratio R. A new trace of fouty thousand
sessions was generated using the Q benchmarks and the ra-
tio R. This corresponds to the synthetic workload in the
figure, and corresponds to a performance validation test.
Figure 3(a) shows the response time distributions for the

original and synthetic workloads [13]. They are nearly over-
lapping. Figure 3(b) shows the distribution for the number

of concurrent users. Again they are almost identical. The
synthetic workload matched the business object mix M , the
response time distribution, device utilization values, and ses-
sion population distribution. A smaller set of benchmarks,
i.e., fewer than Q benchmarks, would approximate the busi-
ness object mix and performance measures.

5.2 Inter-arrival Time Burstiness with SWAT
The approach of Section 5.1 has been enhanced in two

ways to evaluate the impact of inter-arrival time burstiness
on the TPC-W system. For the first enhancement, bursti-
ness due to session length distribution was considered. To
support this, additional constraints were added to the linear
programming formulation so that the sessions for an experi-
ment satisfied both a customized business object mix and a
desired session length distribution as specified using a prob-
ability distribution function (pdf). Each point in the sample
space of the pdf corresponds to a session length range. For
example, the first point may have probability 0.1 and corre-
spond to sessions with length 1 to 3. The second point may
have probability 0.9 and correspond to sessions with length
4 to 12. The linear programming solution was repeated for
each different point in the sample space. The mix that cor-
responds to each sample point has its selected benchmarks
weighted by both the corresponding point’s probability from
the pdf and the benchmark’s corresponding R value from
its solution of the linear program. The benchmarks from all
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(a) Response Time CDF (b) Concurrent Session Population CDF

Figure 3: Comparison of Original Workload and Performance Validation Test

the points contribute to an integrated workload mix for the
whole session length distribution.
For the second enhancement, we considered burstiness due

to think time distributions. Table 1 shows the impact of
mean response time and the 95-percentile of response time
for several experiments [13]. The empirical workload had
think times and session lengths that corresponded to data
collected from a large e-commerce system [1]. Exponen-
tial corresponds to the exponential distribution for think
times and session lengths. Heavy-tailed session length used
a bounded Pareto distribution for session lengths and the
empirical distribution for think times. Heavy-tailed think
time used a bounded Pareto distribution for think times
and empirical distribution for session lengths. In all cases,
the mean session length and mean think time was the same.
Furthermore the per resource utilizations and throughput
were the same for each of the runs. The Table shows that
heavy tailed session lengths could increase mean response
time by over 25% and the 95-percentile of response time
by nearly 50% even though the overall resource utilizations
and request throughput were the same for each run. Heavy
tailed think times also had a significant impact. This demon-
strates aspects of the complex relationship between software
performance and capacity.
Figure 4 compares the response time CDF and CDF for

the number of concurrent sessions for the empirical and
heavy-tailed session length distribution cases. Figure 4(a)
shows more larger response times and fewer small response
times for the heavy-tailed case. Figure 4(b) suggests that
the increases in response times are because arriving sessions
have a higher probability of arriving when there are more
concurrent sessions being served than for the empirical case.
Similar results are available for heavy tailed think time dis-
tributions [13] but are omitted here due to space limitations.
This subsection has shown that the algebraic approach

to workload modelling can be used to create performance
validation tests that match workload mix as well as cus-
tomizable session length and think time distributions. The
methods can be employed to evaluate the sensitivity of a
system to such workload features using automatically gen-
erated performance validation tests.

5.3 Service Demand Burstiness with BURN
Service demand burstiness is an interesting feature of sys-

tems [23]. Changes in workload mix can cause bottleneck
shifts in systems with potentially significant impact on re-
sponse times. We have extended the linear programming ap-
proach further to control bottleneck switching in multi-tier
systems. The extension takes as input a measure of bursti-
ness called the index of dispersion [21]. The index of dis-
persion is the product of the coefficient of variation squared
of service demands and the lag-k autocorrelation coefficient
of the service demands. We use the index of dispersion to
control, in a statistical manner, the ordering of sessions [6].
We refer to this as a BURstiness eNabling method (BURN).
A low index of dispersion behaves like the algorithm of Sec-
tion 5.1 with sessions chosen from benchmarks at random
using the ratio R. A high index of dispersion results in
the same business object mix but increases the likelihood of
sessions from the same benchmark appearing in sequence.
If different benchmarks have different bottlenecks then this
can cause switches in bottlenecks. The full algorithm for
controlling service demand burstiness is given in [6].

Figure 5 demonstrates the impact of service demand bursti-
ness [6]. Two tests were run against the TPC-W system as
described in Section 4. The first test had an index of dis-
persion of 1.14 which corresponds to low burstiness, with
the squared coefficient of variation of service demands ap-
proaching a value of one. The second case had an index
of dispersion of 50 which corresponds to high burstiness.
Figures 5(a) and (b) show examples of time-varying CPU
usage for the front server and database server. For the low
burstiness case resource usage is consistent over time. For
the high burstiness case we see heavy use of the server node
CPU and then a switch in bottleneck to the database node
CPU. Note that for both the server node CPU and database
node CPU, the average CPU utilization over the entire run
was the same for the two tests.

Figures 5(c) and (d) give the mean number of requests
over time for the three types of benchmark sessions that
make up the workload. For the low burstiness case the num-
bers are consistent over time. For the high burstiness case
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Table 1: Effects of Session Length and Think Time Distributions

Workload Mean R 95p R 95p R Workload
95p R Empirical

Empirical 0.86 2.90 1.0
Exponential 0.83 2.83 0.98
Heavy-tailed session length 1.09 4.27 1.47
Heavy-tailed think time 0.96 3.40 1.17

(a) Response Time CDF (b) Concurrent Session Population CDF

Figure 4: Comparison of Empirical Workload and Inter-arrival Burstiness due to Session Length Distribution

we see the proportion of requests of each type changing,
which explains the shift in bottleneck to the DB CPU.
Figures 5(e) and (f) illustrate mean response times for

the three types of benchmark sessions for the low and high
burstiness cases. The high burstiness scenario causes much
greater variability in response times for all classes of re-
quests. Finally, Figure 5(g) shows the CDF of response times
over all requests for the two tests. Even thought the device
utilizations and request throughputs were the same, bursti-
ness has a significant impact on the distribution of response
times.
To summarize, the algebraic approach to workload mod-

elling can help to control service demand burstiness in auto-
mated performance validation tests. Such tests can be used
to evaluate the sensitivity of a system to such workload fea-
tures.

6. PREDICTIVE MODELS
The previous sections considered computing the param-

eters of a performance model for a customized service in-
stance and the automated creation of performance validation
tests. This section focuses on examples of performance mod-
els and their predictive accuracy. The first example demon-
strates a validated model for a deployment of the SAP ERP
platform for a sales and distribution workload. SAP ERP
is a complex business process execution environment used
by many of the world’s medium and large sized businesses.
Though validated, the workload for the system is relatively
simple. Such models can yield inaccurate results for sys-
tems subject to more complex bursty workload behaviour.
Our second example is a model for the TPC-W system de-
ployed at Carleton University. For this system we demon-
strate that a recently developed method can use burstiness

information derived from performance validation tests along
with the performance model to improve the accuracy of the
model’s performance predictions. By taking into account
such burstiness with performance models we are better able
to use performance modelling to help guide choices of more
time consuming measurement based validation tests.

6.1 LQM for an SAP ERP System
Figure 6 illustrates a layered queueing model [29] (LQM)

for a SAP ERP system [27]. The process for customizing an
instance of a SAP ERP service, as described in Section 3,
leads to specific resource demand parameters for the model
as determined by a customer’s choices of business process
variants and business process variant throughputs.

Figure 6 illustrates a LQM for the SAP ERP system un-
der study. The system node had two virtual CPUs each with
its own physical CPU. An application server and database
server were both assigned to the system node. The ap-
plication server is composed of a dispatcher and pools of
separate operating system processes, called work processes,
which serve requests forwarded by the dispatcher [30]. The
dispatcher assigns each request to an idle work process. Ser-
vice within a work process is non-preemptive. Work pro-
cesses may access the database in a synchronous manner
during which the work process remains unavailable to serve
other requests due to a lack of preemptive capabilities. Re-
quests are served by three pools of work processes. The most
important pool serves dialog step requests, which are respon-
sible for processing and updating information and data that
are displayed on the client-side through the graphical user
interface; this information is exchanged between client and
ERP application by means of a proprietary communication
protocol. Each dialog step request alternates cycles of CPU-

9



0 50 100 150 200 250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

utilization sample

u
ti

li
za

ti
o

n

 

 

server

db

(a) I = 1.14, CPU U No Burstiness

0 50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

utilization sample

u
ti

li
za

ti
o

n

 

 

server

db

(b) I = 50, CPU U High Burstiness
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Figure 5: Performance effects service demand burstiness causing dynamic bottleneck switch
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Figure 6: LQM of SAP ERP System

intensive activities and synchronous calls to the database
for data retrieval. Additionally, dialog work processes gen-
erate asynchronous calls to the database that start being
served only after completion of the dialog step which re-
quests them. These asynchronous calls are of type update
and update2 and are handled by separate pools of work pro-
cesses. Update2 requests are processed at a lower priority
by the platform.
Tables 2 and 3 offer measured and predicted results for the

SAP ERP system for a sales and distribution workload [27].
The tables show the measured CPU utilization, measured
dialog request response time, and predicted mean dialog re-
sponse time for the six and three work process cases respec-
tively. The results show that the performance model is well
able to predict the behaviour of the system. For example,
measured and predicted mean dialog response times are gen-
erally affected in the same proportion as utilizations increase
and threading levels increase.
In [27], we showed that features including multi-threading

for software servers, multiple processors per server, syn-
chronous and asynchronous remote procedure calls, mul-
tiple phases of processing, and priority of access to CPU
resources were needed to validate a model for the system.
We note however that the workload for the system was not
complex. It did not involve different types of workloads.
Session lengths were always the same. Session inter-arrival
and departure times are assumed to be exponentially dis-
tributed. Previous sections showed that both inter-arrival
and service demand burstiness can have a significant impact
on performance. That burstiness affects the relationship be-
tween response time and utilization. Predictive models such
as LQMs and QNMs do not have the ability to take into
account such burstiness. The next section describes a tech-
nique developed to take into account such burstiness to im-
prove the accuracy of performance predications.

6.2 WAM: Performance Modelling with
Complex Workloads

This section describes the Weighted Average Method
(WAM) for taking into account burstiness in predictive per-
formance models [14]. To date we have used the technique to
study inter-arrival time burstiness in systems where per re-

quest think times are an order of magnitude or more greater
than per-request response times.

WAM takes as input a performance model, e.g., an LQM
that models customer sessions competing for system
resources, and a trace of sessions, e.g., as generated for a
performance validation test. WAM walks over the trace of
sessions and uses the performance model to estimate the
session population distribution for the test. Initially WAM
assumes there are zero sessions in the system – as is the
case at the start of a performance test. As requests from
new sessions arrive WAM increments its count of the num-
ber of concurrent sessions. For each request in a session,
WAM estimates the response time for the request as the
mean request response time for the request, as found using
a performance model with the current count for the num-
ber of concurrent sessions as the customer population in the
model. The request’s subsequent think time is taken as an
input from the trace. When the estimated response time of
the last request in a session completes WAM decreases the
count of number of concurrent sessions by one. When all
the sessions in the trace are processed WAM outputs its es-
timate for session population distribution. This is used with
the performance model to predict system measures such as
the mean request response time.

To demonstrate the effectiveness of WAM at improving
the accuracy of predictions of performance models with
bursty workloads, we conducted a case study with data from
the TPC-W system deployed at Carleton University [14].
The case study considers various scenarios with inter-arrival
time burstiness. We now summarize results that employ a
LQM alone (LQM), without taking into account burstiness,
an LQM paired with a Markov Chain Birth Death process
(Markov Chain Birth Death LQM) that models session pop-
ulation distribution but assumes session arrival and depar-
ture times are exponentially distributed [20], WAM with the
session population distribution computed empirically
(Empirical WAM LQM) using measured response times from
the trace but that estimates overall mean response time us-
ing the corresponding measured session population distribu-
tion with the LQM, and WAM with the session population
distribution computed using an LQM for request response
time estimates and the overall mean response time calcula-
tion (Monte Carlo WAM LQM).

Empirical WAM LQM gives the best possible results for
the approach. Monte Carlo WAM LQM offers a constructive
method that approximates Empirical WAM LQM and can
also be used to conduct sensitivity analyses by either mod-
ifying think time distributions or using re-generated traces
with different session length distributions. Clearly, in such
cases measured response time values are no longer known so
Empirical WAM cannot be applied.

Table 4 summarizes the error measures for mean response
times for thirty nine experiments, including seventeen ex-
periment replications that employed bounded Pareto session
length and think time distributions [14]. Table 5 includes
only the results for the seventeen cases with inter-arrival
time burstiness. The results offer the mean absolute er-
ror, maximum error and trend error for each approach. The
mean absolute error is a weighted measure of error, the trend
error is the greatest difference between error values (includ-
ing sign). A larger trend error suggests less confidence in
the ability of the model to predict the impact of changes to
the system.
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Table 2: Measured and predicted mean dialog response times for 6 dialog workprocess
Measured Measured LQM

Pop CPU U DialogResp DialogResp
10 0.08 142.12 139.67
50 0.36 151.77 149.14
75 0.49 157.15 158.42
100 0.60 165.36 170.63
150 0.76 209.62 241.19
175 0.85 293.11 329.66

Table 3: Measured and Predicted mean dialog response times for 3 dialog work process
Measured Measured LQM

Pop CPU U DialogResp DialogResp
10 0.08 142.08 135.62
50 0.36 154.55 154.96
75 0.49 164.23 167.94
100 0.60 190.56 180.59
150 0.76 320.32 322.84
175 0.84 473.23 586.71

Table 4 shows that the LQM alone has the greatest errors.
While the Markov Chain Birth Death approach does model
session population distribution, it does not model bursti-
ness so it does not improve the accuracy of predictions. The
Empirical WAM approach decreases all measures of errors
by 10% or more by using the empirical session population
distribution along with LQM. Monte Carlo WAM LQM of-
fers results that are nearly as accurate as those of Empirical
WAM. Table 5 gives similar results but only includes the
cases with inter-arrival time burstiness.
Figure 7 illustrates some interesting results for four repli-

cates of a case with heavy tailed session length distributions.
For this case system behaviour was different for each of the
four runs. Figures 7(a) and (b) illustrate session population
pdfs for two of the four runs. Clearly the pdfs are very dif-
ferent. The pdfs for the other two runs were also different.
This was despite the fact that the runs were for many hours
each. Significant burstiness can cause a range of system be-
haviours such that there is no steady state behaviour. Fig-
ure 7(c) shows the measured and estimated mean request
response times for the LQM, Markov Chain Birth Death
LQM, and Monte Carlo LQM approaches for the four runs.
The Monte Carlo LQM approach outperforms the other ap-
proaches. The Markov Chain Birth Death LQM approach
models session population distribution but not the run spe-
cific impact of burstiness on the distribution.
To summarize, this section described the WAM method.

It has been used with traces of sessions, similar to those
from performance validation tests, along with performance
models to predict the impact of inter-arrival time burstiness
on systems. The approach is trace based and as a result
is compatible with the algebraic method for workload mod-
elling.

7. SUMMARY AND CONCLUSIONS
This paper describes our progress to date on BAP, a

Benchmark-driven Algebraic method for the Performance
engineering of customized services in shared resource utili-
ties. We have described a customization process for service
instances that enables parameters for performance models
and performance validation tests to be automatically gener-
ated. An algebraic approach is used for workload modelling.

This enabled an integrated set of methods named SWAT,
DEC, BURN, and WAM that support performance mod-
elling and performance testing and that take into account
important features such as inter-arrival time and service de-
mand burstiness.

The examples presented in the paper have shown that the
relationship between software performance, in terms of re-
sponse times, and capacity, in terms of utilizations, is com-
plex. There can be many different behaviours for systems
with the same throughputs and utilization values. While
this has certainly been demonstrated in other related fields,
we are not aware of other comprehensive methods such as
those presented here for studying these issues for multi-tier
software systems.

Our future work includes further case studies that apply
the methods to enterprise systems. We intend to further
develop WAM to support more kinds of burstiness, and to
support the development and validation of adaptation poli-
cies for complex applications, to predict the behaviour of
services in adaptive environments, and to explore the notion
of benchmark design to better choose sets of benchmarks to
characterize services.
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