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ABSTRACT 
In this tutorial, we describe techniques for automatic generation 
of benchmark and test workloads. Generated programs have 
adjustable parameters that are used to select the program size and 
structure, as well as the relative frequencies of basic operations 
(or program modules) that characterize the workload.   

Categories and Subject Descriptors 
D.2.8 Metrics 

General Terms 
Measurement, Performance 

Keywords 
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1. INTRODUCTION 
A traditional goal of benchmarking is to determine (or predict) the 
performance of a given computer system running a specific real 
workload. There are many other benchmarking/testing problems, 
such as benchmarking selected hardware units, language 
processors, database systems, operating systems, and application 
software. The most frequent reason for benchmarking is the 
process of performance evaluation organized in the context of 
comparison and selection of complex computer systems.  

Exponential growth of computer performance is the fundamental 
property of computer industry. If q denotes a performance 
indicator (e.g. the CPU transistor count, memory capacity, disk 
capacity, pixels per Dollar, processor speed, or performance/price 

ratio) and t denotes time, then 0( )/
0( ) 2 −= t t Tq t q (Moore’s law). 

Here T denotes the “performance doubling time“: if the initial 
performance is 0 0( ) =q t q and 0− =t t T then 02=q q . In other 
words, performance doubles after each T time units. For example, 
according to [16], the CPU transistor count in 1971 was 2300, and 
in 2003 it was approximately 108 yielding  

0
0

( ) log 2 (2003 1971)log 2 2.08 years
log ( ) log log100,000,000 log 2300

− −
= = =

− −
t tT
q t q

 

Consequently, the chip density increases two times every two 

years. According to [8] the memory capacity doubles each 18 
months, and since 1985 the performance/price ratio doubles every 
12 months. The clock speed, and power dissipation (without 
expensive cooling) reached their saturation points (around 5 GHz 
and 100 W respectively) approximately in 2005 [11][1]; however, 
the exponential growth is expected to continue with the number of 
processor cores. 
Industrial benchmark programs, such as SPEC benchmarks [15] 
[4], are used in an environment that is permanently and rapidly 
changing. Under such conditions industrial benchmarks should 
strictly follow the exponential growth of computer performance, 
and this cannot be achieved using the current benchmark suites 
that consist of natural workloads that are updated once in several 
years. For example, SPEC updates its CPU benchmark suites 
approximately once in three to six years (1989, 1992, 1995, 2000, 
2006). However, in three years performance/price can increase 8 
times! It is perfectly clear that as long as benchmarking is based 
on selecting natural workloads and keeping them unchanged for 
several years there will always be a substantial gap between the 
current state of technology and the current state of industrial 
benchmarks. There is a permanent pressure to replace obsolete 
benchmarks, to cover a spectrum of applications (e.g. SPEC CPU 
2006 includes 29 programs!), develop new benchmark suites, and 
permanently supply new measurements for almost all 
commercially available computers. It is obvious that this approach 
to benchmarking must be expensive. 
An alternative approach to benchmarking can be based on 
automatic generators of benchmark programs. Main advantages of 
this approach are the high flexibility of workload characteristics, a 
fast response to changes of available hardware/software resources, 
easy customizing, and the low cost. 
There are two basic prerequisites for this approach to 
benchmarking. The first prerequisite is the development of 
theoretical background for quantitative analysis, characterization 
and design of synthetic workloads [2][3]. The second prerequisite 
includes programming techniques and tools for implementation of 
benchmark generators [5][6][7]. Both prerequisites need more 
research and development efforts and this tutorial is prepared for 
those who want to move in that direction. Our main goal is to 
present basic concepts of design and implementation of 
benchmark generators. 

2. WORKLOAD DECOMPOSITION AND 
AGGREGATION 
2.1 A Hierarchy of Benchmark Programs 
Benchmark programs come in various sizes and various levels of 
credibility. Going top-down benchmark programs form the 
following hierarchy: 
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• Real workloads 
• Standard benchmarks 
• Synthetic workloads 
• Kernels 
• Microbenchmarks 

Real workloads are at the top level; they represent themselves and 
only they can avoid the standard criticism that claims (usually 
without any proof) that a given benchmark does not represent the 
real workload. Unfortunately, real workloads are regularly too 
complex, too specific in hardware/software resource demands, 
insufficiently portable, based on proprietary data, or simply not 
available (incomplete or currently in development/updating), so 
that they cannot be directly used for performance measurement. 
In addition, real workloads regularly change when ported from an 
existing platform to a new platform. That yields an unavoidable 
level of uncertainty in real workload definition.  
Since real workloads are rarely suitable for benchmarking, the 
second best approach might be to measure performance using 
standard industrial benchmark suites, such as those provided by 
SPEC [15][13]. Standard benchmarks are selected real 
applications of substantial size and complexity (e.g. the gcc 
compiler, the games of chess and Go, or a linear programming 
solver). The main advantage of this approach is the public 
availability of a database of measurements for the majority of 
commercially available computers. Not surprisingly, it is left to 
users to prove why some of standard benchmarks should be used 
as sufficiently good representatives of a real workload. 
Synthetic workloads [10] are composed of frequently used basic 
operations (or kernel functions) but they are not real applications. 
They have the advantage of fast and automatic generation, and the 
problem of proving representativeness similar to standard 
benchmarks. As opposed to standard benchmarks which have a 
fixed structure, synthetic workloads have adjustable parameters 
and can be easily customized to serve as an approximation of a 
real workload. 
Kernels are frequently used important functions (e.g. matrix 
inversion, sorting, searching etc.) that can be used either 
individually or as building blocks of synthetic benchmarks 
Microbenchmarks are small code segments designed to isolate a 
specific performance feature and provide reliable performance 
indicators that characterize the selected feature (e.g. Fibonacci 
number generator and Ackermann’s function for evaluation of the 
efficiency of recursive calls, matrix multiplication for evaluation 
of the efficiency of array processing, etc.) 

2.2 A Linear Sequential Workload 
Decomposition Model 
The process of generation of synthetic programs always consists 
of aggregating various program components and modules to 
create a complex workload. Therefore, it is useful to start with the 
simplest way of decomposing and aggregating program 
components. 
In the simplest case let us assume a sequential machine that is 
designed to execute a set of k basic operations 1,..., kI I . These 
operations can be machine instructions of a specific processor, or 
bytecodes implemented by a virtual machine, or any other more 
complex basic operations. We also assume that the basic 

operations have average execution times 1,..., kt t . If a benchmark 
program iB consists of sequential execution of basic operations, 
then the total execution time of iB  is 1 1,...,=i i ik kT f t f t where 

1,...,i ikf f  denote frequencies of individual basic operations. 

The benchmark program iB  can be characterized by the 
frequency distribution 1,...,i ikf f . For scaling purposes iB can be 
executed multiple times, for example using a loop  

for(m=0; m<M; m++) { iB } 

Multiple repetitions of iB  do not change its characteristics. 
Similarly, the execution time can be normalized: 

1 1

1 1

,..., , / , 1,...,

, 1,= =

= = =

= = =∑ ∑
i i ik k ij ij i

k k
i ij ij i i ij j

T p t p t p f F j k

F f p T F T
 

The workload is now characterized using the probability 
distribution 1,...,i ikp p . 

Let B be a given (possibly complex) workload that can be 
characterized using the frequency distribution 1,..., kf f , the 
probability distribution 1,..., kp p , the total number of executed 
operations F and the run time 1 1( ,..., )= k kT F p t p t . Suppose now 
an ideal case where we have n component benchmark programs 

1,..., nB B  that satisfy the condition 1 1 ...= + +j j n njp W p W p , 

11,..., , 0 1, ... 1= ≤ ≤ + + =i nj k W W W . The weights 1,..., nW W  
denote the relative importance of component benchmarks 

1,..., nB B . In such a case we have 

1 1 1 1 1= = = = =
= = = =∑ ∑ ∑ ∑ ∑

k n n k n
i ij i i ij i i i

j i i j i
T F W p t F W p t F W T FT  

Therefore, if 1 1 ... , 1,...,= + + =j j n njp W p W p j k  then the 

normalized run time of workload B  is a weighted arithmetic mean 
of the normalized run times of benchmarks 1,..., nB B : 

1=
= ∑

n
i i

i
T W T  

Furthermore, the run time of workload B is a linear combination 
of the run times of workloads 1,..., nB B : 

1 1 1
,

= = =
= = = =∑ ∑ ∑

n n n
i i i

i i i i i
i i ii i i

T FW FWT F W T Q T Q
F F F

 

If the component benchmarks are tuned to (approximately) satisfy 
= iF F , 1,...,=i n  then the run time of workload B can be 

computed in the same way as the normalized run time. In this 
idealized case the component benchmarks can be interpreted as 
vectors that can be added to yield exactly the complex workload. 
In other words, the complex workload can be exactly decomposed 
into component benchmarks, and a well selected group of 
component benchmarks can be used to estimate the behavior of 
various complex workloads. 
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Of course, real computers rarely behave in linear and sequential 
way. There is always a degree of parallelism in the execution of 
basic operations, as well as nonlinear phenomena caused by the 
processor and memory architectures, control and interfacing of 
peripheral units, and the operating system activities. In real cases 
the sequential linear model can only be used as an approximation. 
Instead of satisfying the condition 1 1 ...= + +j j n njp W p W p we 

can minimize the absolute difference between the desired value 
jp  and its approximation 1 1 ...= + +% j j n njp W p W p . Using 

differences | |− %j jp p , 1,...,=j k , we can select the weights 

1,..., nW W  that minimize the error function 

1 1 11

1

( ,..., ) 50 | ... | [%]

0 ( ,.... ) 100%
== − − −

≤ ≤

∑k
n j j n njj

n

E W W p W p W p

E W W
 

Alternative forms of the error function are: 
2

1 1 1 11

2 1 1 1
1

( ,..., ) ( ... )

( ,..., ) max | ... |
=

≤ ≤

= − − −

= − − −

∑k
n j j n njj

n j j n nj
j k

E W W p W p W p

E W W p W p W p
 

If n>2 the optimum weights can be found using the Nelder-Mead 
simplex algorithm [14]. If n=2 then the problem is trivial and can 
be solved by simple linear search. For example, the Java bytecode 
grouping technique presented in [9] identified a hierarchical 
decomposition from 2 to 17 characteristic groups of bytecodes. 
For simplicity, let us characterize workload using four distinct 
groups of operations: (1) calculation (arithmetic and logic 
operations, data type conversion), (2) compare/branch operations, 
(3) OO operations (object create/access, method invoke/return), 
and (4) operand stack manipulation. Suppose that we have 
component programs 1 2,B B that are used to model a given 
workload B as follows: 

1 11 12 13 14

2 21 22 23 24

1 2 3 4

1 2 1 1 11 2 21 2 1 12 2 22

3 1 13 2 23 4 1 14 2 24 1 2

: [ , , , ] [0.4,0.3,0.2,0.1]
: [ , , , ] [0.2,0.35,0.25,0.2]

: [ , , , ] [0.25,0.3,0.3,0.15]
( , ) 50(| | | |
| | | |),

=

=

=

= − − + − −
+ − − + − − + =

B p p p p
B p p p p
B p p p p
E W W p W p W p p W p W p

p W p W p p W p W p W W 1

 

The search of all values of 1W yields the following optimum 
results that correspond to the minimum error: 

1 2

1 2 3 4

0.25, 0.75, (0.25,0.75) 3.75% (min error),
0.25, 0.3375, 0.275, 0.1375

= = =
= = = =% % % %

W W E
p p p p

The presented linear sequential workload decomposition shows 
that complex workloads consist of simpler components that can 
be identified and organized as specialized program modules. In 
the case of real workloads that use various functions (interpreted 
as kernels) the linear decomposition can be used as an 
approximation at the level of kernels. In other words, the 
workload can be characterized by the kernel frequency 
distribution. If we maintain a kernel library containing 
trustworthy program modules, then we can develop systematic 
procedures for building complex workloads as suitable 
combinations of program modules from the kernel library. 
Benchmark program generators are tools that implement such 
procedures. 

3. A RECURSIVE EXPANSION METHOD 
FOR PROGRAM GENERATION 
3.1 Characteristics of Procedural Programs 
The first step in the generation of benchmark programs is to 
understand the process of creating simple procedural programs 
containing control structures and arithmetic statements. Our 
approach to generating simple synthetic procedural benchmark 
programs is generally applicable in the majority of programming 
languages. For simplicity, we will use the notation of C/C++. 
Following is the list of basic control structures that can be used in 
a program generator:  

1.  Sequence (block): { block } 
2.  Selections 

2.1  Skip (branch with one block): 
if (condition) { block } 

2.2  Branch with two blocks:   
if (condition) { block } else { block } 

2.3  Branch with multiple conditions and n blocks: 
if (condition1) { block }  
else if (condition2) { block } 
else if (condition3) { block } 
……… 
else { block } 

       2.4  Multiple alternatives with selector (n blocks): 
 switch (selector) { 
 case a1: case a2: … :{block}; break; 
 case b1: case b2: … :{block}; break; 
        ………… 
 case z1: case z2: … :{block}; break; 
 default { block } } 

3.  Loops 
3.1  Loop with the exit at the top (one block): 
 while (condition) { block } 

3.2  Loop with the exit at the bottom (one block): 
do { block } while (condition) 

3.3  Loop with the exit in the middle (two blocks): 
do{  
  { block }  
  if (condition) break ;  
  { block } } 
while (1); 

3.4  Loop with counter (one block): 
 for(initialize; condition; update){block} 

These control structures are encountered in almost all 
programming languages. Each control structure has a single entry 
point, a single exit point, and includes one or more frames. The 
frame is an empty containers denoted as a pair of braces { } in 
which we insert blocks. Each block consists of one or more 
statements. Each statement can contain one or more frames or it 
can be a terminal statement. The terminal statement is a statement 
that contains no frames where we could insert blocks; it is either 
an arithmetic statement or an I/O statement. Of course, each 
frame should be filled with statements. This process continues as 
long as we have frames that must be filled with blocks and 
terminates after inserting terminal statements in each block. A 
trivial example of a frame with three terminal statements is shown 
in Fig. 1. 
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Figure 1.  A frame with three terminal statements (T.S.) 
The simplest way to organize a procedural program generator is 
to simulate the process of top-down procedural programming. 
This process in the case of a single module (either a function or a 
main program) starts by selecting the initial statement (either 
function or main) that contains a single frame. Then the frame is 
filled with appropriate statements. Nonterminal statements 
include frames. In the next step the frames are filled with other 
statements, and the process terminates when there are no more 
empty frames. The size of the resulting program depends on two 
parameters: the number of statements we insert in each frame and 
the maximum level of nesting of frames. Program generators can 
be organized to insert statements in frames, and when they reach 
the desired number of statements (or the desired maximum level 
of nesting) all frames are filled with terminal statements yielding 
a program that can be compiled and executed. 

3.2 The Concept of Breadth and Depth 
Distribution 
The breadth of a block is defined as the number of statements in a 
block and denoted B. The depth, D, is defined as the level of 
nesting where the initial frame, either a function or a main 
program, is interpreted as the initial level zero. For example, the 
following swap function 

 
 
 
 
 
and the main program in Fig. 1 have exactly the same structure, 
an initial frame with three statements, yielding B=3, D=1. Both 
breadth and depth are defined for each block, and the depth of the 
initial block is the depth of the whole program. The initial block 
of a program is considered the zero level of depth. For breadth 
and depth we count only executable statements, i.e. the statements 
that generate executable machine code. For example, the sort 
program shown in Fig. 2 has the depth D=4 and the breadth B=1.  
Only the “null program” 

 void main(void){ }  
has D=B=0. Terminal statements are always counted and the 
following version of the null program 

int main(void){ return 0; }  
is assumed to have D=B=1. 
Real programs have variable breadth and depth in various blocks 
and we can define the frequency distributions of breadth ( )bF B  
and depth ( )dF D , as well as the corresponding probability 
distributions ( )bP B  and ( )dP D  for each program.  

 
 
 
 
 
 
 
 
 
 
 
Figure 2. The depth of a sort program 
 
To exemplify the concept of breadth and depth distribution, let us 
consider a traditional binary search function: 

int bsearch(int v[ ], int n, int x) 
{  int low, high, mid; 
   low = 0; 
   high = n-1;  
   while(low <= high) 
    { mid = (low+high)/2; 
      if(x < v[mid]) high = mid-1; 

        else if(x > v[mid]) low = mid+1; 
        else return mid; 

    } 
    return –1; 
} 

The underlined statements in this program are the terminal 
statements and the breadth and depth analysis is shown in Fig. 3. 

 
0  1  2  3  4   D       (depth)  
{   
    T. S.                                    //  low=0 
    T. S.                              //  high=n-1 
    {       T. S.                       //  mid=(...)/2 
                {   T. S.      //  high=mid-1 
                       {  T. S.  //  low=mid+1 
                                    T. S.  //  return mid 
                       } B=2 
                   } B=2 
    } B=2 
  T. S.                      //  return -1 
} B=4 
   3 1 1 2 Fd(D)   (frequency) 
 
B  1 2 3 4 
Fb(B)  0 3 0 1 
Pb(B)              0        0.75 0        0.25 
 
D  1 2 3 4 
Fd(D)  3 1 1 2 
Pd(D)                  0.43        0.14         0.14         0.29 
Figure 3. The analysis of breadth and depth distribution for the 
binary search program 
 

Entry point 

Exit point 

T.S. 

Frame 

T.S. 

T.S. 

void main (void) 
{ 
    int a=123; 
    int b=456; 
    cout << a*b; 
} 

void swap(int & a, int & b) 
{ 
    int temp = a; 
    a = b; 
    b = temp; 
} 

void sort(int v[ ], int n) 
{  
   int i, j; 
   for(i=0; i<n-1; i++) 
      for(j=i+1; j<n; j++) 
         if(v[i]>v[j])  
            swap(v[i], v[j]); 
} 

   

1 
0 

2 
3 

4 

sort 

for 

for 
if 

swap 
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For each block the breadth is denoted after the closing brace and 

( )bF B denotes the number of frames that contain B statements. 
Similarly, ( )dF D  denotes the number of terminal statement at 
the depth level D. Consequently, the structure of bsearch function 
can be characterized by the breadth and depth absolute and 
relative frequencies ( ( )bF B , ( )dF D , ( )bP B  and ( )dP D ) shown 
in Fig 3.  
From the standpoint of benchmarking, programs that have similar 

( )bP B  and ( )dP D  distributions can be considered as similar 
programs. The difference between programs P1 and P2 can be 
defined using the following breadth and depth difference metrics: 

1 2
1

1 2
1

1( 1, 2) | ( ) ( ) | , 0 ( 1, 2) 1
2

1( 1, 2) | ( ) ( ) | , 0 ( 1, 2) 1
2

=

=

= − ≤ <

= − ≤ <

∑

∑

n
b b b b

i
n

d d d d
i

D P P P i P i D P P

D P P P i P i D P P

 

Synthetic benchmark programs should be created so that they 
have the same breadth and depth distributions as the real 
programs they represent. In such a way a synthetic benchmark 
program can be a representative (or even a clone) of one or more 
real programs. Automatic generators of procedural code should 
generate programs having desired breadth and depth distributions. 

3.3 Recursive Generator of Procedural Code 
The traditional top-down program development process consists 
of stepwise refinements realized by inserting blocks of statements 
into frames until all frames are filled with terminal blocks that 
contain only terminal executable statements. We call this process 
the recursive expansion process (REX). The REX process of 
benchmark program generation is an automatic implementation of 
the top-down program development process and includes the 
following main steps: 

1. Initialization: Create an initial block either as a function 
or a main program frame. 

2. Expansion: In each existing frame insert a given number 
of statements with new frames. Increase the size of 
program by repeating this step a necessary number of 
times. 

3. Termination: If the size of the generated program is 
sufficient insert in each frame a terminal statement. 

The concept of REX generator is presented in Fig. 4 and Fig. 5. 
There are two functions, STATEMENT and BLOCK, which call 
each other. The function BLOCK fills a frame with random 
statements. The function STATEMENT generates a random 
statement that can be a terminal (arithmetic assignment) 
statement, or a statement that includes one or more frames. For 
statements with frames the function STATEMENT calls BLOCK in 
order to fill the frame. The termination of recursive calls occurs 
when we reach the desired size of generated program. 
The basic tool we use for building these programs is a class string 
that supports an overloaded string assignment operator (=), and a 
string concatenation operator (+).  The main components of a toy 
REX generator are presented in Fig. 5. In addition to main 
functions STATEMENT and BLOCK Fig. 5 also includes the main 
program that generates the synthetic program demo.cc. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. The REX model recursion 
 
  string STATEMENT(int D, int B, int selector)  // D = depth, B = breadth 
  {  
    if (++D > maxDepth) selector = 0;       // End of recursive expansion 
    switch (selector)  
    { 
      case 0: return assignment( ) + "\n";  // Assignment terminator 
      case 1: return "if" + condition( ) + "\n" + BLOCK(D, B)+ "\n"; 
      case 2: return "if" + condition( ) + "\n" + BLOCK(D, B) + "\n" + 
                               indent(D) + "else\n"  + BLOCK(D, B)+ "\n"; 
      case 3: return "while" + condition( ) + "\n" + BLOCK(D, B)+ "\n"; 
      case 4: return "do\n" + BLOCK(D, B) + " while" + condition( )+";\n"; 
    } 
  } 
  string BLOCK(int D, int B)     // D = depth, B = breadth 
  {  
    string block = indent(D) + "{\n" ; 
    for(int i=0; i<B; i++) 
      block += indent(D+1) +  
                      STATEMENT(D, 1+rand( )%maxBreadth, rand( )%5); 
    return block + indent(D) + "}"; 
  } 
  void main( void ) 
  { 
      fstream file; 
      srand(time(NULL));  // randomize 
      cout << "\n\nToy program generator\n\n" 
               << "Maximum Breadth = "; cin  >> maxBreadth; 
      cout << "Maximum Depth   = "; cin  >> maxDepth; 
      file.open("demo.cc", ios::out); 
      file << "void main(void)\n{\n" + 
             indent(1) + "int " + init(nvars, ",") + ";\n" + 
             indent(1) + init(nvars, "=") + "=1;\n" + 
             indent(1) + STATEMENT(0, maxBreadth, 1+rand( )%4) + "}\n"; 
      cout << "demo.cc completed.\n"; 
  } 
Figure 5. Main components of a toy REX generator 

While(Breadth<MaxBreadth)

append STATEMENT(  );

BLOCK

if(Size>MaxSize)

return terminal 
statement;

else

return a randomly 
selected statement 
that includes one 
or more BLOCK(  );

STATEMENT

STOP

START

EntryEntry ReturnReturn

While(Breadth<MaxBreadth)

append STATEMENT(  );

BLOCK
While(Breadth<MaxBreadth)

append STATEMENT(  );

BLOCK

if(Size>MaxSize)

return terminal 
statement;

else

return a randomly 
selected statement 
that includes one 
or more BLOCK(  );

STATEMENT

STOP

START

EntryEntry ReturnReturn
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The presented toy generator uses auxiliary functions that are not 
shown in Fig. 5: init (function that defines and initializes variables 
used by other functions), indent (function that inserts spaces and 
new lines to properly indent the resulting code), assignment 
(function that creates an assignment using random arithmetic 
expression) and condition (function that creates a random 
condition that is used by control statements if, while and do). The 
number of scalar variables used in this program is adjusted by the 
global parameter nvars. 
A fully expanded version of the REX generator is called 
BenchMaker1 (BM1) and it can generate 2 million lines of code 
per minute on a typical PC. BM1 creates C++ code as a sequence 
of functions that include control structures distributed according 
to user’s input, and a main program that calls these functions.  
 

#include<iostream.h> 
void main(void) 
{ 
   int I,a,b,c,d,e,f,g,h,i,j,k,l,m,n; 
   a=b=c=d=e=f=g=h=i=j=k=l=m=n=1; 
   long S=0, G[20000]; for(I=0; I<20000; I++) G[I]=0; 
   while(++G[2]%3)        //  1,2,0,1,2,0,… 
   { 
      if(++G[0]%2)            //  1,0,1,0,1,… 
      { 
         i = k-a-k*b+f+e+d-d-m*m+h+g-f; 
         l = m+d-n-m+n*i+n; 
      } 
      else 
      { 
         e = h*f-g-l*f+a+a*m; 
         h = a-h*h-l+k*k-l*d+e-l*m; 
      } 
      while(++G[1]%3)        // 1,2,0,1,2,0,… 
      { 
         b = d-m-j+m-j+k-b+a+e-g-i+f*g; 
         j = k*f*m*b*h-d+l+b; 
      } 
   } 
   for(I=0; I<3; S+=G[I], I++) 
      cout << G[I] << ((I+1)%10 ? ' ':'\n'); 
   cout << "\nNumber of control statements = 3"; 
   cout << "\nExecuted control statements  = " << S << '\n'; 
} 

 

Figure 6. A small demo main program created by BenchMaker1 
 
A small synthetic main program without functions, created by 
BM1, is shown in Fig. 6. In order to make such programs 
executable we use counters in conditions so that if statements 
uniformly branch and uniformly use both blocks, and loops 
perform a given number of iterations. At the end we display the 
basic statistics of executed instructions. 
Synthetic programs of the type shown in Fig. 6 are primarily used 
as inputs for testing compilers [12]. The measured parameters 
include the compilation speed, the density of generated code, and 
optimizing features. These programs can also be executed as 
synthetic benchmarks, in cases where their structure is considered 
acceptable. However, this form of generators can also be used in a 

more sophisticated way, if instead of (some or all) arithmetic 
terminal statements we use function calls in a library of 
trustworthy kernels. In such cases the complexity of synthetic 
benchmark can match the complexity of real workloads and still 
have advantages of fast, flexible and low cost code generation. 
Such generators, called BenchMaker2 (BM2), are described in the 
next section. 

4. A KERNEL INSERTION METHOD FOR 
PROGRAM GENERATION 

4.1 The Concept of Kernel Insertion 
Generator 
The basic component of BM2 is a library of independent expertly 
written programs called kernels, which provide a wide spectrum 
of traditional data processing functions. Each kernel is self-
contained: it generates input data, performs desired processing, 
and verifies that the obtained results are correct. Benchmark 
programs are organized using a kernel insertion (KIN) process: 
the user first selects the basic structure of the synthetic benchmark 
and the benchmark generator then inserts kernels in that structure 
according to desired distribution. The result is a scalable synthetic 
benchmark of desired size and characteristics, which combines 
the quality code from the kernel library and the systematic growth 
of code provided by BM2. 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.  KIN process and the organization of BM2 
 
The concept of BM2 is shown in Fig. 7. BM2 is designed 
primarily to serve remote users over the Internet. The users get 
the graphical interface that is used to specify the structure, 
functions, size, and the number of desired benchmark programs. 
BM2 server receives user’s request, generates benchmarks, and 
delivers them to the user as e-mail attachments containing source 
code. The whole system can be organized as open source, serving 
a large user community. To achieve ultimate flexibility BM2 can 
integrate library kernels with client’s benchmark modules 
providing a possibility to combine trustworthy programs from 
various sources. 
The basic goal of BM2 is to provide scalable benchmarks. 
Benchmark scalability can be interpreted in several ways. We 
differentiate (1) time scalability, (2) space scalability, (3) 
parametric scalability, (4) structural scalability, and (5) functional 
scalability. Time scalability is the simplest form, where the run 
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time can be adjusted according to user needs. Similarly, the space 
scalability is the possibility to adjust the memory consumption 
and disk space consumption of benchmarks as well as the 
intensity and type of memory and disk accesses. In the case of 
parametric scalability, it is possible to adjust parameters of 
benchmark workload to increase the number of users, the number 
of nodes etc., while keeping the same type and structure of 
workload. The structural scalability refers to cases where the 
structure of workload can be modified and adjusted, as in the case 
of network benchmarks. Functional scalability is based on 
semantic characterization of workload: users can select workload 
functions that perform similar type and volume of processing as 
their expected workload. 

4.2 Kernel Library 
It is convenient to identify kernel programs using standard codes 
that consist of six characters, LAGS##, which can be interpreted 
as follows: 
    L  = Programming language code (C denotes C++ , B denotes 

C language, J denotes Java, F denotes Fortran) 
    A  = Area code (0...9) for main kernel areas 
    G  = Group code (0...9) inside an area  
    S  = Subgroup code (0...9) inside a group 
    ## = Kernel ID (00, 01, …) inside the subgroup  
Our classification of areas includes processor performance kernels 
(nonnumerical, seminumerical, numerical, and object-oriented), 
memory access kernels (aimed at caching and paging performance 
analysis), disk and peripheral kernels, system kernels, and an 
open-ended area of user programs. The BM2 program generator 
can combine library kernels and user kernels to produce 
compound benchmarks. Following are the basic areas, groups and 
subgroups of kernels: 
1 PROCESSOR PERFORMANCE KERNELS  
 
   11 Nonnumerical procedural kernels 
       110 Miscellaneous 
       111 Control structures and function calls 
       112 Arrays (including C-strings) 
       113 Strings (the standard class string) 
       114 Records/structs processing 
       115 Dynamic lists, queues, and trees 
       116 Search, sort, and merge 
       117 Recursive nonnumerical problems 
       118 Combinatorial problems and games 

 
  12 Seminumerical procedural kernels 
      120 Miscellaneous 
      121 Integer arithmetic and counters 
      122 Bitwise and integer operations/functions 
      123 Graph algorithms 
      124 Prime numbers 
      125 Random numbers and Monte Carlo methods 
      126 Cryptography and data compression 
      127 Recursive seminumerical problems 
   
 13 Numerical procedural kernels 
     130 Miscellaneous 
     131 Scalar floating-point arithmetic  
     132 Library and special functions 
     133 Arrays  
     134 Polynomials 

     135 Matrices 
     136 Integrals and differential equations 
     137 Recursive numerical problems 
     138 Statistics 
 
 14 Object oriented kernels 
     140 Miscellaneous 
     141 Object construction/destruction/manipulation 
     142 Overloading operators 
     143 Inheritance and multiple inheritance 
     144 Polymorphism 
     145 Abstract classes 
     146 Templates 
     147 Exception handling 
 
2  MEMORY ACCESS KERNELS (PAGING AND CACHING) 
          
    21 Static memory access 
         210 Miscellaneous 
         211 Uniform distribution, multiple localities 
         212 Normal distribution, multiple localities 
          
    22 Dynamic memory access 
        220 Miscellaneous 
        221 Uniform distribution, multiple localities 
        222 Normal distribution, multiple localities 
          
3  DISK AND PERIPHERALS ACCESS KERNELS 
 
    31 Disk access 
        310 Miscellaneous 
        311 Sequential accesses  
        312 Random access 
 
   32 Other peripheral kernels 
        320 Miscellaneous 
        321 VDU and graphics 
        322 Archival tape access (backup and restore) 
 
4  SYSTEM KERNELS 

 
    41 Processes 
        410 Miscellaneous 
        411 Process create and delete 
             
   42 Threads     
        420 Miscellaneous 
        421 Thread create and delete 
 
   43 Signals and alarms 
       430 Miscellaneous 
       431 Signals 
       432 Alarms 
 
   44 Pipes and other process communication mechanisms 
       440 Miscellaneous 
       441 Pipe communication 
 
  45 Networking and data communication 
      450 Miscellaneous 
      451 Socket communication 
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  46 File management 
      460 Miscellaneous 
      461 Sequential access 
      462 Random access 
      463 Indexed access 

 
5  USER PROGRAMS 
     
   50 Miscellaneous  
       500 Miscellaneous 
 
For example, according to this classification C12304 denotes a 
kernel written in C++ that is processor-bound, seminumerical, 
implements a graph algorithm, and is the fourth program in this 
subgroup. 
The basic idea of the presented classification is to uniformly 
cover a wide spectrum of possible typical operations, enabling 
users to select kernels that have the highest level of similarity 
with their specific applications. Of course, the presented initial 
classification can be expanded and/or modified. 

4.3 Kernel Design Concepts 
Kernels are components that are compiled and executed as parts 
of synthetic benchmark workloads that have substantial size and 
complexity. Many copies of the same kernel may be used in 
various parts of a benchmark, and they have to behave in a stable 
and fully controlled way. This role implies that kernels must 
satisfy the following conditions: 

 
(a) Kernels must be self-contained (designed as a block that 

can be inserted at any place in a benchmark program) 
(b) To secure maximum mobility of kernel code, its 

dependence on environment should be kept at minimum 
(usage of only a few indispensable global variables). 

(c) Kernels must be resistant to elimination by optimizing 
compilers. 

(d) All input data must be internally generated. 
(e) The number of lines of code in a kernel must be limited 

to secure sufficient granularity of benchmark workload. 
(f) It is necessary to include a validation of results to verify 

both the correctness of algorithm, and the proper 
functioning of tested hardware and software. 

(g) To provide the equality of impact all kernels must be 
calibrated to run approximately same time.  

 
Kernels that satisfy the above criteria have the standard structure 
shown in Fig. 8. Following is the list of the most important global 
parameters and a short description of their role: 
 

• SEC = desired kernel run time in seconds  
• MAXSEC = desired benchmark run time in seconds 
• KERNEL_COUNT = a counter used by the benchmark 

program to control the number of executed kernels  
• MAXKERNEL = desired number of executed kernels 
• RATE = the number of kernel initialization-computation- 

validation cycles per second, adjusted during kernel 
calibration process 

• TRACE =  benchmark program trace flag 
• STARTTIME = start of measurement time 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. The standard kernel structure 
 
The most important global parameters of these functions are SEC 
and KERNEL_COUNT. The parameter RATE specifies the 
number of kernel initialization-computation-validation cycles per 
second, and its value is adjusted during the calibration process so 
that the kernel run time is 1 second. Faster machines have larger 
values of RATE than slower machines. Consequently, RATE is a 
suitable indicator of the speed of a calibrated computer in the area 
of a specific kernel. 
An example of a short kernel code that belongs to the object 
construction/destruction/manipulation group is shown in Fig. 9. 
This kernel uses global variables I, J, SEC, RATE, G, and 
KERNEL_COUNT. Variable G is initially set to 0. The 
expression G=1-G in the loop generates the sequence 1, 0, 1, 0,… 
that is used for initializing objects. These values and conditional 
displaying of error message prevent optimizing compilers to 
detect that the kernel does not generate results and can be 
simplified or eliminated. 

4.4 The Structure of BM2 Benchmarks 
The operation of BM2 generator is summarized in Fig. 10. BM2 
supports the following five benchmark generation models: 

• Kernel sequence (SEQ) model 
• Kernel function sequence (SEQF) model 
• Minimum size canonic (MC) loop-select model 
• Adjustable size canonic (AC) loop-select model 
• Kernel-terminated recursive expansion (REX) model 

{  // Definition of local data objects
char* name = “<kernel code>: <kernel name>”;
for(I=0; I<SEC; I++)                     // SEC = desired run time in sec

for(J=0; J<RATE; J++)              // 1 second calibration loop
{

// Local data initialization   // Synthetic data
// Computation of results   // Any algorithm
// Validation of results        // Computation of the
if(results_incorrect)               // results_incorrect flag
{  // Error message

exit(1);                               // Abort benchmark execution
}

}
terminator( name );                       // Kernel termination function

}                                                        // (kernel/benchmark termination)
void terminator( char name[ ] )
{

double RunTime= sec( ) - STARTTIME;  // Benchmark run time (from
KERNEL_COUNT++;                              // start to this point)

if(TRACE) cout << "Kernel Count = " << KERNEL_COUNT 
<< "  Seconds" << RunTime << "  " << name << endl;

// End of program test

if( (MAXKERNEL>0  &&  MAXKERNEL <= KERNEL_COUNT) || 
(MAXSEC > 0.  &&  MAXSEC <= RunTime) )

{
cout << "\n\nNumber of executed kernels = " << KERNEL_COUNT

<<   "\nRun time [total  seconds]  = " << RunTime
<< "\n\nEnd of measurement\n\n";

exit(1);
}

}

270



 
{ // C14102  
char* name="C14102: An array of objects"; 
const int SIZE = 10000, N=6; 
for(I=0; I<SEC; I++)  
for(J=0; J<RATE; J++)        
{ 
   class SumArray 
   {  
     private: 
        double a[2*N];    
     public: 
        SumArray( ) { } 
        void Init(int N)  
        { G = 1 - G;      //  0, 1, 0, 1, 0, … 
           for(int i=0; i<2*N; i++) a[i] = G; 
        } 
        double Sum(int N)  
        { double sum=0.; 
          for(int i=0; i<2*N; i++) sum += a[i]; 
          return sum;     // Result: sum = N 
         } 
   } array[SIZE]; 
 
   int i; 
   double sum=0.; 
 
   // Initialize an array of objects 
   for(i=0; i<SIZE; i++) array[i].Init(N);  
 
   // Process 
   for(i=0; i<SIZE; i++) sum += array[i].Sum(N);     
  
   // Validate (the correct result is sum = N * SIZE) 
   if(sum != N*SIZE) 
   { cout << "\nError in " << name  
             << "\nsum = "  << sum  << '\n' ;  
     exit(1); 
    } 
 } 
terminator ( name ) ; 
} 

 

Figure 9. A sample short array processing kernel 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. The operation of BM2 generator 

The structure of the benchmark program generated by BM2 is 
specified by a model selection parameter (ProgType). The 
simplest form is a sequence, where kernels are directly inserted in 
the main benchmark program as exemplified in Fig. 11. Some 
kernels are inserted multiple times according to the desired kernel 
probability distribution. 
Another version of sequence is a sequence of functions, where we 
typically use one kernel per function, as exemplified in Fig. 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. An example of the kernel sequence model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12. An example of the kernel function sequence model 
 
In all kernel sequence models we assume the use of workload 
characterization by kernel distribution, i.e. we must select kernels 
according to a desired kernel probability distribution. If the 
selection is based on random number generators the resulting 
distribution will substantially differ from the desired distribution. 
It is much better to use a deterministic optimum selection (DOS) 

Select a desired BENCHMARK_PROGRAM_SIZE

Select a desired benchmark program structure

KERNEL SELECTION: Select the most appropriate kernel 
using either random or deterministic selection technique

PROGRAM EXPANSION: Insert the selected kernel in the 
desired benchmark program structure

PROGRAM SIZE MEASUREMENT:

SIZE = number of lines of code in the expanded program

do while (SIZE  < BENCHMARK_PROGRAM_SIZE) ;

Select a desired BENCHMARK_PROGRAM_SIZE

Select a desired benchmark program structure

KERNEL SELECTION: Select the most appropriate kernel 
using either random or deterministic selection technique

PROGRAM EXPANSION: Insert the selected kernel in the 
desired benchmark program structure

PROGRAM SIZE MEASUREMENT:

SIZE = number of lines of code in the expanded program

do while (SIZE  < BENCHMARK_PROGRAM_SIZE) ;

SEQ: Kernel Sequence Model
void main(void) Kernels are randomly or      
{ deterministically selected

{ K33 } according to a desired kernel
distribution function

{ K17 }

{ K44 }
while(LOC(main) < desired_SIZE)

{ K19 } { 
Select kernel;

{ K33 } Append kernel;
}

{ K41 }

{ K44 }
............
{ K93 }

}

SEQ: Kernel Sequence Model
void main(void) Kernels are randomly or      
{ deterministically selected

{ K33 } according to a desired kernel
distribution function

{ K17 }

{ K44 }
while(LOC(main) < desired_SIZE)

{ K19 } { 
Select kernel;

{ K33 } Append kernel;
}

{ K41 }

{ K44 }
............
{ K93 }

}

SEQF: Kernel Function Model
int ERROR; //  Global kernel error code
int F1(void)
{

{ K19 } //  Randomly selected kernel
return ERROR ; //  Kernel error code

}
..............................
int Fn(void)
{

{ K41 } //  Randomly selected kernel
return ERROR ; //  Kernel error code

}
void main(void)
{ long int sum = 0 ;

sum += F1( ) ;
.....................
sum += Fn( ) ;
cout << sum;

}
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method. In each step the DOS algorithm selects the kernel which 
minimizes the kernel distribution error. Suppose that we have the 
following parameters: 
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According to DOS algorithm before adding a kernel we compute 
all distribution errors: 
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Then, we select kernel rK  where 
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advantages of the DOS approach are (1) simplicity, (2) close to 
optimum distribution in each insertion step (i.e. the program can 
terminate at any time), and (3) good accuracy for any program 
size. A minor disadvantage is that each kernel selection needs 
time O(n). The corresponding benchmark generation process is: 
 
do{ 
       r = (integer from 1 to n selected by the DOS algorithm   
             according to the desired kernel distribution) ; 
       Insert kernel rK in the benchmark program; 
      1 1 2 2 ...= + + + n nsize f L f L f L  (the number of lines of code   
             after the addition of kernel rK  ); 
} while (size < L); 
 
If we want to generate the minimum size benchmark program, it 
is suitable to use the canonic loop-select form exemplified in Fig. 
13. In this program each kernel appears only once. If the kernels 
are calibrated so that they run exactly one second, then the 
parameter TIME specifies the execution time in seconds. The 
selector( ) function determines the desired kernel distribution. 
The same loop-select approach can be used to generate programs 
of any desired size if we allow kernels to repeat inside the switch-
case structure. This approach is exemplified in Fig 14. 
In cases where it is desirable to have a modular structure of the 
benchmark program, the loop-select concept can be implemented 
using the kernel functions (e.g. void Fi(void) {kernel}), and then 
the canonic loop-select models include only kernel function calls 
and not the whole functions. This approach yields the minimum 
size, similar to the MC model shown in Fig 13. 
The KIN concept can also be combined with the recursive 
expansion (REX) method as exemplified in Fig. 15. The resulting 
technique is called the kernel-terminated REX because instead of 
terminal statements we insert either the complete kernels (as 
shown in Fig. 15) or kernel function calls. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. An example of the minimum size loop-select model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. An example of the adjustable size loop-select model 
 
 
Kernel Terminated REX Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 15. An example of the kernel-terminated REX model 

MC: Minimum Size Canonic Loop-Select Model

for(i=0; i<TIME; i++)
switch( selector( ) )
{

case 00: { K00 } ; break;
case 01: { K01 } ; break;
case 02: { K02 } ; break;
············································
case 99: { K99 } ; break;

}
TIME = execution time parameter.
selector( ) = kernel distribution function.
Each kernel appears only once.

AC: Adjustable Size Canonic Loop-Select Model

for(i=0; i<TIME; i++)
switch( uniform( ) )     // 0 ≤ uniform( ) ≤ SIZE
{ case 0000: { K19 } ; break;

case 0001: { K02 } ; break;
case 0002: { K02 } ; break;
case 0003: { K02 } ; break;
case 0004: { K19 } ; break;
············································
case SIZE: { K41 } ; break;

}
TIME = execution time parameter. Kernels may 
repeat. Their frequency is specified by the 
desired SIZE and the kernel distribution function.

// G[ ] = global counter array. Initially long G[n]=0,  n=1,…,N
if (++G[13]%2)       //   1, 0, 1, 0, 1, …
{

while (++G[14]%5)   //   1, 2, 3, 4, 0, 1, 2, 3, 4, 0, …
{

{ K19 }                 //   Kernel termination
if (++G[15]%2)     //   1, 0, 1, 0, 1, …
{

{ K17 }             //   Kernel termination
}

}
}
else
{

for( ;  ++G[16]%5  ; )  //   1, 2, 3, 4, 0, 1, 2, 3, 4, 0, …
if (++G[17]%2) //   1, 0, 1, 0, 1, …

{ K64 }                 //   Kernel termination
else 

{ K17 }                 //   Kernel termination
}
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5. CONCLUSIONS 
Benchmark program generators solve the problem of fast and 
inexpensive production of large benchmark programs. Such 
programs can be tuned to model a spectrum of natural workloads 
and can easily adapt to changing hardware and software 
environments created by the exponential growth of computer 
performance. Therefore, instead of searching for benchmarks that 
satisfy specific requirements, it is possible to produce benchmarks 
using automatic benchmark generators. This can significantly 
reduce the cost of benchmarking. 
The recursive expansion model of benchmark programs is suitable 
for modeling procedural programs in the majority of high level 
languages. The stepwise nesting of blocks can be terminated by 
inserting either arithmetic terminal statements or kernels.   
The size of automatically generated synthetic programs is not 
limited and their characteristics are easily adjusted by selecting 
structural properties of programs, such as breadth and depth 
distributions, the control structure distribution, and the semantic 
properties expressed by an appropriate distribution of kernels. 
The use of kernel libraries for automatic generation of benchmark 
and test programs has a number of advantages that include 
flexibility, scalability, simplicity, convenience, and cost 
reduction. 
The kernel insertion method yields flexible workloads because the 
kernel libraries can be easily updated, expanded and improved. 
The size, contents, and the number of kernels can grow to cover 
any specific area of interest. 
The scalability of synthetic benchmarks has various forms. It is 
easy to adjust any desired number of lines of code of the resulting 
test and benchmark programs, as well as any run time, to match 
the widest range of computer power. The structure of the 
generated benchmarks can also be conveniently adjusted. 
However, the most important scalability feature is the possibility 
to select or quickly modify the desired functionality of resulting 
benchmarks, what can position resulting benchmarks in any area 
that is represented by the kernel library. 
The cost of benchmarking is the most important factor in 
evaluating the presented approach. In the case of standard 
industrial benchmarks, the cost of benchmarking is rather high 
because it includes permanent search for new benchmarks in an 
effort to follow Moore’s law. When new standard benchmarks are 
introduced, computer manufacturers must promptly test all their 
products with the new benchmarks. Finally, computer users must 
also follow the changes in standard benchmark suites and 
eventually pay all benchmark development and maintenance 
costs.  
The automatic benchmark generation method is suitable for users, 
because it comes both as a tool and as a service. The concept of e-
mail delivery of benchmark suites from a benchmark server is 
convenient for many users, particularly those who need fast, 
flexible, and inexpensive solutions. 
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