
Automatic Generation of Benchmark and Test Workloads
Jozo Dujmović

San Francisco State University
1600 Holloway Ave.

San Francisco, CA 94132
1-415-338-2207

jozo@sfsu.edu

ABSTRACT
In this tutorial, we describe techniques for automatic generation
of benchmark and test workloads. Generated programs have
adjustable parameters that are used to select the program size and
structure, as well as the relative frequencies of basic operations
(or program modules) that characterize the workload.

Categories and Subject Descriptors
D.2.8 Metrics

General Terms
Measurement, Performance

Keywords
Benchmarking, metrics, program generators

1. INTRODUCTION
A traditional goal of benchmarking is to determine (or predict) the
performance of a given computer system running a specific real
workload. There are many other benchmarking/testing problems,
such as benchmarking selected hardware units, language
processors, database systems, operating systems, and application
software. The most frequent reason for benchmarking is the
process of performance evaluation organized in the context of
comparison and selection of complex computer systems.

Exponential growth of computer performance is the fundamental
property of computer industry. If q denotes a performance
indicator (e.g. the CPU transistor count, memory capacity, disk
capacity, pixels per Dollar, processor speed, or performance/price

ratio) and t denotes time, then 0()/
0() 2 −= t t Tq t q (Moore’s law).

Here T denotes the “performance doubling time“: if the initial
performance is 0 0() =q t q and 0− =t t T then 02=q q . In other
words, performance doubles after each T time units. For example,
according to [16], the CPU transistor count in 1971 was 2300, and
in 2003 it was approximately 108 yielding

0
0

() log 2 (2003 1971)log 2 2.08 years
log () log log100,000,000 log 2300

− −
= = =

− −
t tT
q t q

Consequently, the chip density increases two times every two

years. According to [8] the memory capacity doubles each 18
months, and since 1985 the performance/price ratio doubles every
12 months. The clock speed, and power dissipation (without
expensive cooling) reached their saturation points (around 5 GHz
and 100 W respectively) approximately in 2005 [11][1]; however,
the exponential growth is expected to continue with the number of
processor cores.
Industrial benchmark programs, such as SPEC benchmarks [15]
[4], are used in an environment that is permanently and rapidly
changing. Under such conditions industrial benchmarks should
strictly follow the exponential growth of computer performance,
and this cannot be achieved using the current benchmark suites
that consist of natural workloads that are updated once in several
years. For example, SPEC updates its CPU benchmark suites
approximately once in three to six years (1989, 1992, 1995, 2000,
2006). However, in three years performance/price can increase 8
times! It is perfectly clear that as long as benchmarking is based
on selecting natural workloads and keeping them unchanged for
several years there will always be a substantial gap between the
current state of technology and the current state of industrial
benchmarks. There is a permanent pressure to replace obsolete
benchmarks, to cover a spectrum of applications (e.g. SPEC CPU
2006 includes 29 programs!), develop new benchmark suites, and
permanently supply new measurements for almost all
commercially available computers. It is obvious that this approach
to benchmarking must be expensive.
An alternative approach to benchmarking can be based on
automatic generators of benchmark programs. Main advantages of
this approach are the high flexibility of workload characteristics, a
fast response to changes of available hardware/software resources,
easy customizing, and the low cost.
There are two basic prerequisites for this approach to
benchmarking. The first prerequisite is the development of
theoretical background for quantitative analysis, characterization
and design of synthetic workloads [2][3]. The second prerequisite
includes programming techniques and tools for implementation of
benchmark generators [5][6][7]. Both prerequisites need more
research and development efforts and this tutorial is prepared for
those who want to move in that direction. Our main goal is to
present basic concepts of design and implementation of
benchmark generators.

2. WORKLOAD DECOMPOSITION AND
AGGREGATION
2.1 A Hierarchy of Benchmark Programs
Benchmark programs come in various sizes and various levels of
credibility. Going top-down benchmark programs form the
following hierarchy:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
Copyright 2010 ACM 978-1-60558-563-5/10/01...$10.00.

263

• Real workloads
• Standard benchmarks
• Synthetic workloads
• Kernels
• Microbenchmarks

Real workloads are at the top level; they represent themselves and
only they can avoid the standard criticism that claims (usually
without any proof) that a given benchmark does not represent the
real workload. Unfortunately, real workloads are regularly too
complex, too specific in hardware/software resource demands,
insufficiently portable, based on proprietary data, or simply not
available (incomplete or currently in development/updating), so
that they cannot be directly used for performance measurement.
In addition, real workloads regularly change when ported from an
existing platform to a new platform. That yields an unavoidable
level of uncertainty in real workload definition.
Since real workloads are rarely suitable for benchmarking, the
second best approach might be to measure performance using
standard industrial benchmark suites, such as those provided by
SPEC [15][13]. Standard benchmarks are selected real
applications of substantial size and complexity (e.g. the gcc
compiler, the games of chess and Go, or a linear programming
solver). The main advantage of this approach is the public
availability of a database of measurements for the majority of
commercially available computers. Not surprisingly, it is left to
users to prove why some of standard benchmarks should be used
as sufficiently good representatives of a real workload.
Synthetic workloads [10] are composed of frequently used basic
operations (or kernel functions) but they are not real applications.
They have the advantage of fast and automatic generation, and the
problem of proving representativeness similar to standard
benchmarks. As opposed to standard benchmarks which have a
fixed structure, synthetic workloads have adjustable parameters
and can be easily customized to serve as an approximation of a
real workload.
Kernels are frequently used important functions (e.g. matrix
inversion, sorting, searching etc.) that can be used either
individually or as building blocks of synthetic benchmarks
Microbenchmarks are small code segments designed to isolate a
specific performance feature and provide reliable performance
indicators that characterize the selected feature (e.g. Fibonacci
number generator and Ackermann’s function for evaluation of the
efficiency of recursive calls, matrix multiplication for evaluation
of the efficiency of array processing, etc.)

2.2 A Linear Sequential Workload
Decomposition Model
The process of generation of synthetic programs always consists
of aggregating various program components and modules to
create a complex workload. Therefore, it is useful to start with the
simplest way of decomposing and aggregating program
components.
In the simplest case let us assume a sequential machine that is
designed to execute a set of k basic operations 1,..., kI I . These
operations can be machine instructions of a specific processor, or
bytecodes implemented by a virtual machine, or any other more
complex basic operations. We also assume that the basic

operations have average execution times 1,..., kt t . If a benchmark
program iB consists of sequential execution of basic operations,
then the total execution time of iB is 1 1,...,=i i ik kT f t f t where

1,...,i ikf f denote frequencies of individual basic operations.

The benchmark program iB can be characterized by the
frequency distribution 1,...,i ikf f . For scaling purposes iB can be
executed multiple times, for example using a loop

for(m=0; m<M; m++) { iB }

Multiple repetitions of iB do not change its characteristics.
Similarly, the execution time can be normalized:

1 1

1 1

,..., , / , 1,...,

, 1,= =

= = =

= = =∑ ∑
i i ik k ij ij i

k k
i ij ij i i ij j

T p t p t p f F j k

F f p T F T

The workload is now characterized using the probability
distribution 1,...,i ikp p .

Let B be a given (possibly complex) workload that can be
characterized using the frequency distribution 1,..., kf f , the
probability distribution 1,..., kp p , the total number of executed
operations F and the run time 1 1(,...,)= k kT F p t p t . Suppose now
an ideal case where we have n component benchmark programs

1,..., nB B that satisfy the condition 1 1 ...= + +j j n njp W p W p ,

11,..., , 0 1, ... 1= ≤ ≤ + + =i nj k W W W . The weights 1,..., nW W
denote the relative importance of component benchmarks

1,..., nB B . In such a case we have

1 1 1 1 1= = = = =
= = = =∑ ∑ ∑ ∑ ∑

k n n k n
i ij i i ij i i i

j i i j i
T F W p t F W p t F W T FT

Therefore, if 1 1 ... , 1,...,= + + =j j n njp W p W p j k then the

normalized run time of workload B is a weighted arithmetic mean
of the normalized run times of benchmarks 1,..., nB B :

1=
= ∑

n
i i

i
T W T

Furthermore, the run time of workload B is a linear combination
of the run times of workloads 1,..., nB B :

1 1 1
,

= = =
= = = =∑ ∑ ∑

n n n
i i i

i i i i i
i i ii i i

T FW FWT F W T Q T Q
F F F

If the component benchmarks are tuned to (approximately) satisfy
= iF F , 1,...,=i n then the run time of workload B can be

computed in the same way as the normalized run time. In this
idealized case the component benchmarks can be interpreted as
vectors that can be added to yield exactly the complex workload.
In other words, the complex workload can be exactly decomposed
into component benchmarks, and a well selected group of
component benchmarks can be used to estimate the behavior of
various complex workloads.

264

Of course, real computers rarely behave in linear and sequential
way. There is always a degree of parallelism in the execution of
basic operations, as well as nonlinear phenomena caused by the
processor and memory architectures, control and interfacing of
peripheral units, and the operating system activities. In real cases
the sequential linear model can only be used as an approximation.
Instead of satisfying the condition 1 1 ...= + +j j n njp W p W p we

can minimize the absolute difference between the desired value
jp and its approximation 1 1 ...= + +% j j n njp W p W p . Using

differences | |− %j jp p , 1,...,=j k , we can select the weights

1,..., nW W that minimize the error function

1 1 11

1

(,...,) 50 | ... | [%]

0 (,....) 100%
== − − −

≤ ≤

∑k
n j j n njj

n

E W W p W p W p

E W W

Alternative forms of the error function are:
2

1 1 1 11

2 1 1 1
1

(,...,) (...)

(,...,) max | ... |
=

≤ ≤

= − − −

= − − −

∑k
n j j n njj

n j j n nj
j k

E W W p W p W p

E W W p W p W p

If n>2 the optimum weights can be found using the Nelder-Mead
simplex algorithm [14]. If n=2 then the problem is trivial and can
be solved by simple linear search. For example, the Java bytecode
grouping technique presented in [9] identified a hierarchical
decomposition from 2 to 17 characteristic groups of bytecodes.
For simplicity, let us characterize workload using four distinct
groups of operations: (1) calculation (arithmetic and logic
operations, data type conversion), (2) compare/branch operations,
(3) OO operations (object create/access, method invoke/return),
and (4) operand stack manipulation. Suppose that we have
component programs 1 2,B B that are used to model a given
workload B as follows:

1 11 12 13 14

2 21 22 23 24

1 2 3 4

1 2 1 1 11 2 21 2 1 12 2 22

3 1 13 2 23 4 1 14 2 24 1 2

: [, , ,] [0.4,0.3,0.2,0.1]
: [, , ,] [0.2,0.35,0.25,0.2]

: [, , ,] [0.25,0.3,0.3,0.15]
(,) 50(| | | |
| | | |),

=

=

=

= − − + − −
+ − − + − − + =

B p p p p
B p p p p
B p p p p
E W W p W p W p p W p W p

p W p W p p W p W p W W 1

The search of all values of 1W yields the following optimum
results that correspond to the minimum error:

1 2

1 2 3 4

0.25, 0.75, (0.25,0.75) 3.75% (min error),
0.25, 0.3375, 0.275, 0.1375

= = =
= = = =% % % %

W W E
p p p p

The presented linear sequential workload decomposition shows
that complex workloads consist of simpler components that can
be identified and organized as specialized program modules. In
the case of real workloads that use various functions (interpreted
as kernels) the linear decomposition can be used as an
approximation at the level of kernels. In other words, the
workload can be characterized by the kernel frequency
distribution. If we maintain a kernel library containing
trustworthy program modules, then we can develop systematic
procedures for building complex workloads as suitable
combinations of program modules from the kernel library.
Benchmark program generators are tools that implement such
procedures.

3. A RECURSIVE EXPANSION METHOD
FOR PROGRAM GENERATION
3.1 Characteristics of Procedural Programs
The first step in the generation of benchmark programs is to
understand the process of creating simple procedural programs
containing control structures and arithmetic statements. Our
approach to generating simple synthetic procedural benchmark
programs is generally applicable in the majority of programming
languages. For simplicity, we will use the notation of C/C++.
Following is the list of basic control structures that can be used in
a program generator:

1. Sequence (block): { block }
2. Selections

2.1 Skip (branch with one block):
if (condition) { block }

2.2 Branch with two blocks:
if (condition) { block } else { block }

2.3 Branch with multiple conditions and n blocks:
if (condition1) { block }
else if (condition2) { block }
else if (condition3) { block }
………
else { block }

 2.4 Multiple alternatives with selector (n blocks):
 switch (selector) {
 case a1: case a2: … :{block}; break;
 case b1: case b2: … :{block}; break;
 …………
 case z1: case z2: … :{block}; break;
 default { block } }

3. Loops
3.1 Loop with the exit at the top (one block):
 while (condition) { block }

3.2 Loop with the exit at the bottom (one block):
do { block } while (condition)

3.3 Loop with the exit in the middle (two blocks):
do{
 { block }
 if (condition) break ;
 { block } }
while (1);

3.4 Loop with counter (one block):
 for(initialize; condition; update){block}

These control structures are encountered in almost all
programming languages. Each control structure has a single entry
point, a single exit point, and includes one or more frames. The
frame is an empty containers denoted as a pair of braces { } in
which we insert blocks. Each block consists of one or more
statements. Each statement can contain one or more frames or it
can be a terminal statement. The terminal statement is a statement
that contains no frames where we could insert blocks; it is either
an arithmetic statement or an I/O statement. Of course, each
frame should be filled with statements. This process continues as
long as we have frames that must be filled with blocks and
terminates after inserting terminal statements in each block. A
trivial example of a frame with three terminal statements is shown
in Fig. 1.

265

Figure 1. A frame with three terminal statements (T.S.)
The simplest way to organize a procedural program generator is
to simulate the process of top-down procedural programming.
This process in the case of a single module (either a function or a
main program) starts by selecting the initial statement (either
function or main) that contains a single frame. Then the frame is
filled with appropriate statements. Nonterminal statements
include frames. In the next step the frames are filled with other
statements, and the process terminates when there are no more
empty frames. The size of the resulting program depends on two
parameters: the number of statements we insert in each frame and
the maximum level of nesting of frames. Program generators can
be organized to insert statements in frames, and when they reach
the desired number of statements (or the desired maximum level
of nesting) all frames are filled with terminal statements yielding
a program that can be compiled and executed.

3.2 The Concept of Breadth and Depth
Distribution
The breadth of a block is defined as the number of statements in a
block and denoted B. The depth, D, is defined as the level of
nesting where the initial frame, either a function or a main
program, is interpreted as the initial level zero. For example, the
following swap function

and the main program in Fig. 1 have exactly the same structure,
an initial frame with three statements, yielding B=3, D=1. Both
breadth and depth are defined for each block, and the depth of the
initial block is the depth of the whole program. The initial block
of a program is considered the zero level of depth. For breadth
and depth we count only executable statements, i.e. the statements
that generate executable machine code. For example, the sort
program shown in Fig. 2 has the depth D=4 and the breadth B=1.
Only the “null program”

 void main(void){ }
has D=B=0. Terminal statements are always counted and the
following version of the null program

int main(void){ return 0; }
is assumed to have D=B=1.
Real programs have variable breadth and depth in various blocks
and we can define the frequency distributions of breadth ()bF B
and depth ()dF D , as well as the corresponding probability
distributions ()bP B and ()dP D for each program.

Figure 2. The depth of a sort program

To exemplify the concept of breadth and depth distribution, let us
consider a traditional binary search function:

int bsearch(int v[], int n, int x)
{ int low, high, mid;
 low = 0;
 high = n-1;
 while(low <= high)
 { mid = (low+high)/2;
 if(x < v[mid]) high = mid-1;

 else if(x > v[mid]) low = mid+1;
 else return mid;

 }
 return –1;
}

The underlined statements in this program are the terminal
statements and the breadth and depth analysis is shown in Fig. 3.

0 1 2 3 4 D (depth)
{
 T. S. // low=0
 T. S. // high=n-1
 { T. S. // mid=(...)/2
 { T. S. // high=mid-1
 { T. S. // low=mid+1
 T. S. // return mid
 } B=2
 } B=2
 } B=2
 T. S. // return -1
} B=4
 3 1 1 2 Fd(D) (frequency)

B 1 2 3 4
Fb(B) 0 3 0 1
Pb(B) 0 0.75 0 0.25

D 1 2 3 4
Fd(D) 3 1 1 2
Pd(D) 0.43 0.14 0.14 0.29
Figure 3. The analysis of breadth and depth distribution for the
binary search program

Entry point

Exit point

T.S.

Frame

T.S.

T.S.

void main (void)
{
 int a=123;
 int b=456;
 cout << a*b;
}

void swap(int & a, int & b)
{
 int temp = a;
 a = b;
 b = temp;
}

void sort(int v[], int n)
{
 int i, j;
 for(i=0; i<n-1; i++)
 for(j=i+1; j<n; j++)
 if(v[i]>v[j])
 swap(v[i], v[j]);
}

1
0

2
3

4

sort

for

for
if

swap

266

For each block the breadth is denoted after the closing brace and

()bF B denotes the number of frames that contain B statements.
Similarly, ()dF D denotes the number of terminal statement at
the depth level D. Consequently, the structure of bsearch function
can be characterized by the breadth and depth absolute and
relative frequencies (()bF B , ()dF D , ()bP B and ()dP D) shown
in Fig 3.
From the standpoint of benchmarking, programs that have similar

()bP B and ()dP D distributions can be considered as similar
programs. The difference between programs P1 and P2 can be
defined using the following breadth and depth difference metrics:

1 2
1

1 2
1

1(1, 2) | () () | , 0 (1, 2) 1
2

1(1, 2) | () () | , 0 (1, 2) 1
2

=

=

= − ≤ <

= − ≤ <

∑

∑

n
b b b b

i
n

d d d d
i

D P P P i P i D P P

D P P P i P i D P P

Synthetic benchmark programs should be created so that they
have the same breadth and depth distributions as the real
programs they represent. In such a way a synthetic benchmark
program can be a representative (or even a clone) of one or more
real programs. Automatic generators of procedural code should
generate programs having desired breadth and depth distributions.

3.3 Recursive Generator of Procedural Code
The traditional top-down program development process consists
of stepwise refinements realized by inserting blocks of statements
into frames until all frames are filled with terminal blocks that
contain only terminal executable statements. We call this process
the recursive expansion process (REX). The REX process of
benchmark program generation is an automatic implementation of
the top-down program development process and includes the
following main steps:

1. Initialization: Create an initial block either as a function
or a main program frame.

2. Expansion: In each existing frame insert a given number
of statements with new frames. Increase the size of
program by repeating this step a necessary number of
times.

3. Termination: If the size of the generated program is
sufficient insert in each frame a terminal statement.

The concept of REX generator is presented in Fig. 4 and Fig. 5.
There are two functions, STATEMENT and BLOCK, which call
each other. The function BLOCK fills a frame with random
statements. The function STATEMENT generates a random
statement that can be a terminal (arithmetic assignment)
statement, or a statement that includes one or more frames. For
statements with frames the function STATEMENT calls BLOCK in
order to fill the frame. The termination of recursive calls occurs
when we reach the desired size of generated program.
The basic tool we use for building these programs is a class string
that supports an overloaded string assignment operator (=), and a
string concatenation operator (+). The main components of a toy
REX generator are presented in Fig. 5. In addition to main
functions STATEMENT and BLOCK Fig. 5 also includes the main
program that generates the synthetic program demo.cc.

Figure 4. The REX model recursion

 string STATEMENT(int D, int B, int selector) // D = depth, B = breadth
 {
 if (++D > maxDepth) selector = 0; // End of recursive expansion
 switch (selector)
 {
 case 0: return assignment() + "\n"; // Assignment terminator
 case 1: return "if" + condition() + "\n" + BLOCK(D, B)+ "\n";
 case 2: return "if" + condition() + "\n" + BLOCK(D, B) + "\n" +
 indent(D) + "else\n" + BLOCK(D, B)+ "\n";
 case 3: return "while" + condition() + "\n" + BLOCK(D, B)+ "\n";
 case 4: return "do\n" + BLOCK(D, B) + " while" + condition()+";\n";
 }
 }
 string BLOCK(int D, int B) // D = depth, B = breadth
 {
 string block = indent(D) + "{\n" ;
 for(int i=0; i<B; i++)
 block += indent(D+1) +
 STATEMENT(D, 1+rand()%maxBreadth, rand()%5);
 return block + indent(D) + "}";
 }
 void main(void)
 {
 fstream file;
 srand(time(NULL)); // randomize
 cout << "\n\nToy program generator\n\n"
 << "Maximum Breadth = "; cin >> maxBreadth;
 cout << "Maximum Depth = "; cin >> maxDepth;
 file.open("demo.cc", ios::out);
 file << "void main(void)\n{\n" +
 indent(1) + "int " + init(nvars, ",") + ";\n" +
 indent(1) + init(nvars, "=") + "=1;\n" +
 indent(1) + STATEMENT(0, maxBreadth, 1+rand()%4) + "}\n";
 cout << "demo.cc completed.\n";
 }
Figure 5. Main components of a toy REX generator

While(Breadth<MaxBreadth)

append STATEMENT();

BLOCK

if(Size>MaxSize)

return terminal
statement;

else

return a randomly
selected statement
that includes one
or more BLOCK();

STATEMENT

STOP

START

EntryEntry ReturnReturn

While(Breadth<MaxBreadth)

append STATEMENT();

BLOCK
While(Breadth<MaxBreadth)

append STATEMENT();

BLOCK

if(Size>MaxSize)

return terminal
statement;

else

return a randomly
selected statement
that includes one
or more BLOCK();

STATEMENT

STOP

START

EntryEntry ReturnReturn

267

The presented toy generator uses auxiliary functions that are not
shown in Fig. 5: init (function that defines and initializes variables
used by other functions), indent (function that inserts spaces and
new lines to properly indent the resulting code), assignment
(function that creates an assignment using random arithmetic
expression) and condition (function that creates a random
condition that is used by control statements if, while and do). The
number of scalar variables used in this program is adjusted by the
global parameter nvars.
A fully expanded version of the REX generator is called
BenchMaker1 (BM1) and it can generate 2 million lines of code
per minute on a typical PC. BM1 creates C++ code as a sequence
of functions that include control structures distributed according
to user’s input, and a main program that calls these functions.

#include<iostream.h>
void main(void)
{
 int I,a,b,c,d,e,f,g,h,i,j,k,l,m,n;
 a=b=c=d=e=f=g=h=i=j=k=l=m=n=1;
 long S=0, G[20000]; for(I=0; I<20000; I++) G[I]=0;
 while(++G[2]%3) // 1,2,0,1,2,0,…
 {
 if(++G[0]%2) // 1,0,1,0,1,…
 {
 i = k-a-k*b+f+e+d-d-m*m+h+g-f;
 l = m+d-n-m+n*i+n;
 }
 else
 {
 e = h*f-g-l*f+a+a*m;
 h = a-h*h-l+k*k-l*d+e-l*m;
 }
 while(++G[1]%3) // 1,2,0,1,2,0,…
 {
 b = d-m-j+m-j+k-b+a+e-g-i+f*g;
 j = k*f*m*b*h-d+l+b;
 }
 }
 for(I=0; I<3; S+=G[I], I++)
 cout << G[I] << ((I+1)%10 ? ' ':'\n');
 cout << "\nNumber of control statements = 3";
 cout << "\nExecuted control statements = " << S << '\n';
}

Figure 6. A small demo main program created by BenchMaker1

A small synthetic main program without functions, created by
BM1, is shown in Fig. 6. In order to make such programs
executable we use counters in conditions so that if statements
uniformly branch and uniformly use both blocks, and loops
perform a given number of iterations. At the end we display the
basic statistics of executed instructions.
Synthetic programs of the type shown in Fig. 6 are primarily used
as inputs for testing compilers [12]. The measured parameters
include the compilation speed, the density of generated code, and
optimizing features. These programs can also be executed as
synthetic benchmarks, in cases where their structure is considered
acceptable. However, this form of generators can also be used in a

more sophisticated way, if instead of (some or all) arithmetic
terminal statements we use function calls in a library of
trustworthy kernels. In such cases the complexity of synthetic
benchmark can match the complexity of real workloads and still
have advantages of fast, flexible and low cost code generation.
Such generators, called BenchMaker2 (BM2), are described in the
next section.

4. A KERNEL INSERTION METHOD FOR
PROGRAM GENERATION

4.1 The Concept of Kernel Insertion
Generator
The basic component of BM2 is a library of independent expertly
written programs called kernels, which provide a wide spectrum
of traditional data processing functions. Each kernel is self-
contained: it generates input data, performs desired processing,
and verifies that the obtained results are correct. Benchmark
programs are organized using a kernel insertion (KIN) process:
the user first selects the basic structure of the synthetic benchmark
and the benchmark generator then inserts kernels in that structure
according to desired distribution. The result is a scalable synthetic
benchmark of desired size and characteristics, which combines
the quality code from the kernel library and the systematic growth
of code provided by BM2.

Figure 7. KIN process and the organization of BM2

The concept of BM2 is shown in Fig. 7. BM2 is designed
primarily to serve remote users over the Internet. The users get
the graphical interface that is used to specify the structure,
functions, size, and the number of desired benchmark programs.
BM2 server receives user’s request, generates benchmarks, and
delivers them to the user as e-mail attachments containing source
code. The whole system can be organized as open source, serving
a large user community. To achieve ultimate flexibility BM2 can
integrate library kernels with client’s benchmark modules
providing a possibility to combine trustworthy programs from
various sources.
The basic goal of BM2 is to provide scalable benchmarks.
Benchmark scalability can be interpreted in several ways. We
differentiate (1) time scalability, (2) space scalability, (3)
parametric scalability, (4) structural scalability, and (5) functional
scalability. Time scalability is the simplest form, where the run

Kernel
library

BENCHMARK

GENERATOR

B1 B2 Bn

CLIENT
(remote
or local)

REQUEST

RESULT

Generated
benchmark
series or
suites

Client
benchmark
modules

Kernel
library

BENCHMARK

GENERATOR

B1 B2 BnB1 B2 Bn

CLIENT
(remote
or local)

REQUEST

RESULT

Generated
benchmark
series or
suites

Client
benchmark
modules

268

time can be adjusted according to user needs. Similarly, the space
scalability is the possibility to adjust the memory consumption
and disk space consumption of benchmarks as well as the
intensity and type of memory and disk accesses. In the case of
parametric scalability, it is possible to adjust parameters of
benchmark workload to increase the number of users, the number
of nodes etc., while keeping the same type and structure of
workload. The structural scalability refers to cases where the
structure of workload can be modified and adjusted, as in the case
of network benchmarks. Functional scalability is based on
semantic characterization of workload: users can select workload
functions that perform similar type and volume of processing as
their expected workload.

4.2 Kernel Library
It is convenient to identify kernel programs using standard codes
that consist of six characters, LAGS##, which can be interpreted
as follows:
 L = Programming language code (C denotes C++ , B denotes

C language, J denotes Java, F denotes Fortran)
 A = Area code (0...9) for main kernel areas
 G = Group code (0...9) inside an area
 S = Subgroup code (0...9) inside a group
 ## = Kernel ID (00, 01, …) inside the subgroup
Our classification of areas includes processor performance kernels
(nonnumerical, seminumerical, numerical, and object-oriented),
memory access kernels (aimed at caching and paging performance
analysis), disk and peripheral kernels, system kernels, and an
open-ended area of user programs. The BM2 program generator
can combine library kernels and user kernels to produce
compound benchmarks. Following are the basic areas, groups and
subgroups of kernels:
1 PROCESSOR PERFORMANCE KERNELS

 11 Nonnumerical procedural kernels
 110 Miscellaneous
 111 Control structures and function calls
 112 Arrays (including C-strings)
 113 Strings (the standard class string)
 114 Records/structs processing
 115 Dynamic lists, queues, and trees
 116 Search, sort, and merge
 117 Recursive nonnumerical problems
 118 Combinatorial problems and games

 12 Seminumerical procedural kernels
 120 Miscellaneous
 121 Integer arithmetic and counters
 122 Bitwise and integer operations/functions
 123 Graph algorithms
 124 Prime numbers
 125 Random numbers and Monte Carlo methods
 126 Cryptography and data compression
 127 Recursive seminumerical problems

 13 Numerical procedural kernels
 130 Miscellaneous
 131 Scalar floating-point arithmetic
 132 Library and special functions
 133 Arrays
 134 Polynomials

 135 Matrices
 136 Integrals and differential equations
 137 Recursive numerical problems
 138 Statistics

 14 Object oriented kernels
 140 Miscellaneous
 141 Object construction/destruction/manipulation
 142 Overloading operators
 143 Inheritance and multiple inheritance
 144 Polymorphism
 145 Abstract classes
 146 Templates
 147 Exception handling

2 MEMORY ACCESS KERNELS (PAGING AND CACHING)

 21 Static memory access
 210 Miscellaneous
 211 Uniform distribution, multiple localities
 212 Normal distribution, multiple localities

 22 Dynamic memory access
 220 Miscellaneous
 221 Uniform distribution, multiple localities
 222 Normal distribution, multiple localities

3 DISK AND PERIPHERALS ACCESS KERNELS

 31 Disk access
 310 Miscellaneous
 311 Sequential accesses
 312 Random access

 32 Other peripheral kernels
 320 Miscellaneous
 321 VDU and graphics
 322 Archival tape access (backup and restore)

4 SYSTEM KERNELS

 41 Processes
 410 Miscellaneous
 411 Process create and delete

 42 Threads
 420 Miscellaneous
 421 Thread create and delete

 43 Signals and alarms
 430 Miscellaneous
 431 Signals
 432 Alarms

 44 Pipes and other process communication mechanisms
 440 Miscellaneous
 441 Pipe communication

 45 Networking and data communication
 450 Miscellaneous
 451 Socket communication

269

 46 File management
 460 Miscellaneous
 461 Sequential access
 462 Random access
 463 Indexed access

5 USER PROGRAMS

 50 Miscellaneous
 500 Miscellaneous

For example, according to this classification C12304 denotes a
kernel written in C++ that is processor-bound, seminumerical,
implements a graph algorithm, and is the fourth program in this
subgroup.
The basic idea of the presented classification is to uniformly
cover a wide spectrum of possible typical operations, enabling
users to select kernels that have the highest level of similarity
with their specific applications. Of course, the presented initial
classification can be expanded and/or modified.

4.3 Kernel Design Concepts
Kernels are components that are compiled and executed as parts
of synthetic benchmark workloads that have substantial size and
complexity. Many copies of the same kernel may be used in
various parts of a benchmark, and they have to behave in a stable
and fully controlled way. This role implies that kernels must
satisfy the following conditions:

(a) Kernels must be self-contained (designed as a block that

can be inserted at any place in a benchmark program)
(b) To secure maximum mobility of kernel code, its

dependence on environment should be kept at minimum
(usage of only a few indispensable global variables).

(c) Kernels must be resistant to elimination by optimizing
compilers.

(d) All input data must be internally generated.
(e) The number of lines of code in a kernel must be limited

to secure sufficient granularity of benchmark workload.
(f) It is necessary to include a validation of results to verify

both the correctness of algorithm, and the proper
functioning of tested hardware and software.

(g) To provide the equality of impact all kernels must be
calibrated to run approximately same time.

Kernels that satisfy the above criteria have the standard structure
shown in Fig. 8. Following is the list of the most important global
parameters and a short description of their role:

• SEC = desired kernel run time in seconds
• MAXSEC = desired benchmark run time in seconds
• KERNEL_COUNT = a counter used by the benchmark

program to control the number of executed kernels
• MAXKERNEL = desired number of executed kernels
• RATE = the number of kernel initialization-computation-

validation cycles per second, adjusted during kernel
calibration process

• TRACE = benchmark program trace flag
• STARTTIME = start of measurement time

Figure 8. The standard kernel structure

The most important global parameters of these functions are SEC
and KERNEL_COUNT. The parameter RATE specifies the
number of kernel initialization-computation-validation cycles per
second, and its value is adjusted during the calibration process so
that the kernel run time is 1 second. Faster machines have larger
values of RATE than slower machines. Consequently, RATE is a
suitable indicator of the speed of a calibrated computer in the area
of a specific kernel.
An example of a short kernel code that belongs to the object
construction/destruction/manipulation group is shown in Fig. 9.
This kernel uses global variables I, J, SEC, RATE, G, and
KERNEL_COUNT. Variable G is initially set to 0. The
expression G=1-G in the loop generates the sequence 1, 0, 1, 0,…
that is used for initializing objects. These values and conditional
displaying of error message prevent optimizing compilers to
detect that the kernel does not generate results and can be
simplified or eliminated.

4.4 The Structure of BM2 Benchmarks
The operation of BM2 generator is summarized in Fig. 10. BM2
supports the following five benchmark generation models:

• Kernel sequence (SEQ) model
• Kernel function sequence (SEQF) model
• Minimum size canonic (MC) loop-select model
• Adjustable size canonic (AC) loop-select model
• Kernel-terminated recursive expansion (REX) model

{ // Definition of local data objects
char* name = “<kernel code>: <kernel name>”;
for(I=0; I<SEC; I++) // SEC = desired run time in sec

for(J=0; J<RATE; J++) // 1 second calibration loop
{

// Local data initialization // Synthetic data
// Computation of results // Any algorithm
// Validation of results // Computation of the
if(results_incorrect) // results_incorrect flag
{ // Error message

exit(1); // Abort benchmark execution
}

}
terminator(name); // Kernel termination function

} // (kernel/benchmark termination)
void terminator(char name[])
{

double RunTime= sec() - STARTTIME; // Benchmark run time (from
KERNEL_COUNT++; // start to this point)

if(TRACE) cout << "Kernel Count = " << KERNEL_COUNT
<< " Seconds" << RunTime << " " << name << endl;

// End of program test

if((MAXKERNEL>0 && MAXKERNEL <= KERNEL_COUNT) ||
(MAXSEC > 0. && MAXSEC <= RunTime))

{
cout << "\n\nNumber of executed kernels = " << KERNEL_COUNT

<< "\nRun time [total seconds] = " << RunTime
<< "\n\nEnd of measurement\n\n";

exit(1);
}

}

270

{ // C14102
char* name="C14102: An array of objects";
const int SIZE = 10000, N=6;
for(I=0; I<SEC; I++)
for(J=0; J<RATE; J++)
{
 class SumArray
 {
 private:
 double a[2*N];
 public:
 SumArray() { }
 void Init(int N)
 { G = 1 - G; // 0, 1, 0, 1, 0, …
 for(int i=0; i<2*N; i++) a[i] = G;
 }
 double Sum(int N)
 { double sum=0.;
 for(int i=0; i<2*N; i++) sum += a[i];
 return sum; // Result: sum = N
 }
 } array[SIZE];

 int i;
 double sum=0.;

 // Initialize an array of objects
 for(i=0; i<SIZE; i++) array[i].Init(N);

 // Process
 for(i=0; i<SIZE; i++) sum += array[i].Sum(N);

 // Validate (the correct result is sum = N * SIZE)
 if(sum != N*SIZE)
 { cout << "\nError in " << name
 << "\nsum = " << sum << '\n' ;
 exit(1);
 }
 }
terminator (name) ;
}

Figure 9. A sample short array processing kernel

Figure 10. The operation of BM2 generator

The structure of the benchmark program generated by BM2 is
specified by a model selection parameter (ProgType). The
simplest form is a sequence, where kernels are directly inserted in
the main benchmark program as exemplified in Fig. 11. Some
kernels are inserted multiple times according to the desired kernel
probability distribution.
Another version of sequence is a sequence of functions, where we
typically use one kernel per function, as exemplified in Fig. 12.

Figure 11. An example of the kernel sequence model

Figure 12. An example of the kernel function sequence model

In all kernel sequence models we assume the use of workload
characterization by kernel distribution, i.e. we must select kernels
according to a desired kernel probability distribution. If the
selection is based on random number generators the resulting
distribution will substantially differ from the desired distribution.
It is much better to use a deterministic optimum selection (DOS)

Select a desired BENCHMARK_PROGRAM_SIZE

Select a desired benchmark program structure

KERNEL SELECTION: Select the most appropriate kernel
using either random or deterministic selection technique

PROGRAM EXPANSION: Insert the selected kernel in the
desired benchmark program structure

PROGRAM SIZE MEASUREMENT:

SIZE = number of lines of code in the expanded program

do while (SIZE < BENCHMARK_PROGRAM_SIZE) ;

Select a desired BENCHMARK_PROGRAM_SIZE

Select a desired benchmark program structure

KERNEL SELECTION: Select the most appropriate kernel
using either random or deterministic selection technique

PROGRAM EXPANSION: Insert the selected kernel in the
desired benchmark program structure

PROGRAM SIZE MEASUREMENT:

SIZE = number of lines of code in the expanded program

do while (SIZE < BENCHMARK_PROGRAM_SIZE) ;

SEQ: Kernel Sequence Model
void main(void) Kernels are randomly or
{ deterministically selected

{ K33 } according to a desired kernel
distribution function

{ K17 }

{ K44 }
while(LOC(main) < desired_SIZE)

{ K19 } {
Select kernel;

{ K33 } Append kernel;
}

{ K41 }

{ K44 }
............
{ K93 }

}

SEQ: Kernel Sequence Model
void main(void) Kernels are randomly or
{ deterministically selected

{ K33 } according to a desired kernel
distribution function

{ K17 }

{ K44 }
while(LOC(main) < desired_SIZE)

{ K19 } {
Select kernel;

{ K33 } Append kernel;
}

{ K41 }

{ K44 }
............
{ K93 }

}

SEQF: Kernel Function Model
int ERROR; // Global kernel error code
int F1(void)
{

{ K19 } // Randomly selected kernel
return ERROR ; // Kernel error code

}
..............................
int Fn(void)
{

{ K41 } // Randomly selected kernel
return ERROR ; // Kernel error code

}
void main(void)
{ long int sum = 0 ;

sum += F1() ;
.....................
sum += Fn() ;
cout << sum;

}

271

method. In each step the DOS algorithm selects the kernel which
minimizes the kernel distribution error. Suppose that we have the
following parameters:

1 2

1 2

1 2

1 2

1 1 2 2

total number of available kernels
, ,..., kernels
, ,..., kernel sizes [LOC]
, ,..., kernel frequencies in a given program

... total number of kernels
... total

=
=

=

=

+ + + = =

+ + + =

n

n

n

n

n n

n
K K K
L L L
f f f
f f f F
f L f L f L

1 2

 benchmark size
 desired size of benchmark program [LOC]

, ,..., desired kernel probabilities
, 1,..., : achieved kernel probabilities

=
=

= =
n

i i

L
P P P
p f F i n

According to DOS algorithm before adding a kernel we compute
all distribution errors:

1 2 1 21

1
()

... 1 ... 1

1

=
≠

+
= − + −

+ + + + + + + +

≤ ≤

∑
nj i

j i
n ni

i j

f fe j P P
f f f f f f

j n

Then, we select kernel rK where
1

() min ()
≤ ≤

=
j n

e r e j . The

advantages of the DOS approach are (1) simplicity, (2) close to
optimum distribution in each insertion step (i.e. the program can
terminate at any time), and (3) good accuracy for any program
size. A minor disadvantage is that each kernel selection needs
time O(n). The corresponding benchmark generation process is:

do{
 r = (integer from 1 to n selected by the DOS algorithm
 according to the desired kernel distribution) ;
 Insert kernel rK in the benchmark program;
 1 1 2 2 ...= + + + n nsize f L f L f L (the number of lines of code
 after the addition of kernel rK);
} while (size < L);

If we want to generate the minimum size benchmark program, it
is suitable to use the canonic loop-select form exemplified in Fig.
13. In this program each kernel appears only once. If the kernels
are calibrated so that they run exactly one second, then the
parameter TIME specifies the execution time in seconds. The
selector() function determines the desired kernel distribution.
The same loop-select approach can be used to generate programs
of any desired size if we allow kernels to repeat inside the switch-
case structure. This approach is exemplified in Fig 14.
In cases where it is desirable to have a modular structure of the
benchmark program, the loop-select concept can be implemented
using the kernel functions (e.g. void Fi(void) {kernel}), and then
the canonic loop-select models include only kernel function calls
and not the whole functions. This approach yields the minimum
size, similar to the MC model shown in Fig 13.
The KIN concept can also be combined with the recursive
expansion (REX) method as exemplified in Fig. 15. The resulting
technique is called the kernel-terminated REX because instead of
terminal statements we insert either the complete kernels (as
shown in Fig. 15) or kernel function calls.

Figure 13. An example of the minimum size loop-select model

Figure 14. An example of the adjustable size loop-select model

Kernel Terminated REX Model

Figure 15. An example of the kernel-terminated REX model

MC: Minimum Size Canonic Loop-Select Model

for(i=0; i<TIME; i++)
switch(selector())
{

case 00: { K00 } ; break;
case 01: { K01 } ; break;
case 02: { K02 } ; break;
··
case 99: { K99 } ; break;

}
TIME = execution time parameter.
selector() = kernel distribution function.
Each kernel appears only once.

AC: Adjustable Size Canonic Loop-Select Model

for(i=0; i<TIME; i++)
switch(uniform()) // 0 ≤ uniform() ≤ SIZE
{ case 0000: { K19 } ; break;

case 0001: { K02 } ; break;
case 0002: { K02 } ; break;
case 0003: { K02 } ; break;
case 0004: { K19 } ; break;
··
case SIZE: { K41 } ; break;

}
TIME = execution time parameter. Kernels may
repeat. Their frequency is specified by the
desired SIZE and the kernel distribution function.

// G[] = global counter array. Initially long G[n]=0, n=1,…,N
if (++G[13]%2) // 1, 0, 1, 0, 1, …
{

while (++G[14]%5) // 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, …
{

{ K19 } // Kernel termination
if (++G[15]%2) // 1, 0, 1, 0, 1, …
{

{ K17 } // Kernel termination
}

}
}
else
{

for(; ++G[16]%5 ;) // 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, …
if (++G[17]%2) // 1, 0, 1, 0, 1, …

{ K64 } // Kernel termination
else

{ K17 } // Kernel termination
}

272

5. CONCLUSIONS
Benchmark program generators solve the problem of fast and
inexpensive production of large benchmark programs. Such
programs can be tuned to model a spectrum of natural workloads
and can easily adapt to changing hardware and software
environments created by the exponential growth of computer
performance. Therefore, instead of searching for benchmarks that
satisfy specific requirements, it is possible to produce benchmarks
using automatic benchmark generators. This can significantly
reduce the cost of benchmarking.
The recursive expansion model of benchmark programs is suitable
for modeling procedural programs in the majority of high level
languages. The stepwise nesting of blocks can be terminated by
inserting either arithmetic terminal statements or kernels.
The size of automatically generated synthetic programs is not
limited and their characteristics are easily adjusted by selecting
structural properties of programs, such as breadth and depth
distributions, the control structure distribution, and the semantic
properties expressed by an appropriate distribution of kernels.
The use of kernel libraries for automatic generation of benchmark
and test programs has a number of advantages that include
flexibility, scalability, simplicity, convenience, and cost
reduction.
The kernel insertion method yields flexible workloads because the
kernel libraries can be easily updated, expanded and improved.
The size, contents, and the number of kernels can grow to cover
any specific area of interest.
The scalability of synthetic benchmarks has various forms. It is
easy to adjust any desired number of lines of code of the resulting
test and benchmark programs, as well as any run time, to match
the widest range of computer power. The structure of the
generated benchmarks can also be conveniently adjusted.
However, the most important scalability feature is the possibility
to select or quickly modify the desired functionality of resulting
benchmarks, what can position resulting benchmarks in any area
that is represented by the kernel library.
The cost of benchmarking is the most important factor in
evaluating the presented approach. In the case of standard
industrial benchmarks, the cost of benchmarking is rather high
because it includes permanent search for new benchmarks in an
effort to follow Moore’s law. When new standard benchmarks are
introduced, computer manufacturers must promptly test all their
products with the new benchmarks. Finally, computer users must
also follow the changes in standard benchmark suites and
eventually pay all benchmark development and maintenance
costs.
The automatic benchmark generation method is suitable for users,
because it comes both as a tool and as a service. The concept of e-
mail delivery of benchmark suites from a benchmark server is
convenient for many users, particularly those who need fast,
flexible, and inexpensive solutions.

6. REFERENCES
[1] Asanovic, K. et al., A View of the Parallel Computing

Landscape. CACM, Vol. 52, No. 10, pp. 56-67, 2009.
[2] Dujmović, J.J., Evaluation and Design of Benchmark Suites.

Chapter 12 in Advanced Computer Performance Modeling
and Simulation, Edited by K. Bagchi, J. Walrand, and G.W.
Zobrist, Gordon and Breach, 1998, pp. 278-323.

[3] Dujmović, J.J., Universal Benchmark Suites – A
Quantitative Approach to Benchmark Design. Performance
Evaluation and Benchmarking with Realistic Applications,
Edited by Rudolf Eigenmann, MIT Press, pp. 257-287, 2000.

[4] Dujmović, J.J and I. Dujmović, Evolution and Evaluation of
SPEC Benchmarks. Performance Evaluation Review, Vol.
26, No. 3, pp. 2-9, 1998.

[5] Dujmović, J.J., E. Horvath, and H. Lew, Benchmark
Program Generator for Compiler Performance Analysis.
CMG99 Proceedings, Vol. 2, pp.838-847, 1999.

[6] Dujmović, J.J. and Howard Lew, A Method for Generating
Benchmark Programs. CMG 2000 Proceedings, Vol. 1, pp.
379-388, 2000.

[7] Dujmović, J.J. and Murat Cengiz, A Kernel Library for
Benchmark Program Generators. CMG 2003 Proceedings,
Vol. 2 pp. 609-618, 2003.

[8] Gray, J. What Next? A Dozen Information-Technology
Research Goals. Microsoft Research Technical Report MS-
TR-99-50, 1999.

[9] Herder, C. and J.J. Dujmović, Workload Characterization
Using Metrics Based on Instruction Grouping. International
Journal of Computer and Information Sciences, Vol. 5, No.
1, March 2004.

[10] Jain, R., The Art of Computer Systems Performance Analysis.
John Wiley, 1991.

[11] Kubiatowicz, J., Introduction to Parallel Architectures.
http://parlab.eecs.berkeley.edu/bootcampagenda , 2009

[12] Lew, H. and J.J. Dujmović, Performance Evaluation and
Comparison of C++ Compilers. CMG 2000 Proceedings,
Vol. 1, pp. 241-252, 2000.

[13] Mirghafori, N., M. Jacoby, and D. Patterson, Truth in SPEC
Benchmarks. Computer Architecture News, Vol. 23, No. 5,
pp. 34-42, December 1995.

[14] Nelder, J.A. and Mead, R. (1965), “A simplex method for
function minimization”, Comput. J., 7, pp. 308–313. (See
http://www.scholarpedia.org/article/Nelder-Mead_algorithm)

[15] SPEC, The Current Benchmarks. http://www.spec.org/osg/ ,
2009.

[16] Wikipedia, Moore’s law.
http://en.wikipedia.org/wiki/Moore’s_law

273

