
PMIF Extensions: Increasing the Scope of Supported
Models

Connie U. Smith
Performance Engineering

Services
PO Box 2640 Santa Fe

New Mexico, 87504-2640 USA
www.spe-ed.com

Catalina M. Lladó
Universitat de les Illes Balears

Departament de Ciències
Matemàtiques i Informàtica

Ctra de Valldemossa, Km. 7.6,
07071

Palma de Mallorca, Spain
cllado@uib.es

Ramon Puigjaner
Universitat de les Illes Balears

Departament de Ciències
Matemàtiques i Informàtica

Ctra de Valldemossa, Km. 7.6,
07071

Palma de Mallorca, Spain
putxi@uib.es

ABSTRACT
Performance model interchange formats are common repre-
sentations for data that can be used to move models among
modeling tools. In order to manage the research scope, the
initial version of PMIF is limited to QNM that can be solved
by efficient, exact solution algorithms. The overall model
interoperability approach has now been demonstrated to be
viable. This paper is a first step to broaden the scope of
PMIF to represent models that can be solved with addi-
tional methods.

Categories and Subject Descriptors: B.8.2 [Hardware]:
Performance Analysis and Design Aids; C.4 [Performance of
Systems]: Modeling Techniques.

General Terms: Performance.

Keywords: Tool interoperability, performance models, xml.

1. INTRODUCTION
The Performance Model Interchange Format (PMIF) pro-
vides a mechanism for automatically moving queueing net-
work performance models (QNM) among modeling tools [10].
A framework has also been developed to specify experiments
to be solved, the output metrics to be gathered, and the
transformation from output to useful results [12] [11].
The overall model interoperability approach has now been
demonstrated to be viable. The PMIF version used so far
is limited to QNM that can be solved by efficient, exact
solution algorithms. This paper is a first step to broaden
the scope of PMIF to represent models that can be solved
with additional methods.

2. QNM EXTENSIONS
The first step is to examine representative QNM tools, meta-
models, and techniques to determine the features that should
be supported. We examined features in:

Performance Engineering Book [9] - advanced model solu-
tion features for Software Performance Engineering

CSIM [2] - a powerful process-oriented simulation tool

Copyright is held by the author/owner(s).
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
ACM 978-1-60558-563-5/10/01.

Qnap [8] - a classic, full-featured QNM solver with both
analytic and simulation solution capabilities

Java Modelling Tools (JMT) [4] - a recent QNM tool that
incorporates features for modeling current systems

CSM/LQN [3] - a formal definition of the information re-
quirements for Layered Queueing Networks

KLAPER [7] - a metamodel and language for evaluating
system performance

These tools and techniques allow models to be solved with
approximate analytical and/or simulation techniques. Table
1 shows a superset of features supported in these sources.
The asterisks in the table indicate that it is possible to im-
plement the feature using other features, but there is no
primitive function provided.
This raises a key issue: ideally the PMIF extensions would
include all the features. However, modern tools and tech-
niques have higher level concepts such as messages and events
while classic techniques and tools provide ways of imple-
menting them indirectly. The PMIF extensions should sup-
port available features going forward, so we need a mech-
anism to address both the newer features and the classic
ones.

3. PROPOSAL FOR PMIF EXTENSIONS
PMIF was based on concepts embodied in two earlier model
interchange formats: the Electronic Data Interchange For-
mat (EDIF) for VLSI designs [1] and the Case Data In-
terchange Format (CDIF) for software design interchange
(also based on EDIF) [5]. Creators of EDIF envisioned the
need to extend the model interchange formats (and thus the
metamodels) and addressed it by providing for a concept of
levels that add functionality at each successive level. Tools
may support different levels of the interchange format by
specifying the schema level (i.e., name) they use. The EDIF
import philosophy is to import everything and for features
that tools cannot handle to make appropriate substitutions.
The extended version of PMIF can use levels to address
the discrepancy in tools with higher level concepts and the
classic features in other tools. So, the next level of PMIF
will include those features common to most of the tools in
Table 1. The next higher level will add the newer features
in such a way that other tools will be able to import those
models by mapping the features onto their own primitives.

255



Features Book CSIM Qnap JMT CSM/LQN KLAPER

Allocate yes RESERVE facility yes yes Acquire Acquire
Release yes yes yes no Release Release
Create passive server token yes use Event Set yes no ? no
Destroy (”) yes use Event Clear yes no ? no
Create message token yes Mailbox Send yes no Message no
Destroy (”) yes Mailbox Receive yes no no no
Create signal token yes Event Set flag Set no no no
Destroy (”) yes Event Clear flag Unset no no no
Fork yes Create process(es) yes yes yes yes
Join yes WaitEvent yes yes Merge yes
Split yes Create process(es) yes fork fork fork
Phase change yes not needed yes no not needed not needed
Memory allocation yes STORE-ALLOCATE * no Acquire + units no
Memory release yes STORE-DEALLOCATE * no Release + units no
Memory add yes STORE- ADD * no ? no
External Resource delay use facility yes * yes *
Terminate yes yes yes no no no
Rerun-new simulation no yes yes no no no
Reset-counters in current run no yes yes no no no

Submodel yes * yes yes no no
Events * yes yes no no no
Mailbox or Message * yes * no yes yes
Compute no yes yes no yes yes
User-written subroutines yes yes yes no? no no
Interrupt yes no yes no no no
Get identity no yes yes no no no
Get-set priority no yes yes yes ? no

Table 1: Comparison of the features of QNM tools

This step will be done in future work. Tools can continue to
support a lower level of PMIF without change, or may opt
to modify interfaces to support the additional functionality
provided by extensions.
Other key differences in the tools and techniques are the
supported arrival and service distributions and the queue
scheduling disciplines. They vary so much that they are not
included in the table.
Best practices in Service Oriented Architectures as defined
by [6] suggest generalizing the definition of context depen-
dent settings such as these. In particular, the Validation
Abstraction pattern suggests replacing constraints in meta-
models and schemas with more general specifications. So, for
example, rather than using an enumerated type explicitly
defining queue scheduling disciplines, the pattern suggests
defining it as a string. That allows tools to defer attribute
validation and makes the interchange format evolution eas-
ier because they do not have to be changed for every new
queue scheduling discipline. The downside is that tools must
be prepared to handle a situation when a feature is specified
that the tool does not support. For example, if an unsup-
ported queue scheduling discipline is specified, the tool could
reject the model and return an error, or substitute another
supported queue scheduling discipline and report the sub-
stitution.
The features in Table 2 above the double line are relatively
easy to include in the first level of extensions. Those be-
low the double line are more difficult to represent. Events
and Mailboxes require a mapping to classic tools. Com-
pute statements, User-written subroutines, Get identity, etc.
have no simple substitution for tools without these capabil-
ities. These features will be addressed in future work.

4. CONCLUSIONS
This paper proposes extending the PMIF to relax the con-
straint that specified models must be solvable with efficient,

exact solution algorithms. It presents a comparison of model
features supported by a variety of representative tools and
techniques. It adopts the concept of levels used in its prede-
cessor EDIF and CDIF model interchange paradigms. The
Validation Abstraction SOA Design Pattern is proposed so
the future PMIF evolutionary changes will not require ex-
tensive changes to tool interfaces. Future work will propose
a metamodel representing many of the common model fea-
tures in both modern and classic tools, including additional
simulation control features. It will also develop the schema
and implement a proof of concept.

5. REFERENCES
[1] Edif users’ group. design automation department.

[2] Mesquite software. http://www.mesquite.com.

[3] Puma project: Core scenario model.
http://www.sce.carleton.ca/rads/puma/.

[4] M. Bertoli, G. Casale, and G. Serazzi. Jmt: performance
engineering tools for system modeling. SIGMETRICS
Perform. Eval. Rev., 36(4):10–15, 2009.

[5] V. Electronics Industries Association, Arlington. Cdif - case
data interchange format overview, eia/is, 1994.

[6] T. Erl. SOA Design Patterns. Prentice Hall, Upper Saddle
River, NJ, 2009.

[7] V. Grassi, R. Mirandola, E. Randazzo, and A. Sabetta. Klaper:
An intermediate language for model-driven predictive analysis
of performance and reliability. The Common Component
Modeling Example: Comparing Software Component Models,
2008.

[8] Simulog. Modline 2.0 qnap2 9.3: Reference manual, 1996.

[9] C. Smith. Performance Engineering of Software Systems.
Addison-Wesley, 1990.

[10] C. Smith and C. Lladó. Performance model interchange format
(PMIF 2.0): XML definition and implementation. In Proc. of
the First Int. Conf. on the Quantitative Evaluation of
Systems, 2004.

[11] C. Smith, C. Lladó, and R. Puigjaner. Automatic generation of
performance results. In LNCS 5652, 2009.

[12] C. Smith, C. Lladó, R. Puigjaner, and L. Williams.
Interchange formats for performance models: Experimentation
and output. In Proc. of the Fourth Int. Conf. on the
Quantitative Evaluation of Systems, 2007.

256




