
Automatable & Scalable Late Cycle Performance Analysis

Florian Mangold
Institut für Informatik
Universität München

Oettingenstr. 67
80538 München

Germany
mangold@pst.ifi.lmu.de

Moritz Hammer
Institut für Informatik
Universität München

Oettingenstr. 67
80538 München

Germany
hammer@pst.ifi.lmu.de

Harald Roelle
CT SE 1

Siemens AG
Otto-Hahn-Ring 6
81730 München

Germany
harald.roelle@siemens.com

ABSTRACT
Performance analysis of large, concurrent systems is a diffi-
cult problem that can hardly be approached with classical
profiling. Performance issues might be caused by the in-
teraction of modules and hardware components, making it
difficult to find exact causes by considering single modules.
By slowing down single modules artificially, dependencies
of modules can be detected. Employing statistical means,
such dependencies are detected in the covariance of runtime
changes. We propose a way to detect the most meaning-
ful dependencies in large-scale systems, allowing arbitrary
scaling with respect to the granularity considered.

Categories and Subject Descriptors: C.4 [PERFOR-
MANCE OF SYSTEMS]: Measurement techniques

General Terms: Measurement, Performance

Keywords: performance analysis, software performance en-
gineering, profiling, latent component performance interde-
pendencies

1. INTRODUCTION
The performance analysis of systems is a very impor-

tant subject in software engineering. Full functional soft-
ware with performance problems is considered as subopti-
mal. Among other things this situation creates costs and
can result, in extreme cases, in inoperative software. Mod-
ern software systems consist of a huge amount of different
components. These components are often developed exter-
nally, so that there is little information about their internal
working. If there is a performance problem, the size of the
software system prohibits effective profiling respectively an
easy tuning of the system. If the profiled system is con-
current there are some additional effects, e.g., race condi-
tions. Such effects are often not explainable through the
run time behavior of the isolated components and therefore
can not be grasped with classical profiling. We introduce
a novel method to find and analyze performance dependen-
cies in large, concurrent systems. We consider it to be a
complementary technique to traditional profiling methods.
For this, the system is executed several times and the per-
formance of individual code fragments is varied at adequate
locations. Generally there is no way to speed up parts of a
system in an automated way, hence we slow them down ar-
tificially. In this work, the slowing down of code fragments

Copyright is held by the author/owner(s).
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
ACM 978-1-60558-563-5/10/01.

is called “prolongation”. With the measured variations
in the runtime behavior of the system, we can draw con-
clusions on the inherent performance dependencies in the
system. The granularity of the system units can be arbi-
trarily defined. The performance dependencies of a system
for example can be analyzed on method, class or component
level. Our approach to prolong software units is easy to im-
plement and it is largely independent from the programming
language used. We do not need to modify the code of the
system. The measured data of the performance dependen-
cies between modules can be further processed with statis-
tical analyzing methods to extract the relevant information.
Through this, our approach offers superior scalability be-
cause unmanageable amounts of information are aggregated
to single factors.

2. PERFORMANCE ANALYSIS
At each phase in the software life cycle different infor-

mation is available and thus, methods to achieve good per-
formance in software systems differ. Woodside et al. [4]
identify two general approaches to software performance en-
gineering, a model based early approach and the common
measurement-based approach late in the software life cycle.
All approaches of Software Performance Engineering respec-
tively Software Performance Analysis have some drawbacks.
The early model-based approach integrates performance de-
pendencies and interconnections, but to build a model ex-
perts are needed and sufficient knowledge must be avail-
able. So this approach is effective but also very costly and
time consuming and therefore not generally accepted. Pro-
filing and Tuning on module and unit level is insufficient be-
cause side effects and interconnections with other modules
and hardware is not regarded. The late cycle measurement
based approach only shows if the performance is inadequate
but does not show the latent cause and performance depen-
dencies of modules. The output consists only of absolute
data, just likein the models of the early phase in perfor-
mance analysis the co-operation is hidden. Our approach
builds a bridge between the different approaches of software
performance engineering. Notably it is an empirical exami-
nation in a running system, side effects with the operating
system or similar interdependences can be identified. We
see this point as an advantage because we incorporate the
highly complex system environments in our analysis.

2.1 Performance Dependencies
We investigate software systems composed of modules. A

251



module is the smallest considered unit from arbitrary gran-
ularity.

Definition 1. A module m is called direct performance
dependent on module m′ if a variation of module m′ causes
an alteration of the performance of m. A module m is called
performance dependent if there exists a module m′ on which
it is performance dependent. Otherwise module m is called
performance independent.

A module m is performance dependent on all modules
m1, . . . , m3 it calls synchronously. The runtime of m is
the total time spent on its own code and that of the mod-
ules it invokes. Obviously, a performance variation of mi

(1 < i < n) will cause a performance alteration of m.
A module can also be performance dependent on another
module without explicitly calling it, for example by using
a shared resource concurrently. A variation of one of the
modules (for example releasing the resource earlier) can then
change the performance of other modules. A module is per-
formance independent if its performance is not affected by
any other module. Performance dependence is of interest
because it identifies the capability for performance improve-
ment. As the performance of one performance dependent
module m is dependent on another module m′, an alter-
ation of m′ can change the performance of m. This is very
interesting in concurrent systems where concurrent resource
use can result in performance problems that are difficult to
analyze using classical profiling that follows the method in-
vocation while neglecting inter-thread issues.

2.2 Prolongation
The means we propose for detecting arbitrary performance

dependencies is to artificially slow down modules while mea-
suring the behavior of other modules. This is accomplished
in two phases:

1. The runtime of each module must be measured. For
example the time between call and return of a method
invocation is measured and logged.

2. The performance of individual modules must be varied
(prolonged) without causing functional changes of the
code. This is, for example, accomplished by adding
waiting time right after method invocation.

Given means to execute this two phases, a single pro-
longation run is conducted by prolonging a single module
while leaving the others unmodified. The overall system’s
performance dependencies are determined by conducting a
prolongation run for each module in turn. The runtime of
each individual modules is measured and logged during each
run. The runtime of modules are considered to be the vari-
ables. The prolongation then introduces artificial variance
in the performance of the modules. By detecting covariant
variables, performance dependencies can be detected. If a
module m is performance dependent on another module m′,
prolonging m′ will result in a slowdown of m.

2.3 Factor analysis
It is practically impossible to detect, from the logged data

alone, the dependencies and latent interconnections of all the
modules by hand. Due to the large amount of modules, the
complexity of the data is incomprehensible. In order to make

the structure of the data more visible, we apply factor anal-
ysis [1] to examine the data. Factor analysis is performing a
dimension reduction of the multidimensional (multivariate)
data whereby the underlying causes and effects (factors) are
detected. This is not a priori knowledge for the developer.
Code is re-used, systems are distributedly developed.

An elegant and readily implemented method is to instru-
ment Java code with AspectJ [2, 3] for realizing the prolon-
gation and the logging functionality. If the granularity of
modules is chosen to be method invocation, pointcuts can
be used for introducing the prolongation; if a larger granu-
latiry is desired, we still instrument at the level of methods
but aggregate the data during logging. In a C project we
used C preprocessing macros to wrap functions.

The instrumented system executed in different prolonga-
tion runs, with each run prolonging a single module. From
our experience it is advisable that each relevant module is
prolonged with at least three different time intervals, but
interference by the operating system and the effects of non-
deterministic thread scheduling might make an even higher
number desirable for large-scale applications. Usually, this
makes it necessary to resort to a granularity higher than in-
dividual methods in order to keep the number of required
prolongation runs to a tracktable number.

Our approach is useful as it supports the user in detect-
ing possible potential for improvement that is not directly
linked to problematic modules. Classical profiling will pro-
duce the modules that consume most of the runtime. Often,
this is sufficient as a starting point for performance opti-
mization. Sometimes, however, the degraded system perfor-
mance cannot be explained by a single module alone, or it
is not possible to optimize the problematic module. It is
then advisable to consider the modules found in the same
factor, as the problematic module is performance dependent
on them; if their performance can be improved (or their re-
source usage optimized), the problematic module will also
exhibit a performance improvement.

3. CONCLUSIONS
In this work we presented a novel approach for a perfor-

mance analysis of large-scale, concurrent systems. It helps
to explain performance problems introduced by concurrency
which remain unexplained by classical, invocation-based pro-
filing methods. Furthermore our approach is almost arbi-
trarily scaleable. To handle the resulting amount of data we
suggest factor analysis, a statistical tool to discover latent
factors from the interconnection of the modules. Our expe-
rience suggests that this approach, by its convenience and
its explanatory potential, is suitable for existing enterprise
software systems.

4. REFERENCES
[1] Backhaus, Klaus et al. Multivariate Analysemethoden. Springer,

1996.

[2] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. Getting started with aspectj. Commun. ACM,
44(10):59–65, 2001.

[3] The Eclipse Foundation. The AspectJ Project.
http://www.eclipse.org/aspectj/, 2007.

[4] M. Woodside, G. Franks, and D. C. Petriu. The future of
software performance engineering. In FOSE ’07: 2007 Future of
Software Engineering, pages 171–187, Washington, DC, USA,
2007. IEEE Computer Society.

252




