
Towards the Identification of
"Guilty" Performance Antipatterns

Vittorio Cortellessa?, Anne Martens†, Ralf Reussner†, Catia Trubiani?
?Università degli Studi dell’Aquila, L’Aquila, Italy

Email: {vittorio.cortellessa,catia.trubiani}@univaq.it
†Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Email: {martens,reussner}@ipd.uka.de

ABSTRACT
The problem of interpreting the results of software perfor-
mance analysis is very critical. Software developers expect
feedback in terms of architectural design alternatives (e.g.,
re-deploy a component), whereas the results of performance
analysis are pure numbers. Support to the interpretation
of such results that helps to fill the gap between numbers
and software alternatives is still lacking. Performance an-
tipatterns can play a key role in the search of performance
problems and in the formulation of their solutions. In this
poster, we introduce a process to elaborate the analysis re-
sults and to score performance requirements, model entities
and “guilty” performance antipatterns.

Categories and Subject Descriptors: D.2.8 [Software
Engineering]: Metrics – performance measures; C.4 [Com-
puter Systems Organization]: Performance of Systems –
modeling techniques General Terms: Design, Performance

1. INTRODUCTION
The problem of interpreting results of performance analy-

sis and providing feedback to software designers to overcome
performance issues is probably the most critical open issue in
the field of software performance engineering today. A large
gap in fact exists between the representation of analysis re-
sults and the feedback expected by software designers. The
former usually contains numbers (such as mean response
time and throughput variance), whereas the latter should
embed architectural design suggestions useful to overcome
performance problems (such as modifying the deployment
of certain software components).

A consistent effort has been made in the last decade to in-
troduce automation in the generation of performance mod-
els from software models [1], whereas the reverse path from
analysis results back to software models is still based on the
capabilities of performance experts to observe the results
and produce solutions. Automation in this path would help
to introduce performance analysis as an integrated activity
in the software life cycle, without dramatically affecting the
daily practices of software engineers. Strategies to drive the
identification of performance problems and to generate feed-
back on a software model can be based on different elements
that may depend on the adopted model notation, on the
application domain, on environmental constraints, etc.

Copyright is held by the author/owner(s).
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
ACM 978-1-60558-563-5/10/01.

2. ANTIPATTERNS-BASED PROCESS
Our approach rests on the capability to automatically de-

tect and solve performance antipatterns. In general anti-
patterns document common mistakes (“bad practices”) made
during software development as well as their solutions: what
to avoid and how to solve the problems. In particular, per-
formance antipatterns [7] describe recurring software per-
formance problems and their solution. Examples presented
in [7] are “Circuitous Treasure Hunt” and “The One Lane
Bridge”.

Figure 1 shows the process we propose: the goal is to
modify a software system model in order to produce a new
model where the performance problems of the former one
have been removed. Boxes in the figure represent data, and
segments represent steps.

Software System 
Model

Requirements

Complete 
Antipatterns List

Violated 
Requirements

Filtered 
Antipatterns List

performance 
analysis

 filter antipatterns that do not 
affect any requirement 

Ranked 
Antipatterns List

 calculate a score of antipatterns
previously filtered 

New Software 
System Model apply antipatterns

solution

Annotated Software 
System Model

Antipattern 
Rules

rule engine 
matching

Figure 1: Performance analysis interpretation.

The inputs of our process are: a software system model
and a set of performance requirements. The software system
model is a model of software and hardware architecture of
the current system at hand. It contains all information re-
quired for an automated transformation into a performance
analysis model, that basically is: resource demands of soft-
ware tasks, control flow, allocation of software tasks to hard-
ware processors, workload, and operational profile of the

245



system. The requirements represent what end-users and ad-
ministrators expect from the system and thus represent the
target performance properties to be fulfilled.

First, the performance indices of the current software sys-
tem model are determined in a performance analysis step.
For example, response time and throughput values for ser-
vices offered by the system are determined. We obtain two
types of results from this step. First, we obtain an annotated
system model, which is the current software model annotated
with performance results. Second, we can check the require-
ments that are fulfilled by the current software system and
create a list of violated requirements. If no requirements is
violated by the current software system then the process
terminates here.

Antipattern rules represent an input that enters the pro-
cess at the second step. They formalise known performance
antipatterns so that they can be automatically detected by a
rule engine (see, for example, [8, 6]). Antipattern rules are
applied to the annotated model to detect all performance
antipatterns and list them in a complete antipatterns list.

Then we compare the complete antipatterns list with
the violated requirements and examine relationships be-
tween detected antipatterns and each violated requirement
through the system entities involved in them. We obtain
a filtered antipatterns list, where antipatterns that do not
affect any violated requirement have been filtered out.

In the next step, on the basis of relationships observed
before, we estimate how guilty an antipattern is with respect
to a violated requirement by calculating a heuristic guiltiness
score. As a result, we obtain a ranked antipatterns list for
each violated requirement.

Finally, a new improved software system model can be
built by applying to the current software system the solu-
tions of one or more high-ranked antipatterns for each vio-
lated requirement. This last process step can be quite com-
plex, as it can require several iterations to identify the best
combination of antipatterns to solve.

3. RELATED WORK
In this section we discuss the related work that deals with

automated approaches to improve the performance of soft-
ware systems based on analysis results.

Xu et al. [8] present a semi-automated approach to find
configuration and design improvement on the performance
model level. Two types of performance problems are iden-
tified in a first step: bottleneck resources and long paths.
Then, rules containing performance knowledge are applied
to solve the detected problems. The approach uses a depth-
first search to try recovery actions from all found perfor-
mance problems. The approach is notation-specific, because
it is based on LQN rules.

Parsons et al. [6] present a framework for detecting perfor-
mance anti-patterns in Java EE architectures. The method
requires an implementation of a component-based system,
which can be monitored for performance properties. It uses
the monitoring data to construct a performance model of
the system and then searches for EJB-specific performance
antipatterns in this model. This approach cannot be used
for performance problems in early development stages, but
it is limited to implemented and running EJB systems only.

Diaz Pace et al. [4] have developed the ArchE framework.
ArchE assists the software architect during the design to cre-
ate architectures that meet quality requirements. It helps to

create architectural models, collects requirements and the
information needed to analyse the quality criteria for the
requirements, provides the evaluation tools for modifiability
or performance analysis, and suggests improvements. Cur-
rently, only rules to improve modifiability are supported. A
simple performance model is used to predict performance
metrics for the new system with improved modifiability.

In our previous work [3], we have proposed an approach
for automated feedback generation for software performance
analysis that aims at systematically evaluating performance
prediction results using step-wise refinement. The approach
relies on the manual detection of performance antipatterns
in the performance model. There is no support to rank and
solve antipatterns. More recently, in [2] we have presented
an approach to automatically detect performance antipat-
terns based on a formal description and model-driven tech-
niques, which could be used for the “rule engine matching”
step in Figure 1.

In another previous work we have proposed a comple-
mentary approach to improve software performance for
component-based software systems based on metaheuristic
search techniques [5]. We proposed to combine random
moves and heuristic rules (such as presented here) to search
the given design space.

4. CONCLUSION
This poster paper presents the idea of a process addressing

the problem of ranking possible design alternatives (repre-
sented by antipattern solutions) in order to identify the ones
that better address the system flaws emerged from the per-
formance analysis. The process shall help closing the gap in
the reverse path from performance analysis results back to
choices on the software model level.

5. REFERENCES
[1] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni.

Model-based performance prediction in software development: A
survey. IEEE Transactions on Software Engineering,
30(5):295–310, 2004.

[2] V. Cortellessa, A. Di Marco, R. Eramo, A. Pierantonio, and
C. Trubiani. Approaching the model-driven generation of
feedback to remove software performance flaws. In Proc. of the
35th Euromicro Conference SEAA-MDD, 2009. to appear.

[3] V. Cortellessa and L. Frittella. A framework for automated
generation of architectural feedback from software performance
analysis. In K. Wolter, editor, Proc. of the 4th European
Performance Engineering Workshop (EPEW’07), volume 4748
of LNCS, pages 171–185. Springer, 2007.

[4] A. Dı́az Pace, H. Kim, L. Bass, P. Bianco, and F. Bachmann.
Integrating quality-attribute reasoning frameworks in the ArchE
design assistant. In S. Becker, F. Plasil, and R. Reussner,
editors, Proc. of 4th International Conference on the Quality
of Software-Architectures (QoSA’08), volume 5281 of LNCS,
pages 171–188. Springer, 2008.

[5] A. Martens, H. Koziolek, S. Becker, and R. H. Reussner.
Automatically improve software models for performance,
reliability and cost using genetic algorithms. In Proc. of the 1st
Joint WOSP/SIPEW International Conference on
Performance Engineering (WOSP/SIPEW ’10), New York,
NY, USA, 2010. ACM. to appear.

[6] T. Parsons and J. Murphy. Detecting performance antipatterns
in component based enterprise systems. Journal of Object
Technology, 7(3):55–90, 2008.

[7] C. U. Smith and L. G. Williams. Software performance
antipatterns. In Proc. of the 2nd International Workshop on
Software and Performance (WOSP’00), pages 127–136, 2000.

[8] J. Xu. Rule-based automatic software performance diagnosis
and improvement. In Proc. of the 7th International Workshop
on Software and Performance (WOSP’08), pages 1–12, New
York, NY, USA, 2008. ACM.

246




