
Phymss – Performance Hybrid Model Solver and Simulator
Based on UML MARTE Diagrams

 Cosmina Chişe Ioan Jurca
* Department of Computer Science and Engineering,

“Politehnica” University of Timisoara, Faculty of Automation and Computers,
2 V. Parvan Blvd, Timişoara, Romania

0040745024679

{chise.cosmina, ioan.jurca}@gmail.com

ABSTRACT
There are several research directions in Software Performance
Engineering (SPE), covering the entire performance prediction
process, but most of the tools developed so far implement only
part of it or have restrictions. From a methodology perspective,
current performance prediction tools rely either on analytical or
simulation models, as separate techniques. This paper presents a
performance analysis tool, Phymss (Performace Hybrid Model
Solver and Simulator), which covers the analysis process from the
input system model annotated with performance information to
obtaining performance results and inserting them back into the
original system model. Two analysis methods are implemented,
for flexibility reasons: a multithreaded simulator and a hybrid
solver that combines the analytical and simulation approaches in a
new analysis technique, in order to investigate the benefits of such
an approach.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
computer-aided software engineering (CASE).

General Terms
Performance, Design.

1. INTRODUCTION
There are several research directions in Software Performance
Engineering (SPE), covering the entire performance prediction
process, from input language, model extraction, to model solvers
or simulators. Performance prediction tools rely on analytical or
simulation models. Analytical approaches are fast, but not
accurate and cannot be applied to systems with complex behavior.
Simulation models can be derived even from complex systems,
the drawback being the large number of iterations that need to be
performed in order to obtain relevant mean values for parameters.

Hybrid approaches exist for network processor design [1], but the
methods are separately defined, have distinct input and output
parameters and they are only ordered one after the other. Another
has been used to combine software design evaluation with
network specific architecture in [7]. The software model (Layered
Queueing Network) and network model (NS-2 [8]) are solved
iteratively, thus the analysis results are refined.
This paper introduces Phymss (Performance Hybrid Model Solver
and Simulator), a tool that intends to encompass as much as

possible from the performance analysis process, based on an
improved hybrid meta-model. Both a simulator and a hybrid
solver are available for performance analysis.

2. PHYMSS TOOL
Phymss implements two performance analysis techniques: a
simulation approach and a hybrid method. The tool is developed
in C#, using Microsoft .NET Framework 3.5. The block diagram
of the system is presented in Figure 1.
Tool input is represented in XMI (XML Metadata Interchange)
format and can be obtained as output from visual design editors
for UML (Unified Modeling Language) diagrams, such as
Papyrus UML [9], which supports extensions for the MARTE
(Modeling and Analysis of Real Time and Embedded systems)
profile. Simulation and analytical solving parameters, such as
duration or iteration count are specified in a JavaScript
configuration file; this language has been chosen, in order to be
easily adopted by users and interpreted by the application. This
configuration file is also useful in order to parameterize the
system model description – variables can be left unassigned inside
the XMI file, and their values specified in the configuration file.
Hence, the effects of different values for system parameters on
system performance can be evaluated without changing the UML
model, only the configuration file needs to be changed.
Inside the system, which is illustrated as the darker-shaded box,
the UML model is stored with all performance annotations; this is
where performance results are stored too, during simulation or
hybrid evaluation, as shown by the two highlighted alternative
paths.
After having applied one of the two approaches, performance
analysis results can be exported into an XMI file, with the same
structure as the input file: each UML node will have values
specified for parameters such as response time, throughput or
utilization.
The pure simulator builds the simulation model from the UML
model and executes it, inserting the results into the UML model
as statistics while the simulation runs. It is based on the
simulation model defined by Marzolla in UML-Ψ [4]. The
implementation does not rely on single-threaded coroutines, as in
the original approach, but is improved by using thread pools, and
thus allowing for multiple threads to be run simultaneously.
Considering that a dual-core processor is rather usual in deployed
systems, multithreaded simulation for models of such systems
will provide more accurate results than a single-threaded one.

Copyright is held by the author/owner(s).
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
ACM 978-1-60558-563-5/10/01.

243

Figure 1. Phymss block diagram

The hybrid approach requires building the performance model,
which in turn creates a simulation submodel that is run. The
approach is based on the hierarchical decomposition of the system
model into submodels, used by LQNS (Layered Queueing
Network Solver) [3]. Each submodel is solved as a Closed
Queueing Network (CQN) by Mean Value Analysis (MVA) or
Approximate MVA [5], the results being propagated among
levels. Franks proves in [3] that there is a two-way dependency
between levels, so performance parameter values need to be
propagated both downwards and upwards. The simulation step is
inserted between the two analytical passes, starting from a level k;
the simulation submodel includes items on level 1+k and all
lower levels. In this case, an iteration consists of three steps
(Figure 2): submodels are solved starting from the highest level,
in order to propagate think time values along the request chains
until level k is reached; level k and lower levels are simulated;
submodels are solved starting from level k back to level 1, to
propagate upwards service time values.

)(1SCummulate // add service time values for all servers
DO iteration

)(1ZGenerate // generate think time values for requests
FOR submodel kl ..1=

llll SZlMVA λρ ,),,(⇒ // utilization, throughput
),(1 lll fZ λρ=+ // propagate think time values

11111 ,,),(+++++ ΤΛΡ⇒ kkkkk ZMSimulate // utilization,

// throughput, response time
FOR submodel 1..kl =

)(1+Τ= ll fS // propagate service time values
','),,(llll SZlMVA λρ⇒

WHILE (NOT),,(111 ΤΛΡConvergent AND iteration count not
exceeded)

Figure 2. Pseudo-code for hybrid solver

The method relies on a performance metamodel that can easily be
extracted from system specifications, expressed using the
MARTE profile. This meta-model has been defined in [2] and is
based on UML-Ψ [4] and Core Scenario Model (CSM) [6]. An
advantage of this new metamodel is its simplicity, eliminating
redundant elements, while maintaining a clear structure for
system components and their interactions.
Because of the approximations used in formulae during LQN
solving, the performance results are not as accurate as simulation
results, but this approach is obviously faster than the simulator.
Regarding improvements in results accuracy, better
approximations are to be implemented, since this is the first
attempt in implementing MVA.
The input model range that can be analyzed by the hybrid
approach will be extended from CQN to QNs that have mixed
request types, both open and closed. An analytical approach
regarding models accepting mixed requests is already available in
[5]: the open queueing network is solved first and the results are
used to “inflate” the service times of tasks that accept both closed
and open requests, and then the resulting CQN is solved.
The hybrid method can further be improved by establishing an
appropriate level k, from which simulation should be performed.
Given the total number of layers and their complexity, k can be
heuristically computed depending on each analyzed system.

3. REFERENCES
[1] Chakraborty, S., Kunzli, S., Thiele, L., Herkersdorf, A., and

Sagmeister, P. 2003. Performance evaluation of network
processor architectures: combining simulation with analytical
estimation. Elsevier Science B.V.

[2] Chişe, C., and Jurca, I. 2009. Towards Early Performance
Assessment Based on UML MARTE Models for Distributed
Systems. In Proc. of the SACI (Timisoara, Romania, May
2009)

[3] Franks, G., 1999 Performance Analysis of Distributed Server
Systems. Doctoral Thesis. Department of Systems and
Computer Engineering, Carleton University, Ottawa, Canada

[4] Marzolla, M., and Balsamo, S. 2004. UML-PSI: The UML
Performance Simulator. In Proc. of the 1st Int. Conf. on
Quantitative Evaluation of Systems (Enschede, The
Netherlands, September 27-30, 2004). QEST 2004. pp. 340-
341.

[5] Munoz, L., Lecture on Computer Design and Evaluation.
Mean value Analysis, Universidad Politecnica de Madrid,
http://www.datsi.fi.upm.es/docencia/DEC

[6] Petriu, D. B., and Woodside, M. 2004. A metamodel for
generating performance models from UML designs. In Proc. of
the UML 2004 conference, vol. 3273 of Lecture Notes in
Computer Science (LNCS 3273), pp. 41-53 (Lisbon, October
2004) ftp://ftp.sce.carleton.ca/pub/cmw/csm-uml04.pdf

[7] Verdickt, T., De Turck, F., Dhoedt, B., and Demeester, P.
2007. Hybrid performance modeling approach for network
intensive distributed software. In Proc. of the 6th Int.
Workshop on Software and Performance (Buenos Aires,
Argentina, February 5-8, 2007). WOSP 2007.

[8] NS-2 network simulation tool, Internet,
http://www.isi.edu/nsnam/ns/

[9] Papyrus UML tool, Internet, http://www.papyrusuml.org/

244

