
Resource Demand Modeling for Multi-Tier Services

ABSTRACT
We present a new technique for predicting the resource demand
requirements of services implemented by multi-tier systems.
Accurate demand estimates are essential to ensure the efficient
provisioning of services in an increasingly service-oriented world.
The demand estimation technique proposed in this paper has
several advantages compared with regression-based demand
estimation techniques, which many practitioners employ today. In
contrast to regression, it does not suffer from the problem of
multicollinearity, it provides more reliable aggregate resource
demand and confidence interval predictions, and it offers a
measurement-based validation test. The technique can be used to
support system sizing and capacity planning exercises, costing
and pricing exercises, and to predict the impact of changes to a
service upon different service customers.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development-
modeling methodologies

General Terms
Measurement, Performance, Experimentation

Keywords: Resource demand prediction, analytic
performance models, benchmarking, statistical regression

1. INTRODUCTION
Software services can be very complex. A service may have many
capabilities, each corresponding to a business level concept such
as a business process. A customer that requires a service may
actually exploit only a fraction of the service’s capabilities. Each
capability may use many different software functions that cause
demands on a possibly distributed or multi-tier set of resources
such as CPUs. The purpose of this work is to transform a
specification for a customer’s use of capabilities to an estimate for
the service’s corresponding resource demands. We assume that
the relationship between capabilities and software functions is
known in advance so that given a customer’s specific throughputs
for capabilities the corresponding desired workload mix of
software functions is easily deduced.

Demand prediction can be difficult because computer
measurement systems do not always offer resource usage
measurements at the desired abstraction. For example, total server

CPU utilization over some time interval and operating system
process CPU utilization over some time interval may be available
whereas the utilization of a CPU by a particular software function
is not. Software level monitoring and logging facilities often
provide counts for the number of times software functions are
invoked and even measures of response times. However relating
these to demands is difficult, particularly in distributed and multi-
tier environments. In these environments, application servers are
often multi-threaded, execute on hosts that often have multiple
CPUs, may execute on virtualized hosts, and have many layers of
caching that frequently delay input-output activity.

Regression techniques have been widely used [2][17][18][19][22]
[23][26] to support demand prediction by estimating per-function
demands. Given throughputs for a set of capabilities, the
corresponding expected workload mix of software function
executions can be computed. For each resource, the resource
demand is estimated as the sum of corresponding estimated per-
function demands weighted by this mix. Many regression
techniques suffer from the well-studied problem of
multicollinearity [8] which can lead to unreliable predictions for
demands and very wide confidence intervals for predicted
demands. Furthermore, previous studies [18][19][23] have shown
that the accuracy of regression techniques suffer if the per-
function demands for a system are not deterministic, which is
generally the case for computer systems. Finally, regression can
provide incorrect confidence intervals for its demand predictions
if assumptions exploited by the confidence interval calculations
are not valid.

Our proposed solution is a Demand Estimation with Confidence
(DEC). DEC requires the preparation and execution of a number
of benchmarks under controlled conditions. A benchmark
submits a semantically correct sequence of requests to a system
under study. Resource demands are measured for each benchmark
separately. A linear combination of the resource demands from
the benchmark runs is then reused to offer service demand
estimates for a desired workload mix. In contrast to regression,
DEC does not rely on estimating per-function demands to
estimate the overall demand for a customer. Consequently, it does
not suffer from multicollinearity, is robust to non-determinism in
per-function demands, and provides robust confidence interval
predictions. Additionally, DEC provides for a measurement based
test that, if desired, can be used to validate its demand predictions.
Results from our TPC-W [24] case study show that DEC performs
better overall than commonly used regression techniques such as
Least Squares regression (LSQ) and Least Absolute Deviations
regression (LAD). DEC does significantly better for cases with
multicollinearity and in estimating confidence intervals for
predicted demands.

Jerry Rolia
Hewlett Packard Labs

Bristol, UK
jerry.rolia@hp.com

Amir Kalbasi
University of Calgary

Calgary, Canada
akalbasi@ucalgary.ca

Diwakar
Krishnamurthy

University of Calgary
Calgary, Canada

dkrishna@ucalgary.ca

Stephen Dawson
SAP Research

Belfast, UK
stephen.dawson@sap.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
Copyright 2010 ACM 978-1-60558-563-5/10/01...$10.00.

207

Predictions for resource demands support sizing and capacity
planning exercises. Such exercises typically rely on performance
models, e.g., Queuing Network Models [8], which require as input
parameters the demands for various resources in a system.
Furthermore, demand predictions can also support costing and
pricing exercises in pay as you go environments [1]. They can
help software service providers estimate the quantity and hence
cost of resources needed to provide a service based on a
customer’s specific expected use of a system. Accurate
confidence intervals are essential for providers to properly assess
risks related to poor performance. In addition, our solution
provides a mechanism to predict the impact of changes to a
system upon each of many customers that use it and upon an
aggregate of customers that share a service platform.

Section 2 describes related work including LSQ and LAD. Section
3 introduces DEC and discusses the qualitative features of each
approach. Section 4 provides a brief description of the DEC
technique. Section 5 presents a case study that evaluates the
effectiveness of DEC as compared to LSQ and LAD. Section 6
offers summary and concluding remarks.

2. RELATED WORK
Bard and Shatzoff studied the problem of characterizing the
resource usage of operating system functions in the 1970’s [2].
The system under study did not have the ability to measure the
resource demands of such functions directly. The execution rates
of the functions and their aggregate resource consumption were
measurable and were recorded periodically. This data served as
inputs to a regression problem. Bard used the least squares
technique to successfully estimate per-function resource
consumption for the study.

Equation 1 formalizes the LSQ regression problem for demand
estimation. The problem has data from N measurement intervals.
For each interval i there is a resource usage measurement Yi and
function execution count measurements for M functions, namely
F1i…FMi. Yi is the dependent variable, F1i…FMi are the
independent variables, and Ei is a random error associated with
measurement of Yi. D1…DM are defined as coefficients of the
independent variables. From a computer systems perspective, Yi
represents the aggregate demand on a resource due to executing
the M functions as per F1i…FMi. The coefficients represent
estimates of per-function resource demands on some resource,
e.g., a CPU. Accordingly, the contribution of a function k towards
the aggregate demand Yi is estimated as DkFki. LSQ finds values
for coefficients D1…DM such that the objective function O is
minimized. Furthermore, the coefficients D1…DM are constrained
to be positive since they represent demands. It should be noted
that the regression model shown does not have a y intercept term.
This is because aggregate demands should be zero for intervals
where no functions are executed. For a desired customer mix of
functions F1…FM, Ŷ is an estimate of the resource demand for the
mix.

() ()

MM

i
iMMiiiM

i

iiMMiii

FDFDFDY

FDFDFDYDDO

NiD
NiEFDFDFDY

++=

−−−=

=≥

=+++=

∑
L

)

LL

LL

2211

2
,,22,111

,,22,11

,

..1,0
,2,1,

 (1)

LSQ is referred to as an l2 method because it solves for
coefficients such that the mean square of predictive errors with
regard to the dependent variable is minimized. The regression
model presented has several assumptions. First is the assumption
of linearity between the dependent variable, i.e., resource usage,
and the independent variables, i.e., function counts. Second, it is
assumed that values for the independent variables are uncorrelated
and known without error. Several assumptions relate to
measurement errors. Measurement errors for the dependent
variable should be independent, i.e., not be serially correlated.
Furthermore, errors should have a constant variance, i.e.,
homoscedasticity, with respect to time, the dependent variable,
and the independent variables. Finally, the measurement errors
should follow the Normal distribution.

The effectiveness of least squares regression can be impacted if
the assumptions are violated. If the linearity assumption is
violated, then the regression model is likely to act as a poor
predictor of the dependent variable. Failure of the linearity
assumption can also cause the normality of errors to be violated.
Non-normally distributed errors can arise even when the linear
assumption is true when there are sources of variation in the
system other than the random measurement error associated with
the dependent variable. In particular, normality can be violated if
the per-function demands are not deterministic. Various
techniques can be used to assess whether the assumptions of
regression hold [8]. Confidence interval calculations for
predictions from LSQ rely on the assumption of normality of
errors. Consequently, predicted confidence intervals can be
unreliable if the normality assumption is violated.

LAD regression is less sensitive to outliers for the dependent
variable than the LSQ technique. It has similar assumptions to
LSQ but assumes measurement errors have a Laplacian
distribution. The confidence interval calculations for predictions
from LAD are different from those of LSQ due to the different
distributional assumption made regarding the errors. LAD is
referred to as an l1 method because it solves for coefficients to
minimize the sum of the absolute difference between predictions
for the dependent variable and the measured values for the
dependent variable. The problem statement for LAD is given in
equation 2. As with LSQ, LAD can perform poorly if regression
assumptions are violated.

()

MM

i
iMMiiiM

i

iiMMiii

FDFDFDY

FDFDFDYDDO

NiD
NiEFDFDFDY

++=

−−−=

=≥

=+++=

∑
L

)

LL

LL

2211

,,22,111

,,22,11

,

..1,0
,2,1,

 (2)

Many regression techniques suffer from the problem of
multicollinearity. This arises when some tuples of “independent”
variables are in fact correlated in the input data and these
correlations are stronger than their correlations with the dependent
variable. For example, if F1,i and F2,i have correlated values for i=
1..N then their impact on the Yi will be confounded and
indistinguishable to the solution for the coefficients D1 and D2. In
this scenario, demand predictions for a different mix of F1 and F2
than is present in the input data may yield poor predictions for the
dependent variable. Furthermore, the reported confidence

208

intervals for the predictions may be too wide to be of practical
use.

Stewart et al. [22] suggest that multicollinearity is not as likely
when observing the natural diversity of workload mixes in
production systems as it is when observing synthetic benchmark
workloads that typically produce a single “average” workload
mix, e.g., [23][26]. Yet, Pacifici et al. show real evidence of
significant multicollinearity in workload mixes of production
systems [17].

Traditionally, multicollinearity is overcome by replacing groups
of correlated “independent” variables with a single variable, for
example by using a Principle Component Analysis (PCA) [8] or
other reduction techniques [17]. However this reduces the
expressive power of the prediction model because it reduces the
number of variables that can describe a workload mix. This is
problematic if a desired workload mix does not include such
correlations or includes different correlations. Ridge regression
techniques [5][12] can be applied to mitigate the impact of
multicollinearity without decreasing expressive power. However,
the effectiveness of ridge regression depends on the value selected
for the so-called ridge parameter. In practice, an appropriate value
for this parameter can only be determined by trial and error. In
addition, the confidence interval calculations are only
approximate and are more complex than those of LSQ.
Furthermore such techniques still assume that predicted demands
are deterministic. Section 5 shows that the DEC method does not
suffer from the problem of multicollinearity and provides robust
confidence interval calculations.

Sun [23] considered the sensitivity of predicted values for
resource demands to violations in the deterministic demand
assumption. He applied the LSQ and the Random Coefficients
Method (RCM) for regression [23] to estimate per-function
resource demands. Simulated values for per-function demands
were drawn from distributions such as the Deterministic, Normal,
and Exponential distributions. RCM aims to overcome issues of
non-determinism in demands and did improve upon the results of
LSQ. However both techniques failed when estimating the per-
function demands for systems with more than 5 functions and as
the resource usage distributions of the functions became less
deterministic.

Zhang et al. apply a LSQ regression technique to estimate the per-
URL demands and hence the resource utilizations of a TPC-W
system [26]. The problem and approach was similar to that of
Sun’s work [23]. For the TPC-W system considered regression
was found to achieve good accuracy overall in predicting resource
utilizations. However, the study did not focus on multicollinearity
since the dataset for which predictions were offered was the same
as that used to obtain the regression coefficients. We consider the
same TPC-W problem as Zhang et al. in the case study and apply
LSQ, LAD, as well as our proposed DEC. We also consider in
detail the impact of multicollinearity.

Recently several studies have investigated the use of queuing
models to deduce workload parameters such as resource demands
[13][14][25]. These techniques rely on measured response times
from a system and a performance model for the system. Demand
values are computed such that the model’s mean response time
prediction closely matches the mean of the measured response
times. The problem posed in this paper differs in that we assume a

customized workload mix is given as input but that both demands
and response times for the customized mix are not known in
advance. DEC is used to estimate the demands. Performance
models that are not the focus of this paper can then use the
demand estimates to predict response times.

Our work is related to Dujmovic’s seminal work on benchmark
design theory [6] and the work of Krishnaswamy and Scherson
[11]. They model benchmarks as an algebraic space. However
neither provides a method to express one benchmark as a linear
combination, i.e., a ratio, of other benchmarks.

Krishnamurthy et al. introduce SWAT which views Web user
sessions with computer systems as an algebraic space [9][10].
SWAT includes a method that automatically selects a subset of
pre-existing user sessions from a session based system, each with
a particular URL mix, and computes a ratio of sessions to achieve
specific workload characteristics. For example, the technique can
reuse the existing sessions to simultaneously match a new URL
mix and a particular session length distribution and to prepare a
corresponding synthetic workload to be submitted to the system.
The work showed how such workload features impact the
performance behaviour of session based systems. In the SWAT
work, the concept of a session is identical to benchmarks as
defined in this paper. DEC exploits this ratio computation
technique to automatically compute a ratio of benchmarks that are
then used to compute a resource demand estimate.

3. PROBLEM STATEMENT AND METHODS
Consider a service S with C capabilities that make use of M
system functions that cause resource demands on R resources.
Suppose S is a Customer Relationship Management (CRM)
system. It has C business process variants for a customer to
choose from. Each of the C variants c uses a subset of the M
software functions. The functions cause resource demands on R
resources such as application server CPUs and database server
CPUs and disks. A customer’s desired use of the system is
specified using a throughput vector X of dimension C, such that
cth element of X is the required relative completions per unit time
for a capability c, i.e., its required throughput Xc divided by the
total required throughput T over all capabilities (equation (3)).

∑
=

=

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
Ci

i
i

C

XTwhere

T
X

T
X

T
X

X
1

2

1

,
M

 (3)

Given X we want to estimate the overall demands DS of the
service by the customer on the R resources as shown in equation
(4).

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

R

S

D

D
D

D
M

2

1

 (4)

We now consider trivial, regression based, and DEC based
solutions to this problem. A trivial solution to this problem is to
create C benchmarks one for each capability c. Each benchmark

209

can be run in isolation to obtain per-capability resource
measurements DC on the R resources as shown in equation (5).

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

RCRR

C

C

C

DDD

DDD
DDD

D

K

MLMM

K

L

21

22221

11211

 (5)

XDD CS ≈ (6)

The product DC X shown in equation (6) estimates DS the
customer’s overall demand on the R resources. However, this
trivial approach is not feasible for systems with many capabilities.
For example, the SAP ByDesign system [20] has thousands of
business process variants. Developing, maintaining, and executing
benchmarks for such a large number of process variant
alternatives is cost prohibitive.

As described in the related work section, statistical regression
solutions have also been used to assist with this kind of a problem.
Suppose we have B benchmarks where B << C, each of the B
benchmarks b uses a subset of the M functions. The B benchmarks
are run to obtain function counts and resource demand
measurements upon the R resources, as in equation (1).
Regression, as described in Section 2, is used to estimate the per-
function demands DF on the R resources (equation (7)).

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

RMRR

M

M

F

DDD

DDD
DDD

D

K

MKMM

K

K

21

22221

12111

 (7)

As shown in equation (8), the C capabilities together have a
known feature visit matrix F for the M functions such that Fij
represents the number of times function i is invoked in capability
j.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

MCMM

C

C

FFF

FFF
FFF

F

K

MLMM

K

L

21

22221

11211

 (8)

The product F X gives a vector such that the ith row of the vector
contains the expected number of times function i is to be invoked
due to the customer’s throughput requirement X. As shown in
equation (9), the product DF F X estimates the customer’s overall
demand DS on the R resources.

FXDD FS ≈ (9)

We propose a new Demand Estimation with Confidence (DEC)
solution to estimate resource demands. Suppose we have B
benchmarks, B << C, such that each of the benchmarks b uses a
subset of the M functions. As shown in equation (10), each
benchmark b can be run in isolation to obtain resource
measurements DB upon the R resources for its aggregate use of
functions.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

RBRR

B

B

B

DDD

DDD
DDD

D

K

MKMM

K

K

21

22221

11211

 (10)

BBwhere
DDD

DDD
DDD

D

BRRR

B

B

B

≤′

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

′

′

′

K

MKMM

K

K

21

22221

11211

' (11)

Given a customer’s requirement on system functions F X we solve
for a linear combination L of a subset of some size B’ of the B
benchmarks that yields the same use of functions F X [9]. As
shown in equation (11), DB’ contains a subset of the columns of
DB.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

′BL

L
L

L
M
2

1

 (12)

LDD BS ′≈ (13)

L, as depicted in equation (12), gives the weight of each
benchmark in the subset needed to synthesize F X. A
corresponding linear combination of the B’ chosen benchmarks’
demand measurements, denoted by the product DB’ L in equation
(13), estimates the customer’s overall demand DS on the R
resources. This approach also permits a measurement based
validation test where the linear combination L of the chosen B’
benchmarks can be executed together to emulate the customer’s
use of system features F X. We note that it may not always be
possible to obtain an exact match of F X with the available B
benchmarks. This is discussed in detail in Section 5. A
description of the ratio finding technique is provided in Section 4.

DEC has several characteristics that differ from the regression
based approach. First, DEC does not attempt to fit all
measurement data with a single predictive regression model.
Instead, for each customer desired function mix, an appropriate
subset of benchmarks is found that mimics the desired function
mix. Accuracy tolerances can be specified for each function. For
example, one can specify that a resource intensive function be
matched more accurately than other less resource intensive
functions. Furthermore, DEC reports if there is insufficient
information, i.e., benchmarks, to find an exact solution.

Second, the confidence interval calculation for a predicted
demand is more robust for DEC than for regression based
techniques. Recalling from Section 2, the confidence interval
calculations for LSQ and LAD rely on distributional assumptions
about the errors in measuring the dependent variable. Poor
confidence interval estimates can result when these assumptions
are violated, for example due to non-deterministic per-function
demands. With DEC, confidence interval calculation is
straightforward. Several independent experiment replications are
conducted for each benchmark. Each benchmark replication
yields a benchmark replication demand. The mean of the
benchmark replication demands is computed as the overall
benchmark mean demand. From the central limit theorem a

210

benchmark mean demand is normally distributed if the number of
replications is large [8]. Furthermore, a linear combination of
normally distributed independent random variables results in a
random variable that is also normally distributed. Since DEC uses
a linear combination of measured benchmark mean demands to
predict the resource demand of a workload function mix, the
predicted demand is also normally distributed. This allows
confidence intervals to be computed with certainty for the
predictions from DEC1. We provide experimental evidence in
Section 5 that shows that DEC’s confidence interval predictions
are more robust than those of LSQ and LAD.

4. THE DEC TECHNIQUE
This section provides a brief summary of the method used to
compute a linear combination vector L for a subset of
benchmarks. As stated previously, we adapted for the demand
prediction problem a ratio computation technique we devised
previously [10] to support synthetic workload generation.
Although the modifications required relative to the previous work
were fairly straightforward, we describe the technique here for the
sake of clarity and completeness.

Let the product FX, see equations (8) and (3), correspond to a
customer’s desired use of a system’s functions. The problem of
computing L is to determine a linear combination of a subset of
the B benchmarks that results in F X. In other words, let A* be a M
x K matrix containing function execution counts vectors for K
benchmarks, K ≤ B, upon the M functions. The K rows of L
represent benchmark execution counts for the benchmarks
corresponding to the function counts vectors of A*. If the chosen
benchmarks were run with these benchmark execution counts the
resulting function counts would be F X. The problem of
computing the linear combination vector L is to determine an A*
and L such that the following conditions are satisfied.

llL

XFLA

 0)(

 *

∀≥

=

)15(

)14(

Equation (14) specifies that the function counts achieved by
combining the benchmarks in A* according to the benchmark
counts in L should equal the desired function counts given by F X.
Equation (15) restricts the computed benchmark counts to be non-
negative values.

To solve the problem, we devised an algorithm which iteratively
determines the A* matrix and the L vector that satisfy the
conditions given by equation (14) and equation (15). To begin, an
initial A* matrix is determined by identifying a small subset of the
B benchmarks. This relies on the computation of an algebraic
basis set for the B benchmarks. At each step of the iteration, linear
programming is used to find a value of L for a given A*

 such that
the difference between the desired function counts F X and the
achieved function counts A* L is minimized. Equation (15) forms
one of the constraints of the LP problem. The second constraint is
obtained by relaxing the condition specified by equation (14) to
that given by equation (16).

1 The calculation of confidence intervals for linear combination of means
is straightforward and can, for example, be found in [6].

XFLA ≤* (16)

This change facilitates an iterative solution by which A* is
progressively modified by adding more benchmarks until an L
that satisfies the stricter constraint given by (14), i.e.,
corresponding to a better match between F X and A* L is found.
Specifically, the difference between the desired function counts
and the achieved function counts is calculated as a M x 1 slack
vector LAXFE *−= . The benchmark that offsets E the
most is identified from the remaining benchmarks in B that are not
part of A*. The new benchmark to be selected is determined by
computing the Euclidean distances between E and the function
execution counts vectors of the remaining benchmarks. The vector
that yields the minimum distance is selected and appended to A*
as an additional column. This is followed by another iteration of
the algorithm.

The algorithm is guaranteed to terminate when the goal is to
match a workload mix of functions that results from the B
benchmarks. This is because in the worst case all B benchmarks
will be included to achieve the match. The algorithm terminates if
the mismatches in function counts, given by the elements of E, are
less than or equal to user-specified tolerance thresholds for
function counts or if a user-specified maximum number of
iterations is reached. When an exact match of mix is not possible
with a given set of benchmarks, the LP problem can be easily
modified to match certain functions, e.g., resource intensive
functions more closely than other functions. We exploit this
capability in Section 5.

5. CASE STUDY
To verify the effectiveness of the approach we conducted a case
study using the industry standard e-commerce benchmark system
named TPC-W [24]. TPC-W has 14 system functions that
correspond to various URL request types. Emulated customer
browsers interact with the system to conduct ordering, shopping,
and browsing sessions.

This section is organized as follows. Section 5.1 describes the
experiment setup used for the study. Section 5.2 describes the
experiment process. Section 5.3 presents results.

5.1. Experiment setup
Our testbed consists of a Web server node, a database server node,
and a client node connected by a non-blocking Ethernet switch
that provides a dedicated 1 Gbps connectivity between any two
machines in the setup. The Web and database server nodes are
used to execute the TPC-W bookstore application. We used the
PHP-based TPC-W application developed at Rice University [2].
The client node is dedicated for running the httperf [15] Web
request generator that was used to execute benchmarks on the
TPC-W system. All nodes in the setup contain an Intel 2.66 GHz
Core 2 CPU and 2 GB of RAM. We used the Windows perfmon
utility to collect resource usage information from the Web and
database server nodes using a sampling interval of 1 second. The
CPU demands are much larger than disk and network demands for
this system so we focus on demand estimation for these values.
We note that the very low disk demands are likely due to caching
mechanisms employed by the operating system and the database
management system.

211

5.2. Experiment process
For the case study, we created 100 benchmarks. These
benchmarks were constructed from 40 random ordering sessions,

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.012 0.013 0.014 0.015 0.016 0.017 0.018 0.019

D
B

 C
P

U
 d

em
an

ds
 in

 s
ec

on
ds

Web CPU demands in seconds

NoDEC
SynDEC

TSynDEC
Mix 1
Mix 2
Mix 3
Mix 4
Mix 5
Mix 6
Mix 7
Mix 8
Mix 9

Mix 10
Mix 11
Mix 12
Mix 13
Mix 14
Mix 15
Mix 16
Mix 17
Mix 18
Mix 19

 Mix 20

Figure 1. DB CPU per request demands versus Web CPU per
request demands

40 random shopping sessions, and 20 random browsing sessions.
These sessions were obtained by conducting random walks over
the Markov chains specified by TPC-W. Each benchmark is based
on exactly one of these 100 sessions. An execution of the
benchmark involves sequentially submitting its corresponding
session multiple times with stochastically generated arguments
such as author names and book categories. For regression, the
benchmarks were executed one after another sequentially using
httperf and resource usage was tracked during this run. For DEC,
each benchmark was submitted in isolation using httperf and
resource usage was collected at the end of the run to characterize
the benchmark replication demand. For each benchmark, 5
independent replications were performed to calculate the overall
benchmark mean demand. Care was taken to ignore data from the
initial part of each replication during which the system’s caches
are likely to be atypically “cold”.

To validate DEC, our case study considers two scenarios. In the
first scenario 20 workload mixes were considered with each
representing a desired workload mix of a customer, F X. Care was
taken to ensure that these mixes use functions in a different
proportion than any of the 100 benchmarks alone. DEC was able
to successfully synthesize workloads corresponding to each of
these mixes as a linear combination of a subset of the 100
benchmarks. For each such synthesized workload 3 independent
measurement runs were conducted to characterize that workload’s
overall mean demand so that it can be compared with the demand
predicted by DEC and the other techniques. To provide more
examples, in the second scenario, each of the benchmarks is in
itself treated as a customer’s desired workload mix with the
remaining 99 serving as benchmarks from which this mix could
be synthesized.

Benchmarking exercises were conducted to obtain reliable
resource demand measurements for the 100 benchmarks and the
20 workloads. Confidence intervals for the mean measured
demands were computed following the standard procedure that
employs the Student’s t distribution [8]. For DEC, confidence
intervals were calculated by employing the confidence intervals

for linear combinations of means approach [7]. Since the number
of independent replications for each benchmark is less than 30,
the Student’s t distribution was used with this approach to
calculate confidence intervals instead of the Normal distribution
[7].

Figure 1 illustrates the Database server node (DB) CPU demand
versus the Web server node (Web) CPU demand value for the 100
benchmarks and 20 workloads. The 20 workloads are denoted as
Mix 1 to Mix 20 and were synthesized using DEC as described
previously. Mix 1 to Mix 14 have mixes selected to give coverage
of the Web CPU versus DB CPU space of the 100 benchmarks.
Mix 15 to Mix 20 have mixes that were chosen to explore the
impact of multicollinearity on demand prediction. The 100
benchmarks are presented in three groups. The 20 SynDEC
benchmarks could be synthesized using a combination of two or
more of the remaining benchmarks using DEC. The 13 TSynDEC
benchmarks had the exact same use of system functions as some
other of the 100 benchmarks, i.e., they could be synthesized in a
trivial manner. The 67 NoDEC benchmarks represent cases where
an exact match of mix could not be achieved.

From Figure 1, it can be observed that DEC is able to provide
predictions throughout the Web and DB CPU space. The figure
also shows that different kinds of sessions impose very different
per request demands upon the system. The Web CPU demands
differ by a factor of 1.5 over all cases. However, the DB CPU
demands differ by a factor of 1000 over all cases, and by a factor
of 265 if only cases where DB CPU demands greater than 1 ms
are considered. For this system good demand estimates are needed
for planning exercises, in particular for the DB CPU.

For LSQ and LAD, we considered measurement windows of 5,
10, 30, and 60 seconds for aggregating function counts and
utilizations. The regression predictions were insensitive to the
window size. As a result, we only present results from the 5-
second case.

We used the following approach to measure the goodness of fit of
a regression model to the input data. The error ei for a
measurement interval i is computed as the difference between the
measured aggregate demand Yi and regression’s prediction of
aggregate demand Ŷi. The mean absolute error is computed as
follows and used as an indicator of model accuracy.

∑=
i i

i

Y
e

ute errormean absol (17)

For both LSQ and LAD, the mean absolute error for the Web and
DB CPU demands is approximately 10%. This indicates that both
the LSQ and LAD regression models are able to overall
accurately explain the behaviour over the 5-second measurement
intervals considered. We note that the coefficient of multiple
determination R2 cannot be used as a goodness of fit metric for
our models since they do not have a y intercept term [16].

5.3. Comparison of DEC, LSQ, and LAD
We now consider the ability of LSQ, LAD, and DEC to predict
demands for the 100 benchmarks and 20 workloads. Figures 2 and
3 show the percentiles of relative error for the Web and DB CPU
demand predictions, respectively. The figures have five sets of
data. The DEC, LSQ, and LAD sets correspond to the 53 cases

212

where DEC was able to achieve an exact match of workload mix.
The LSQ-NDEC and LAD-NDEC sets correspond to the 67 cases
where DEC was not able to provide an exact solution.

 0

 5

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r i

n
pe

rc
en

ta
ge

Percentiles

DEC
LSQ
LAD

LSQ-NDEC
 LAD-NDEC

Figure 2. Percentiles of relative errors for Web CPU demand
predictions

 0

 20

 40

 60

 80

 100

 120

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r i

n
pe

rc
en

ta
ge

Percentiles

DEC
LSQ
LAD

Figure 4. Percentiles of relative errors for DB CPU demands
when cases with non-exact matches

For the cases where DEC provided an exact solution, Figure 2
shows that for the Web CPU demand estimates LSQ, DEC, and
LAD perform similarly. In general the errors are low for all
methods because the range of potential Web CPU demand values
differed by a factor of only 1.5. Figure 3 shows DB CPU demand
estimates for a subset of 30 of the 53 cases where CPU demands
were greater than 1 ms and where DEC synthesized a non-trivial
solution, i.e., using a mix of two or more benchmarks. The results
show that DEC does much better than both LAD and LSQ for the
DB CPU demand estimates. Recall that demand estimates differ
by a factor of 265 for these 30 cases. We note that DEC had its
largest errors when the demands were very small and when the
DB CPU was not the bottleneck resource. LSQ and LAD had
some of their greatest errors for the six cases that suffered due to
the presence of multicollinearity.

Figures 2 and 3 also show the results for LSQ-NDEC and LAD-
NDEC. These are regression results for the 67 cases where DEC

did not have sufficient information to achieve an exact match of
workload mix. Figure 2 shows that for these cases the regression
based techniques have higher errors than for the cases where DEC
was able to achieve an exact match. While the regression

 0

 20

 40

 60

 80

 100

 120

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
er

ro
r i

n
pe

rc
en

ta
ge

Percentiles

DEC
LSQ
LAD

LSQ-NDEC
 LAD-NDEC

Figure 3. Percentiles of relative errors for DB CPU demand
predictions

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20

R
el

at
iv

e
er

ro
r i

n
pe

rc
en

ta
ge

Case number

DEC
DEC-Top5

Figure 5. Comparison of DB CPU demand predictions by
DEC and DEC-Top5 for cases with non-exact matches

techniques could be applied in these cases, they provide less
accurate demand predictions. In contrast, if DEC cannot achieve
an exact match it implies that more benchmarks are needed to
provide appropriate measurement coverage of the workload mix
space for functions.

Figure 4 compares the DB CPU demand predictions from DEC,
LSQ, and LAD when the cases for which DEC did not have an
exact match are included. As before, we only consider non-trivial
cases whose demands were greater than 1 ms. The results show
that although DEC’s accuracies are comparable to those of LSQ
and LAD, DEC predictions can become unreliable when mixes
are not matched exactly.

We explore one possible solution for improving DEC for cases
where an exact match is not possible. First we identified the top
five resource intensive functions based on an analysis of response
time data collected from executing the benchmarks. DEC’s LP
formulation was relaxed such that the technique only attempts to

213

match the counts for these five functions exactly. A best effort
solution is employed with respect to matching counts for the other
functions. We denote this approach as DEC-Top5. Figure 5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6

R
el

at
iv

e
er

ro
r i

n
pe

rc
en

ta
ge

Case number

DEC
LSQ

 LAD

Figure 6. Relative errors for DB CPU demand predictions for
cases with multicollinearity

considers the 22 cases from Figure 4 for which DEC did not have
an exact match. The results show that DEC-Top5 is able to
significantly reduce prediction errors for 21 of the 22 cases. For
the one case where DEC-Top5 does worse than DEC (case 4 of
Figure 5), the demand is very low and the difference in relative
errors between the two techniques is only about 1.9%. The
maximum error is about 8% for DEC-Top5 when compared to
86% for DEC and 20% for regression for this subset of 22 cases.
We conclude that DEC is flexible enough to permit systematic
methods to improve predictions for cases where the available
benchmarks do not permit an exact match of workload mix. Our
future work will focus on automating for such cases the process of
determining the LP formulation that achieves the best possible
improvements in prediction accuracy. For the remainder of the
paper we only consider cases for which DEC had an exact match.
Figure 6 shows the errors for DB CPU demand predictions for the
three techniques for the six workloads chosen to study the impact
of multicollinearity. A careful analysis of the function execution
counts for the 100 benchmarks used for regression showed that
the counts for the Buy Request and Buy Confirm functions were
highly correlated. Specifically, the count for Buy Confirm function
was equal to the count for the Buy Request function in 87% of the
100 benchmarks. The six workloads shown in Figure 6 were valid
workloads for the TPC-W system and were constructed from a
subset of the 100 benchmarks where the correlation for these
functions is different. Only 40% of the 849 sessions making up
these six workloads had equal counts for the Buy Request and Buy
Confirm request types. The 100 benchmarks and these six
workloads also exhibit a similar difference in the way the
Shopping Cart and Customer Registration functions are used. As seen

in Figure 6, due to the differences in correlation, the estimates of
LSQ and LAD for the aggregate demand of the six workloads
have large errors. The results show how sensitive regression can
be to the multicollinearity phenomenon and that the accuracy of
DEC is not sensitive to multicollinearity.
We now consider regression and its dependency on per-function
demand estimates. Recall that regression estimates per-function
demands and uses them to estimate a new service’s aggregate
demand value.

Table 1 shows the mean per-function response times Mean R
measured for the Customer Registration, Shopping Cart, Buy Request,
and Buy Confirm functions along with their 95% confidence
intervals widths (CI_WIDTH). The CI_WIDTH values are
expressed as percentage of their corresponding Mean R values.
The per-function response time measurements were made such
that there was only one active request at a time at the system.
Consequently, the Mean R values computed from these response
times can be compared with estimates for total resource demands
over all resources as found using LSQ and LAD. We denote Mean
R LSQ as the total resource demand over all resources computed
as the summation of the Web CPU and DB CPU demands
estimated by LSQ. Similarly, Mean R LAD is the total resource
demand over all resources as estimated by LAD. Error-LSQ and
Error-LAD represent the percentage absolute error between the
total resource demands estimated by the regression techniques and
the measured total demands represented by the Mean R values.
The table shows that the per-function demand estimates of LSQ
and LAD can have very large errors. As noted earlier, if the new
service uses the functions in a different proportion to that given as
input to regression, regression may yield a poor aggregate demand
estimate. DEC does not rely on such per-function demand
estimates when estimating the resource demands of services.
Table 1 also shows that the CI_WIDTH values for measured per-
function mean response times can be quite large compared to the
measured mean response time values. For the Shopping Cart
function, the width of the two-sided confidence interval, based on
measurements, is more than 200% of its measured mean response
time. This suggests that the TPC-W system’s per-function
demands can be highly variable and are clearly not deterministic.
Figure 7 compares measured and predicted two-sided 95%
confidence interval widths for the aggregate demand predictions
for cases where DEC found an exact solution. From Figure 7 (a),
for the Web server CPU the measured demands and predictions
from DEC, LSQ, and LAD had confidence intervals that were
within 6% of the predicted demand over 90% of the time. This is
not surprising since the measured Web Server CPU demand only
varied by a factor of 1.5 over all 120 cases. For the DB server
CPU, we consider a subset of 30 cases where the mean DB CPU
demand was greater than 1 ms and DEC reported a non-trivial
solution. Recall that for these cases the demands varied by a
factor of 265. Figure 7 (b) shows that the measured demands and
DEC predicted demands for these 30 cases had confidence

Table 1: Predictions for per-function demands compared to no-load response time measurements
Request type Mean R (ms) CI_WIDTH (%) Mean R LSQ (ms) Mean R LAD (ms) Error-LSQ (%) Error-LAD (%)
Shopping Cart 55.73 206.25 22.34 20.19 59.91 63.78
Customer Registration 12.16 19.01 22.69 22.28 86.63 83.24
Buy Request 55.68 177.72 10.13 9.12 81.80 83.62
Buy Confirm 102.88 179.24 23.48 28.42 77.18 72.38

214

intervals well within 50% of their corresponding mean values for
about 90% of the cases. In contrast, the confidence interval width
for LSQ and LAD was within 50% only for about 70% of the
cases. Their 90-percentile of confidence interval widths are 215%
and 130% of their corresponding mean values, respectively.
Figure 7 (b) shows that confidence interval estimates for DB CPU
demands for LSQ and LAD diverge from our sample of measured
confidence intervals after the 70th percentile, i.e., for about 9 of
the 30 cases. DEC’s confidence interval distribution is similar to
the measured distribution until the 90-percentile of errors and
does not diverge in such a large manner. Note that the confidence
intervals for LAD are about half as wide as those of LSQ. This is
due to the nature of the confidence interval calculation for LAD
[4].
We now discuss possible reasons for the poor confidence interval
estimates from LSQ and LAD. Closer inspection of the results
revealed that 6 of the 9 cases for which LSQ and LAD have
confidence intervals that are much wider than the corresponding
measured confidence intervals correspond to the six workloads
constructed to study the impact of multicollinearity. As mentioned
previously, it is well known that the adverse impact of
multicollinearity manifests itself as a combination of high
prediction errors and very wide confidence intervals. However, 3
of the 9 cases had very wide confidence intervals in spite of
having low prediction errors. Due to the low prediction errors,
these represent workloads for which multicollinearity had very
little impact. A similar behaviour was also observed while
including those cases for which DEC did not provide an exact
match. 8 of those 70 cases have low prediction errors but very
wide confidence intervals. For such cases the wide confidence
intervals are likely a result of violations of the distributional
assumptions underlying the confidence interval calculations2. In
particular, it is likely that these violations are due to the
confounding of demand distribution information with
measurement error that is caused by non-deterministic resource
demands. As discussed previously, confidence intervals for
DEC’s predictions can be obtained with certainty due to the
central limit theorem. Consequently, as evident from Figure 7,

2 To verify this further we carried out the standard Quantile-Quantile plot
visual test [7] for the normality of errors in LSQ. The test indicated that the
normality assumption deviates significantly in several error regions.

they are more robust than the confidence intervals obtained with
LSQ and LAD.

6. SUMMARY AND CONCLUSIONS
This paper introduced our newly proposed Demand Estimation
with Confidence (DEC) for estimating the resource demands of
services that may be implemented by multi-tier systems. The
technique differs from related work in that it predicts the
aggregate resource demand of new workload mixes directly rather
than by taking the product of the desired mix and per-function
demand estimates. We evaluated the technique using a
measurement based case study that employed an e-commerce
benchmark system. For the cases considered in detail, the CPU
demands being predicted varied by a factor of up to 265
depending on workload mix. This demonstrates the importance of
accurate demand prediction for system sizing, capacity planning,
costing and pricing, and change impact analysis exercises.

We found that DEC provides results as accurate and in many
cases more accurate than the Least Squares (LSQ) and Least
Absolute Deviation (LAD) regression techniques. It clearly
outperforms these approaches when the measurement data suffers
from multicollinearity and outperforms them for many other cases
as well. Furthermore, DEC has a confidence interval calculation
that is simple and not impacted by the distribution of per-function
demands. Regression techniques assume such demands are
deterministic, which is unlikely for computer system applications.
Our results suggest that this results in very wide confidence
intervals that provide poor guidance regarding the validity of the
demand estimates. DEC’s reported confidence intervals are close
to observed confidence intervals obtained from measurements.

The work presented in this paper is novel in that it provides the
first viable alternative to regression that we are aware of as a
resource demand estimation technique for computer systems that
provides both demand estimates and robust confidence interval
estimates. Together the estimates can help service providers
assess the risks of providing services to new customers based on
customer-specific workloads.

DEC can be adapted in a straightforward manner to address the
problem of estimating resource demands for a production system
based on historical measurements data collected from the system.

 0

 50

 100

 150

 200

 250

 300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

 in
 p

er
ce

nt
ag

e

Percentiles
(b) DB CPU

Measured
DEC
LSQ
LAD

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
on

fid
en

ce
 in

te
rv

al
 w

id
th

 in
 p

er
ce

nt
ag

e

Percentiles
(a) Web CPU

Measured
DEC
LSQ
LAD

Figure 7. Two-sided confidence interval as percentage of mean demand where LSA had a solution

215

Specifically, demands can be obtained for various mixes based on
the measurement data. DEC can then use this demand-workload
mix mapping to offer predictions for new mixes.
DEC has several drawbacks. A sufficient number of benchmarks
must be created and evaluated to enable resource demand
predictions for a wide variety of workload mixes. Preparing a set
of benchmarks would benefit from the concept of benchmark
design [8] to ensure predictive coverage of the workload mix
space. Furthermore, there may be many different sets of
benchmarks that can be used to mimic a new workload mix. Each
may lead to different demand estimates.
Our future work includes further evaluation of the method for
different systems. For cases where an exact match is not found,
we will automate the process of determining an LP formulation
that achieves the best possible improvements in prediction
accuracy. We will also explore generalizations of the technique
that use historical measurements from production systems as
input. We also intend to compare the technique with appropriate
machine learning algorithms such as support vector machines
[21]. Furthermore, our work will focus on demonstrating how
DEC can be deployed to handle systems whose demands for a
given workload mix shift with time. Finally, challenges
introduced by systems that have load dependency in demands will
be addressed.

7. ACKNOWLEDGMENTS
This work was financially supported by the Natural
Sciences and Engineering Research Canada (NSERC) and
Hewlett Packard Labs.

8. REFERENCES
[1] Amazon Elastic Compute Cloud (Amazon EC2),

http://aws.amazon.com/ec2/
[2] C. Amza, A. Chanda, A. L. Cox, S. Elnikety, R. Gil, K.

Rajamani, W. Zwaenepoel, E. Cecchet, and J. Marguerite.
“Specification and implementation of dynamic web site
benchmarks”, Proceedings of the Fifth IEEE Workshop
Workload Characterization (WWC-5), November 2002.

[3] Y. Bard and M Shatzoff, “Statistical Methods in Computer
Performance Analysis”, Current Trends in Programming
Methodology, Vol. 3, Prentice-Hall, Englewood Cliffs, N.J.

[4] Y. Dodge, and J. Jureckova, Adaptive Regression, Springer,
2000.

[5] N. R. Draper and H. Smith. Applied Regression Analysis, John
Wiley Sons, 1998.

[6] J. J. Dujmovic, “Universal Benchmark Suites”, In proceedings
of the IEEE MASCOTS Conference, pp. 197-205, 1999.

[7] Engineering Statistics Handbook,
http://www.itl.nist.gov/div898/handbook/

[8] R. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Eesign, Measurement, Simulation,
and Modeling, John Wiley & Sons, 1991.

[9] D. Krishnamurthy, “Synthetic Workload Generation for Stress
Testing Session-Based Systems”, PhD Thesis, Department of
Systems and Computer Engineering, Carleton University,
Ottawa, Canada, 2004.

[10] D. Krishnamurthy, J. A. Rolia, and S. Majumdar, “A Synthetic
Workload Generation Technique for Stress Testing Session-
Based Systems”, IEEE Transactions on Software Engineering,
Vol. 32, No. 11, pp. 868-882, November 2006.

[11] U. Krishnaswamy and D. Scherson, “A Framework for
Computer Performance Evaluation using Benchmark Sets”,
IEEE Transactions on Computers, Vol. 49, No. 12, pp. 1325-
1338, December 2000.

[12] T. Kubokawa and M. Srivastava, “Improved Empirical Bayes
Ridge Regression Estimators under Multicollinearity”,
Communications in Statistics – Theory and Methods, Vol. 33,
No. 8, pp. 1943-1973, December 2004.

[13] Y. Lu, T. Abdelzaher, C. Lu, L. Sha, and X. Liu,” Feedback
Control with Queuing-Theoretic Prediction for Relative Delay
Guarantees in Web Servers,” In proceedings of the IEEE Real-
Time and Embedded Technology and Applications Symposium,
pp. 208, 2003.

[14] D. Menasce, “Computing Missing Service Demand Parameters
for Performance Models.” In proceedings of CMG 2008, pp.
241-248, 2008.

[15] D. Mosberger and T. Jin, “httperf – A Tool for Measuring Web
Server Performance”, ACM SIGMETRICS Performance
Evaluation Review, Vol. 26, No. 3, pp. 31-37, 1998.

[16] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman,
Applied Linear Statistical Models, Irwin, 1996.

[17] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi, “CPU
Demand for Web Serving: Measurement Analysis and Dynamic
Estimation”, Performance Evaluation, Vol. 65, No. 6-7, pp.
531-553, June 2008.

[18] J. Rolia and V. Vetland, “Correlating Resource Demand
Information with ARM Data for Application Services”,
Proceedings of the International Workshop on Software and
Performance (WOSP), pp. 219-230, 1998.

[19] J. Rolia and V. Vetland, “Parameter Estimation for Performance
Models of Distributed Application Systems”, Proceedings of the
CASCON Conference, pp. 54-63, 1995.

[20] SAP Business by Design,
http://www.sap.com/solutions/sme/businessbydesign/index.epx

[21] A. J. Smola and B, Scholkopf, “A Tutorial on Support Vector
Regression”, Statistics and Computing, Vol. 14, No. 3, pp. 199-
222, August 2004.

[22] C. Stewart, T. Kelly, and A. Zhang, “Exploiting Nonstationarity
for Performance Prediction”, ACM SIGOPS Operating Systems
Review, Vol. 41, No. 3, pp. 31-44, 2007.

[23] X. Sun, “Estimating Resource Demands for Application
Services”, M. Sc. Thesis, Department of Systems and Computer
Engineering, Carleton University, Ottawa, Canada, 1999.

[24] TPC-W benchmark, http://www.tpc.org/tpcw/default.asp
[25] M. Woodside, T. Zhen, and M. Litoiu, “Service system resource

management based on a tracked layered performance model,” In
proceedings of the International Conference on Autonomic
Computing, pp. 175-184, 2006.

[26] Q. Zhang L. Cherkasova, N. Mi, and E. Smirni, “A Regression-
Based Analytic Model for Capacity Planning of Multi-Tier
Applications”, In proceedings of IEEE International Conference
on Autonomic Computing, June 2007.

216

