
Resource Demand Modeling for Multi-Tier Services

ABSTRACT 
We present a new technique for predicting the resource demand 
requirements of services implemented by multi-tier systems. 
Accurate demand estimates are essential to ensure the efficient 
provisioning of services in an increasingly service-oriented world. 
The demand estimation technique proposed in this paper has 
several advantages compared with regression-based demand 
estimation techniques, which many practitioners employ today. In 
contrast to regression, it does not suffer from the problem of 
multicollinearity, it provides more reliable aggregate resource 
demand and confidence interval predictions, and it offers a 
measurement-based validation test. The technique can be used to 
support system sizing and capacity planning exercises, costing 
and pricing exercises, and to predict the impact of changes to a 
service upon different service customers. 

Categories and Subject Descriptors 
I.6.5 [Simulation and Modeling]: Model Development- 
modeling methodologies 

General Terms 
Measurement, Performance, Experimentation 

Keywords: Resource demand prediction, analytic 
performance models, benchmarking, statistical regression 

1. INTRODUCTION 
Software services can be very complex. A service may have many 
capabilities, each corresponding to a business level concept such 
as a business process. A customer that requires a service may 
actually exploit only a fraction of the service’s capabilities. Each 
capability may use many different software functions that cause 
demands on a possibly distributed or multi-tier set of resources 
such as CPUs. The purpose of this work is to transform a 
specification for a customer’s use of capabilities to an estimate for 
the service’s corresponding resource demands. We assume that 
the relationship between capabilities and software functions is 
known in advance so that given a customer’s specific throughputs 
for capabilities the corresponding desired workload mix of 
software functions is easily deduced. 

Demand prediction can be difficult because computer  
measurement systems do not always offer resource usage 
measurements at the desired abstraction. For example, total server  

 
CPU utilization over some time interval and operating system 
process CPU utilization over some time interval may be available 
whereas the utilization of a CPU by a particular software function 
is not. Software level monitoring and logging facilities often 
provide counts for the number of times software functions are 
invoked and even measures of response times. However relating 
these to demands is difficult, particularly in distributed and multi-
tier environments. In these environments, application servers are 
often multi-threaded, execute on hosts that often have multiple 
CPUs, may execute on virtualized hosts, and have many layers of 
caching that frequently delay input-output activity. 

Regression techniques have been widely used [2][17][18][19][22] 
[23][26] to support demand prediction by estimating per-function 
demands. Given throughputs for a set of capabilities, the 
corresponding expected workload mix of software function 
executions can be computed. For each resource, the resource 
demand is estimated as the sum of corresponding estimated per-
function demands weighted by this mix. Many regression 
techniques suffer from the well-studied problem of 
multicollinearity [8] which can lead to unreliable predictions for 
demands and very wide confidence intervals for predicted 
demands. Furthermore, previous studies [18][19][23] have shown 
that the accuracy of regression techniques suffer if the per-
function demands for a system are not deterministic, which is 
generally the case for computer systems. Finally, regression can 
provide incorrect confidence intervals for its demand predictions 
if assumptions exploited by the confidence interval calculations 
are not valid. 

Our proposed solution is a Demand Estimation with Confidence 
(DEC). DEC requires the preparation and execution of a number 
of benchmarks under controlled conditions.  A benchmark 
submits a semantically correct sequence of requests to a system 
under study. Resource demands are measured for each benchmark 
separately. A linear combination of the resource demands from 
the benchmark runs is then reused to offer service demand 
estimates for a desired workload mix. In contrast to regression, 
DEC does not rely on estimating per-function demands to 
estimate the overall demand for a customer. Consequently, it does 
not suffer from multicollinearity, is robust to non-determinism in 
per-function demands, and provides robust confidence interval 
predictions. Additionally, DEC provides for a measurement based 
test that, if desired, can be used to validate its demand predictions. 
Results from our TPC-W [24] case study show that DEC performs 
better overall than commonly used regression techniques such as 
Least Squares regression (LSQ) and Least Absolute Deviations 
regression (LAD). DEC does significantly better for cases with 
multicollinearity and in estimating confidence intervals for 
predicted demands. 
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Predictions for resource demands support sizing and capacity 
planning exercises. Such exercises typically rely on performance 
models, e.g., Queuing Network Models [8], which require as input 
parameters the demands for various resources in a system. 
Furthermore, demand predictions can also support costing and 
pricing exercises in pay as you go environments [1]. They can 
help software service providers estimate the quantity and hence 
cost of resources needed to provide a service based on a 
customer’s specific expected use of a system. Accurate 
confidence intervals are essential for providers to properly assess 
risks related to poor performance. In addition, our solution 
provides a mechanism to predict the impact of changes to a 
system upon each of many customers that use it and upon an 
aggregate of customers that share a service platform. 

Section 2 describes related work including LSQ and LAD. Section 
3 introduces DEC and discusses the qualitative features of each 
approach. Section 4 provides a brief description of the DEC 
technique.  Section 5 presents a case study that evaluates the 
effectiveness of DEC as compared to LSQ and LAD. Section 6 
offers summary and concluding remarks. 

2. RELATED WORK 
Bard and Shatzoff studied the problem of characterizing the 
resource usage of operating system functions in the 1970’s [2]. 
The system under study did not have the ability to measure the 
resource demands of such functions directly. The execution rates 
of the functions and their aggregate resource consumption were 
measurable and were recorded periodically. This data served as 
inputs to a regression problem. Bard used the least squares 
technique to successfully estimate per-function resource 
consumption for the study. 

Equation 1 formalizes the LSQ regression problem for demand 
estimation. The problem has data from N measurement intervals. 
For each interval i there is a resource usage measurement Yi and 
function execution count measurements for M functions, namely 
F1i…FMi. Yi is the dependent variable, F1i…FMi are the 
independent variables, and Ei is a random error associated with 
measurement of Yi. D1…DM are defined as coefficients of the 
independent variables. From a computer systems perspective, Yi 
represents the aggregate demand on a resource due to executing 
the M functions as per F1i…FMi. The coefficients represent 
estimates of per-function resource demands on some resource, 
e.g., a CPU. Accordingly, the contribution of a function k towards 
the aggregate demand Yi is estimated as DkFki. LSQ finds values 
for coefficients D1…DM such that the objective function O is 
minimized. Furthermore, the coefficients D1…DM are constrained 
to be positive since they represent demands. It should be noted 
that the regression model shown does not have a y intercept term. 
This is because aggregate demands should be zero for intervals 
where no functions are executed. For a desired customer mix of 
functions F1…FM, Ŷ is an estimate of the resource demand for the 
mix. 
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LSQ is referred to as an l2 method because it solves for 
coefficients such that the mean square of predictive errors with 
regard to the dependent variable is minimized. The regression 
model presented has several assumptions. First is the assumption 
of linearity between the dependent variable, i.e., resource usage, 
and the independent variables, i.e., function counts. Second, it is 
assumed that values for the independent variables are uncorrelated 
and known without error. Several assumptions relate to 
measurement errors. Measurement errors for the dependent 
variable should be independent, i.e., not be serially correlated. 
Furthermore, errors should have a constant variance, i.e., 
homoscedasticity, with respect to time, the dependent variable, 
and the independent variables. Finally, the measurement errors 
should follow the Normal distribution. 

The effectiveness of least squares regression can be impacted if 
the assumptions are violated. If the linearity assumption is 
violated, then the regression model is likely to act as a poor 
predictor of the dependent variable. Failure of the linearity 
assumption can also cause the normality of errors to be violated. 
Non-normally distributed errors can arise even when the linear 
assumption is true when there are sources of variation in the 
system other than the random measurement error associated with 
the dependent variable. In particular, normality can be violated if 
the per-function demands are not deterministic. Various 
techniques can be used to assess whether the assumptions of 
regression hold [8]. Confidence interval calculations for 
predictions from LSQ rely on the assumption of normality of 
errors. Consequently, predicted confidence intervals can be 
unreliable if the normality assumption is violated. 

LAD regression is less sensitive to outliers for the dependent 
variable than the LSQ technique. It has similar assumptions to 
LSQ but assumes measurement errors have a Laplacian 
distribution. The confidence interval calculations for predictions 
from LAD are different from those of LSQ due to the different 
distributional assumption made regarding the errors. LAD is 
referred to as an l1 method because it solves for coefficients to 
minimize the sum of the absolute difference between predictions 
for the dependent variable and the measured values for the 
dependent variable. The problem statement for LAD is given in 
equation 2. As with LSQ, LAD can perform poorly if regression 
assumptions are violated. 
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Many regression techniques suffer from the problem of 
multicollinearity. This arises when some tuples of “independent” 
variables are in fact correlated in the input data and these 
correlations are stronger than their correlations with the dependent 
variable. For example, if F1,i and F2,i have correlated values for i= 
1..N then their impact on the Yi will be confounded and 
indistinguishable to the solution for the coefficients D1 and D2. In 
this scenario, demand predictions for a different mix of F1 and F2 
than is present in the input data may yield poor predictions for the 
dependent variable. Furthermore, the reported confidence 
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intervals for the predictions may be too wide to be of practical 
use. 

Stewart et al. [22] suggest that multicollinearity is not as likely 
when observing the natural diversity of workload mixes in 
production systems as it is when observing synthetic benchmark 
workloads that typically produce a single “average” workload 
mix, e.g., [23][26]. Yet, Pacifici et al. show real evidence of 
significant multicollinearity in workload mixes of production 
systems [17].   

Traditionally, multicollinearity is overcome by replacing groups 
of correlated “independent” variables with a single variable, for 
example by using a Principle Component Analysis (PCA) [8] or 
other reduction techniques [17]. However this reduces the 
expressive power of the prediction model because it reduces the 
number of variables that can describe a workload mix. This is 
problematic if a desired workload mix does not include such 
correlations or includes different correlations. Ridge regression 
techniques [5][12] can be applied to mitigate the impact of 
multicollinearity without decreasing expressive power. However, 
the effectiveness of ridge regression depends on the value selected 
for the so-called ridge parameter. In practice, an appropriate value 
for this parameter can only be determined by trial and error. In 
addition, the confidence interval calculations are only 
approximate and are more complex than those of LSQ. 
Furthermore such techniques still assume that predicted demands 
are deterministic. Section 5 shows that the DEC method does not 
suffer from the problem of multicollinearity and provides robust 
confidence interval calculations. 

Sun [23] considered the sensitivity of predicted values for 
resource demands to violations in the deterministic demand 
assumption. He applied the LSQ and the Random Coefficients 
Method (RCM) for regression [23] to estimate per-function 
resource demands. Simulated values for per-function demands 
were drawn from distributions such as the Deterministic, Normal, 
and Exponential distributions. RCM aims to overcome issues of 
non-determinism in demands and did improve upon the results of 
LSQ. However both techniques failed when estimating the per-
function demands for systems with more than 5 functions and as 
the resource usage distributions of the functions became less 
deterministic.  

Zhang et al. apply a LSQ regression technique to estimate the per-
URL demands and hence the resource utilizations of a TPC-W 
system [26]. The problem and approach was similar to that of 
Sun’s work [23]. For the TPC-W system considered regression 
was found to achieve good accuracy overall in predicting resource 
utilizations. However, the study did not focus on multicollinearity 
since the dataset for which predictions were offered was the same 
as that used to obtain the regression coefficients. We consider the 
same TPC-W problem as Zhang et al. in the case study and apply 
LSQ, LAD, as well as our proposed DEC. We also consider in 
detail the impact of multicollinearity.  

Recently several studies have investigated the use of queuing 
models to deduce workload parameters such as resource demands 
[13][14][25].  These techniques rely on measured response times 
from a system and a performance model for the system.  Demand 
values are computed such that the model’s mean response time 
prediction closely matches the mean of the measured response 
times. The problem posed in this paper differs in that we assume a 

customized workload mix is given as input but that both demands 
and response times for the customized mix are not known in 
advance. DEC is used to estimate the demands. Performance 
models that are not the focus of this paper can then use the 
demand estimates to predict response times.   

Our work is related to Dujmovic’s seminal work on benchmark 
design theory [6] and the work of Krishnaswamy and Scherson 
[11]. They model benchmarks as an algebraic space. However 
neither provides a method to express one benchmark as a linear 
combination, i.e., a ratio, of other benchmarks.  

Krishnamurthy et al. introduce SWAT which views Web user 
sessions with computer systems as an algebraic space [9][10]. 
SWAT includes a method that automatically selects a subset of 
pre-existing user sessions from a session based system, each with 
a particular URL mix, and computes a ratio of sessions to achieve 
specific workload characteristics. For example, the technique can 
reuse the existing sessions to simultaneously match a new URL 
mix and a particular session length distribution and to prepare a 
corresponding synthetic workload to be submitted to the system. 
The work showed how such workload features impact the 
performance behaviour of session based systems. In the SWAT 
work, the concept of a session is identical to benchmarks as 
defined in this paper. DEC exploits this ratio computation 
technique to automatically compute a ratio of benchmarks that are 
then used to compute a resource demand estimate.  

3. PROBLEM STATEMENT AND METHODS 
Consider a service S with C capabilities that make use of M 
system functions that cause resource demands on R resources. 
Suppose S is a Customer Relationship Management (CRM) 
system. It has C business process variants for a customer to 
choose from. Each of the C variants c uses a subset of the M 
software functions. The functions cause resource demands on R 
resources such as application server CPUs and database server 
CPUs and disks. A customer’s desired use of the system is 
specified using a throughput vector X of dimension C, such that 
cth element of X is the required relative completions per unit time 
for a capability c, i.e., its required throughput Xc divided by the 
total required throughput T over all capabilities (equation (3)). 
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Given X we want to estimate the overall demands DS of the 
service by the customer on the R resources as shown in equation 
(4).  
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We now consider trivial, regression based, and DEC based 
solutions to this problem. A trivial solution to this problem is to 
create C benchmarks one for each capability c. Each benchmark 
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can be run in isolation to obtain per-capability resource 
measurements DC on the R resources as shown in equation (5). 
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XDD CS ≈  (6) 

The product DC X shown in equation (6) estimates DS the 
customer’s overall demand on the R resources. However, this 
trivial approach is not feasible for systems with many capabilities. 
For example, the SAP ByDesign system [20] has thousands of 
business process variants. Developing, maintaining, and executing 
benchmarks for such a large number of process variant 
alternatives is cost prohibitive. 

As described in the related work section, statistical regression 
solutions have also been used to assist with this kind of a problem. 
Suppose we have B benchmarks where B << C, each of the B 
benchmarks b uses a subset of the M functions. The B benchmarks 
are run to obtain function counts and resource demand 
measurements upon the R resources, as in equation (1). 
Regression, as described in Section 2, is used to estimate the per-
function demands DF on the R resources (equation (7)).  
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As shown in equation (8), the C capabilities together have a 
known feature visit matrix F for the M functions such that Fij 
represents the number of times function i is invoked in capability 
j. 
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The product F X gives a vector such that the ith row of the vector 
contains the expected number of times function i is to be invoked 
due to the customer’s throughput requirement X. As shown in 
equation (9), the product DF F X estimates the customer’s overall 
demand DS on the R resources.  

FXDD FS ≈  (9) 

We propose a new Demand Estimation with Confidence (DEC) 
solution to estimate resource demands. Suppose we have B 
benchmarks, B << C, such that each of the benchmarks b uses a 
subset of the M functions. As shown in equation (10), each 
benchmark b can be run in isolation to obtain resource 
measurements DB upon the R resources for its aggregate use of 
functions.  
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Given a customer’s requirement on system functions F X we solve 
for a linear combination L of a subset of some size B’ of the B 
benchmarks that yields the same use of functions F X [9]. As 
shown in equation (11), DB’ contains a subset of the columns of 
DB. 
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LDD BS ′≈  (13) 

L, as depicted in equation (12), gives the weight of each 
benchmark in the subset needed to synthesize F X. A 
corresponding linear combination of the B’ chosen benchmarks’ 
demand measurements, denoted by the product DB’ L in equation 
(13), estimates the customer’s overall demand DS on the R 
resources. This approach also permits a measurement based 
validation test where the linear combination L of the chosen B’ 
benchmarks can be executed together to emulate the customer’s 
use of system features F X. We note that it may not always be 
possible to obtain an exact match of F X with the available B 
benchmarks.  This is discussed in detail in Section 5.  A 
description of the ratio finding technique is provided in Section 4. 

DEC has several characteristics that differ from the regression 
based approach. First, DEC does not attempt to fit all 
measurement data with a single predictive regression model. 
Instead, for each customer desired function mix, an appropriate 
subset of benchmarks is found that mimics the desired function 
mix. Accuracy tolerances can be specified for each function. For 
example, one can specify that a resource intensive function be 
matched more accurately than other less resource intensive 
functions. Furthermore, DEC reports if there is insufficient 
information, i.e., benchmarks, to find an exact solution. 

Second, the confidence interval calculation for a predicted 
demand is more robust for DEC than for regression based 
techniques. Recalling from Section 2, the confidence interval 
calculations for LSQ and LAD rely on distributional assumptions 
about the errors in measuring the dependent variable. Poor 
confidence interval estimates can result when these assumptions 
are violated, for example due to non-deterministic per-function 
demands. With DEC, confidence interval calculation is 
straightforward. Several independent experiment replications are 
conducted for each benchmark. Each benchmark replication 
yields a benchmark replication demand. The mean of the 
benchmark replication demands is computed as the overall 
benchmark mean demand. From the central limit theorem a 
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benchmark mean demand is normally distributed if the number of 
replications is large [8]. Furthermore, a linear combination of 
normally distributed independent random variables results in a 
random variable that is also normally distributed. Since DEC uses 
a linear combination of measured benchmark mean demands to 
predict the resource demand of a workload function mix, the 
predicted demand is also normally distributed. This allows 
confidence intervals to be computed with certainty for the 
predictions from DEC1. We provide experimental evidence in 
Section 5 that shows that DEC’s confidence interval predictions 
are more robust than those of LSQ and LAD. 

4. THE DEC TECHNIQUE 
This section provides a brief summary of the method used to 
compute a linear combination vector L for a subset of 
benchmarks.  As stated previously, we adapted for the demand 
prediction problem a ratio computation technique we devised 
previously [10] to support synthetic workload generation.  
Although the modifications required relative to the previous work 
were fairly straightforward, we describe the technique here for the 
sake of clarity and completeness. 

Let the product FX, see equations (8) and (3), correspond to a 
customer’s desired use of a system’s functions. The problem of 
computing L is to determine a linear combination of a subset of 
the B benchmarks that results in F X. In other words, let A* be a M 
x K matrix containing function execution counts vectors for K 
benchmarks, K ≤ B, upon the M functions. The K rows of L 
represent benchmark execution counts for the benchmarks 
corresponding to the function counts vectors of A*. If the chosen 
benchmarks were run with these benchmark execution counts the 
resulting function counts would be F X. The problem of 
computing the linear combination vector L is to determine an A* 
and L such that the following conditions are satisfied.  

llL

XFLA

  0  )(

  *

∀≥

=
 

)15(

)14(
 

Equation (14) specifies that the function counts achieved by 
combining the benchmarks in A* according to the benchmark 
counts in L should equal the desired function counts given by F X. 
Equation (15) restricts the computed benchmark counts to be non-
negative values.  

To solve the problem, we devised an algorithm which iteratively 
determines the A* matrix and the L vector that satisfy the 
conditions given by equation (14) and equation (15). To begin, an 
initial A* matrix is determined by identifying a small subset of the 
B benchmarks. This relies on the computation of an algebraic 
basis set for the B benchmarks. At each step of the iteration, linear 
programming is used to find a value of L for a given A*

 such that 
the difference between the desired function counts F X and the 
achieved function counts A* L is minimized. Equation (15) forms 
one of the constraints of the LP problem. The second constraint is 
obtained by relaxing the condition specified by equation (14) to 
that given by equation (16). 

                                                           
1 The calculation of confidence intervals for linear combination of means 
is straightforward and can, for example, be found in [6]. 

XFLA ≤*  (16)  

This change facilitates an iterative solution by which A* is 
progressively modified by adding more benchmarks until an L 
that satisfies the stricter constraint given by (14), i.e., 
corresponding to a better match between F X and A* L is found. 
Specifically, the difference between the desired function counts 
and the achieved function counts is calculated as a M x 1 slack 
vector LAXFE *−= . The benchmark that offsets E the 
most is identified from the remaining benchmarks in B that are not 
part of A*. The new benchmark to be selected is determined by 
computing the Euclidean distances between E and the function 
execution counts vectors of the remaining benchmarks. The vector 
that yields the minimum distance is selected and appended to A* 
as an additional column. This is followed by another iteration of 
the algorithm.  

The algorithm is guaranteed to terminate when the goal is to 
match a workload mix of functions that results from the B 
benchmarks. This is because in the worst case all B benchmarks 
will be included to achieve the match. The algorithm terminates if 
the mismatches in function counts, given by the elements of E, are 
less than or equal to user-specified tolerance thresholds for 
function counts or if a user-specified maximum number of 
iterations is reached.  When an exact match of mix is not possible 
with a given set of benchmarks, the LP problem can be easily 
modified to match certain functions, e.g., resource intensive 
functions more closely than other functions.  We exploit this 
capability in Section 5.    

5. CASE STUDY 
To verify the effectiveness of the approach we conducted a case 
study using the industry standard e-commerce benchmark system 
named TPC-W [24]. TPC-W has 14 system functions that 
correspond to various URL request types. Emulated customer 
browsers interact with the system to conduct ordering, shopping, 
and browsing sessions.  

This section is organized as follows.  Section 5.1 describes the 
experiment setup used for the study.  Section 5.2 describes the 
experiment process. Section 5.3 presents results. 

5.1. Experiment setup 
Our testbed consists of a Web server node, a database server node, 
and a client node connected by a non-blocking Ethernet switch 
that provides a dedicated 1 Gbps connectivity between any two 
machines in the setup. The Web and database server nodes are 
used to execute the TPC-W bookstore application.  We used the 
PHP-based TPC-W application developed at Rice University [2]. 
The client node is dedicated for running the httperf [15] Web 
request generator that was used to execute benchmarks on the 
TPC-W system. All nodes in the setup contain an Intel 2.66 GHz 
Core 2 CPU and 2 GB of RAM. We used the Windows perfmon 
utility to collect resource usage information from the Web and 
database server nodes using a sampling interval of 1 second. The 
CPU demands are much larger than disk and network demands for 
this system so we focus on demand estimation for these values.  
We note that the very low disk demands are likely due to caching 
mechanisms employed by the operating system and the database 
management system. 
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5.2. Experiment process 
For the case study, we created 100 benchmarks. These 
benchmarks were constructed from 40 random ordering sessions, 
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Figure 1. DB CPU per request demands versus Web CPU per 
request demands  

40 random shopping sessions, and 20 random browsing sessions.  
These sessions were obtained by conducting random walks over 
the Markov chains specified by TPC-W. Each benchmark is based 
on exactly one of these 100 sessions.  An execution of the 
benchmark involves sequentially submitting its corresponding 
session multiple times with stochastically generated arguments 
such as author names and book categories.  For regression, the 
benchmarks were executed one after another sequentially using 
httperf and resource usage was tracked during this run. For DEC, 
each benchmark was submitted in isolation using httperf and 
resource usage was collected at the end of the run to characterize 
the benchmark replication demand. For each benchmark, 5 
independent replications were performed to calculate the overall 
benchmark mean demand. Care was taken to ignore data from the 
initial part of each replication during which the system’s caches 
are likely to be atypically “cold”. 

To validate DEC, our case study considers two scenarios. In the 
first scenario 20 workload mixes were considered with each 
representing a desired workload mix of a customer, F X. Care was 
taken to ensure that these mixes use functions in a different 
proportion than any of the 100 benchmarks alone.  DEC was able 
to successfully synthesize workloads corresponding to each of 
these mixes as a linear combination of a subset of the 100 
benchmarks.   For each such synthesized workload 3 independent 
measurement runs were conducted to characterize that workload’s 
overall mean demand so that it can be compared with the demand 
predicted by DEC and the other techniques. To provide more 
examples, in the second scenario, each of the benchmarks is in 
itself treated as a customer’s desired workload mix with the 
remaining 99 serving as benchmarks from which this mix could 
be synthesized.  

Benchmarking exercises were conducted to obtain reliable 
resource demand measurements for the 100 benchmarks and the 
20 workloads. Confidence intervals for the mean measured 
demands were computed following the standard procedure that 
employs the Student’s t distribution [8]. For DEC, confidence 
intervals were calculated by employing the confidence intervals 

for linear combinations of means approach [7]. Since the number 
of independent replications for each benchmark is less than 30, 
the Student’s t distribution was used with this approach to 
calculate confidence intervals instead of the Normal distribution 
[7]. 

Figure 1 illustrates the Database server node (DB) CPU demand 
versus the Web server node (Web) CPU demand value for the 100 
benchmarks and 20 workloads. The 20 workloads are denoted as 
Mix 1 to Mix 20 and were synthesized using DEC as described 
previously. Mix 1 to Mix 14 have mixes selected to give coverage 
of the Web CPU versus DB CPU space of the 100 benchmarks. 
Mix 15 to Mix 20 have mixes that were chosen to explore the 
impact of multicollinearity on demand prediction.  The 100 
benchmarks are presented in three groups. The 20 SynDEC 
benchmarks could be synthesized using a combination of two or 
more of the remaining benchmarks using DEC. The 13 TSynDEC 
benchmarks had the exact same use of system functions as some 
other of the 100 benchmarks, i.e., they could be synthesized in a 
trivial manner. The 67 NoDEC benchmarks represent cases where 
an exact match of mix could not be achieved.   

From Figure 1, it can be observed that DEC is able to provide 
predictions throughout the Web and DB CPU space. The figure 
also shows that different kinds of sessions impose very different 
per request demands upon the system. The Web CPU demands 
differ by a factor of 1.5 over all cases. However, the DB CPU 
demands differ by a factor of 1000 over all cases, and by a factor 
of 265 if only cases where DB CPU demands greater than 1 ms 
are considered. For this system good demand estimates are needed 
for planning exercises, in particular for the DB CPU.   

For LSQ and LAD, we considered measurement windows of 5, 
10, 30, and 60 seconds for aggregating function   counts   and   
utilizations.   The   regression predictions were insensitive to the 
window size. As a result, we only present results from the 5-
second case.  

We used the following approach to measure the goodness of fit of 
a regression model to the input data. The error ei for a 
measurement interval i is computed as the difference between the 
measured aggregate demand Yi and regression’s prediction of 
aggregate demand Ŷi. The mean absolute error is computed as 
follows and used as an indicator of model accuracy. 

∑=
i i

i

Y
e

ute errormean absol    (17) 

For both LSQ and LAD, the mean absolute error for the Web and 
DB CPU demands is approximately 10%. This indicates that both 
the LSQ and LAD regression models are able to overall 
accurately explain the behaviour over the 5-second measurement 
intervals considered. We note that the coefficient of multiple 
determination R2 cannot be used as a goodness of fit metric for 
our models since they do not have a y intercept term [16]. 

5.3. Comparison of DEC, LSQ, and LAD 
We now consider the ability of LSQ, LAD, and DEC to predict 
demands for the 100 benchmarks and 20 workloads. Figures 2 and 
3 show the percentiles of relative error for the Web and DB CPU 
demand predictions, respectively. The figures have five sets of 
data. The DEC, LSQ, and LAD sets correspond to the 53 cases 
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where DEC was able to achieve an exact match of workload mix. 
The LSQ-NDEC and LAD-NDEC sets correspond to the 67 cases 
where DEC was not able to provide an exact solution. 
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Figure 2. Percentiles of relative errors for Web CPU demand 
predictions 
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Figure 4. Percentiles of relative errors for DB CPU demands 
when cases with non-exact matches 

For the cases where DEC provided an exact solution, Figure 2 
shows that for the Web CPU demand estimates LSQ, DEC, and 
LAD perform similarly.   In general the errors are low for all 
methods because the range of potential Web CPU demand values 
differed by a factor of only 1.5. Figure 3 shows DB CPU demand 
estimates for a subset of 30 of the 53 cases where CPU demands 
were greater than 1 ms and where DEC synthesized a non-trivial 
solution, i.e., using a mix of two or more benchmarks. The results 
show that DEC does much better than both LAD and LSQ for the 
DB CPU demand estimates. Recall that demand estimates differ 
by a factor of 265 for these 30 cases. We note that DEC had its 
largest errors when the demands were very small and when the 
DB CPU was not the bottleneck resource. LSQ and LAD had 
some of their greatest errors for the six cases that suffered due to 
the presence of multicollinearity. 

Figures 2 and 3 also show the results for LSQ-NDEC and LAD-
NDEC. These are regression results for the 67 cases where DEC 

did not have sufficient information to achieve an exact match of 
workload mix. Figure 2 shows that for these cases the regression 
based techniques have higher errors than for the cases where DEC 
was able to achieve an exact match. While the regression 
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Figure 3. Percentiles of relative errors for DB CPU demand 
predictions 
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Figure 5. Comparison of DB CPU demand predictions by 
DEC and DEC-Top5 for cases with non-exact matches 

techniques could be applied in these cases, they provide less 
accurate demand predictions. In contrast, if DEC cannot achieve 
an exact match it implies that more benchmarks are needed to 
provide appropriate measurement coverage of the workload mix 
space for functions.  

Figure 4 compares the DB CPU demand predictions from DEC, 
LSQ, and LAD when the cases for which DEC did not have an 
exact match are included.  As before, we only consider non-trivial 
cases whose demands were greater than 1 ms. The results show 
that although DEC’s accuracies are comparable to those of LSQ 
and LAD, DEC predictions can become unreliable when mixes 
are not matched exactly.   

We explore one possible solution for improving DEC for cases 
where an exact match is not possible.  First we identified the top 
five resource intensive functions based on an analysis of response 
time data collected from executing the benchmarks.  DEC’s LP 
formulation was relaxed such that the technique only attempts to 
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match the counts for these five functions exactly.  A best effort 
solution is employed with respect to matching counts for the other 
functions.  We denote this approach as DEC-Top5.  Figure 5 
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Figure 6. Relative errors for DB CPU demand predictions for 
cases with multicollinearity 

considers the 22 cases from Figure 4 for which DEC did not have 
an exact match.  The results show that DEC-Top5 is able to 
significantly reduce prediction errors for 21 of the 22 cases.    For 
the one case where DEC-Top5 does worse than DEC (case 4 of 
Figure 5), the demand is very low and the difference in relative 
errors between the two techniques is only about 1.9%.  The 
maximum error is about 8% for DEC-Top5 when compared to 
86% for DEC and 20% for regression for this subset of 22 cases.     
We conclude that DEC is flexible enough to permit systematic 
methods to improve predictions for cases where the available 
benchmarks do not permit an exact match of workload mix.  Our 
future work will focus on automating for such cases the process of 
determining the LP formulation that achieves the best possible 
improvements in prediction accuracy.  For the remainder of the 
paper we only consider cases for which DEC had an exact match.           
Figure 6 shows the errors for DB CPU demand predictions for the 
three techniques for the six workloads chosen to study the impact 
of multicollinearity. A careful analysis of the function execution 
counts for the 100 benchmarks used for regression showed that 
the counts for the Buy Request and Buy Confirm functions were 
highly correlated. Specifically, the count for Buy Confirm function 
was equal to the count for the Buy Request function in 87% of the 
100 benchmarks. The six workloads shown in Figure 6 were valid 
workloads for the TPC-W system and were constructed from a 
subset of the 100 benchmarks where the correlation for these 
functions is different. Only 40% of the 849 sessions making up 
these six workloads had equal counts for the Buy Request and Buy 
Confirm request types. The 100 benchmarks and these six 
workloads also exhibit a similar difference in the way the 
Shopping Cart and Customer Registration functions are used. As seen 

in Figure 6, due to the differences in correlation, the estimates of 
LSQ and LAD for the aggregate demand of the six workloads 
have large errors. The results show how sensitive regression can 
be to the multicollinearity phenomenon and that the accuracy of 
DEC is not sensitive to multicollinearity. 
We now consider regression and its dependency on per-function 
demand estimates. Recall that regression estimates per-function 
demands and uses them to estimate a new service’s aggregate 
demand value.  

Table 1 shows the mean per-function response times Mean R 
measured for the Customer Registration, Shopping Cart, Buy Request, 
and Buy Confirm functions along with their 95% confidence 
intervals widths (CI_WIDTH). The CI_WIDTH values are 
expressed as percentage of their corresponding Mean R values. 
The per-function response time measurements were made such 
that there was only one active request at a time at the system.  
Consequently, the Mean R values  computed from these response 
times can be compared with estimates for total resource demands 
over all resources as found using LSQ and LAD. We denote Mean 
R LSQ as the total resource demand over all resources computed 
as the summation of the Web CPU and DB CPU demands 
estimated by LSQ.  Similarly, Mean R LAD is the total resource 
demand over all resources as estimated by LAD. Error-LSQ and 
Error-LAD represent the percentage absolute error between the 
total resource demands estimated by the regression techniques and 
the measured total demands represented by the Mean R values. 
The table shows that the per-function demand estimates of LSQ 
and LAD can have very large errors. As noted earlier, if the new 
service uses the functions in a different proportion to that given as 
input to regression, regression may yield a poor aggregate demand 
estimate. DEC does not rely on such per-function demand 
estimates when estimating the resource demands of services. 
Table 1 also shows that the CI_WIDTH values for measured per-
function mean response times can be quite large compared to the 
measured mean response time values. For the Shopping Cart 
function, the width of the two-sided confidence interval, based on 
measurements, is more than 200% of its measured mean response 
time. This suggests that the TPC-W system’s per-function 
demands can be highly variable and are clearly not deterministic.  
Figure 7 compares measured and predicted two-sided 95% 
confidence interval widths for the aggregate demand predictions 
for cases where DEC found an exact solution. From Figure 7 (a), 
for the Web server CPU the measured demands and predictions 
from DEC, LSQ, and LAD had confidence intervals that were 
within 6% of the predicted demand over 90% of the time. This is 
not surprising since the measured Web Server CPU demand only 
varied by a factor of 1.5 over all 120 cases. For the DB server 
CPU, we consider a subset of 30 cases where the mean DB CPU 
demand was greater than 1 ms and DEC reported a non-trivial 
solution. Recall that for these cases the demands varied by a 
factor of 265. Figure 7 (b) shows that the measured demands and 
DEC predicted demands for these 30 cases had confidence 

Table 1: Predictions for per-function demands compared to no-load response time measurements 
Request type Mean R (ms) CI_WIDTH (%) Mean R LSQ (ms) Mean R LAD (ms) Error-LSQ (%) Error-LAD (%)
Shopping Cart 55.73 206.25 22.34 20.19 59.91 63.78
Customer Registration 12.16 19.01 22.69 22.28 86.63 83.24
Buy Request 55.68 177.72 10.13 9.12 81.80 83.62
Buy Confirm 102.88 179.24 23.48 28.42 77.18 72.38
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intervals well within 50% of their corresponding mean values for 
about 90% of the cases. In contrast, the confidence interval width 
for LSQ and LAD was within 50% only for about 70% of the 
cases. Their 90-percentile of confidence interval widths are 215% 
and 130% of their corresponding mean values, respectively. 
Figure 7 (b) shows that confidence interval estimates for DB CPU 
demands for LSQ and LAD diverge from our sample of measured 
confidence intervals after the 70th percentile, i.e., for about 9 of 
the 30 cases. DEC’s confidence interval distribution is similar to 
the measured distribution until the 90-percentile of errors and 
does not diverge in such a large manner. Note that the confidence 
intervals for LAD are about half as wide as those of LSQ. This is 
due to the nature of the confidence interval calculation for LAD 
[4].  
We now discuss possible reasons for the poor confidence interval 
estimates from LSQ and LAD. Closer inspection of the results 
revealed that 6 of the 9 cases for which LSQ and LAD have 
confidence intervals that are much wider than the corresponding 
measured confidence intervals correspond to the six workloads 
constructed to study the impact of multicollinearity. As mentioned 
previously, it is well known that the adverse impact of 
multicollinearity manifests itself as a combination of high 
prediction errors and very wide confidence intervals. However, 3 
of the 9 cases had very wide confidence intervals in spite of 
having low prediction errors. Due to the low prediction errors, 
these represent workloads for which multicollinearity had very 
little impact. A similar behaviour was also observed while 
including those cases for which DEC did not provide an exact 
match. 8 of those 70 cases have low prediction errors but very 
wide confidence intervals. For such cases the wide confidence 
intervals are likely a result of violations of the distributional 
assumptions underlying the confidence interval calculations2. In 
particular, it is likely that these violations are due to the 
confounding of demand distribution information with 
measurement error that is caused by non-deterministic resource 
demands. As discussed previously, confidence intervals for 
DEC’s predictions can be obtained with certainty due to the 
central limit theorem. Consequently, as evident from Figure 7, 

                                                           
2 To verify this further we carried out the standard Quantile-Quantile plot 
visual test [7] for the normality of errors in LSQ. The test indicated that the 
normality assumption deviates significantly in several error regions. 

they are more robust than the confidence intervals obtained with 
LSQ and LAD. 

6. SUMMARY AND CONCLUSIONS 
This paper introduced our newly proposed Demand Estimation 
with Confidence (DEC) for estimating the resource demands of 
services that may be implemented by multi-tier systems. The 
technique differs from related work in that it predicts the 
aggregate resource demand of new workload mixes directly rather 
than by taking the product of the desired mix and per-function 
demand estimates. We evaluated the technique using a 
measurement based case study that employed an e-commerce 
benchmark system. For the cases considered in detail, the CPU 
demands being predicted varied by a factor of up to 265 
depending on workload mix. This demonstrates the importance of 
accurate demand prediction for system sizing, capacity planning, 
costing and pricing, and change impact analysis exercises. 

We found that DEC provides results as accurate and in many 
cases more accurate than the Least Squares (LSQ) and Least 
Absolute Deviation (LAD) regression techniques. It clearly 
outperforms these approaches when the measurement data suffers 
from multicollinearity and outperforms them for many other cases 
as well. Furthermore, DEC has a confidence interval calculation 
that is simple and not impacted by the distribution of per-function 
demands. Regression techniques assume such demands are 
deterministic, which is unlikely for computer system applications. 
Our results suggest that this results in very wide confidence 
intervals that provide poor guidance regarding the validity of the 
demand estimates. DEC’s reported confidence intervals are close 
to observed confidence intervals obtained from measurements. 

The work presented in this paper is novel in that it provides the 
first viable alternative to regression that we are aware of as a 
resource demand estimation technique for computer systems that 
provides both demand estimates and robust confidence interval 
estimates. Together the estimates can help service providers 
assess the risks of providing services to new customers based on 
customer-specific workloads. 

DEC can be adapted in a straightforward manner to address the 
problem of estimating resource demands for a production system 
based on historical measurements data collected from the system.  
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Figure 7. Two-sided confidence interval as percentage of mean demand where LSA had a solution 
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Specifically, demands can be obtained for various mixes based on 
the measurement data.  DEC can then use this demand-workload 
mix mapping to offer predictions for new mixes.  
DEC has several drawbacks. A sufficient number of benchmarks 
must be created and evaluated to enable resource demand 
predictions for a wide variety of workload mixes. Preparing a set 
of benchmarks would benefit from the concept of benchmark 
design [8] to ensure predictive coverage of the workload mix 
space. Furthermore, there may be many different sets of 
benchmarks that can be used to mimic a new workload mix. Each 
may lead to different demand estimates. 
Our future work includes further evaluation of the method for 
different systems. For cases where an exact match is not found, 
we will automate the process of determining an LP formulation 
that achieves the best possible improvements in prediction 
accuracy.  We will also explore generalizations of the technique 
that use historical measurements from production systems as 
input. We also intend to compare the technique with appropriate 
machine learning algorithms such as support vector machines 
[21].  Furthermore, our work will focus on demonstrating how 
DEC can be deployed to handle systems whose demands for a 
given workload mix shift with time.  Finally, challenges 
introduced by systems that have load dependency in demands will 
be addressed.  
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