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ABSTRACT
For garbage-collected applications, dynamically-allocated ob-
jects are contained in a heap. Programmer productivity im-
proves significantly if there is a garbage collector to auto-
matically de-allocate objects that are no longer needed by
the applications. However, there is a run-time performance
overhead in garbage collection, and this cost is sensitive to
heap size H: a smaller H will trigger more collection, but a
large H can cause page faults, as when H exceeds the size
M of main memory allocated to the application.

This paper presents a Heap Sizing Rule for how H should
vary with M . The Rule can help an application trade less
page faults for more garbage collection, thus reducing exe-
cution time. It is based on a heap-aware Page Fault Equa-
tion that models how the number of page faults depends on
H and M . Experiments show that this rule outperforms
the default policy used by JikesRVM’s heap size manager.
Specifically, the number of faults and the execution time are
reduced for both static and dynamically changing M .

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance
of Systems—Modeling techniques; D.4.2 [Operating Sys-
tems]: Storage Management—garbage collection

General Terms
Performance, Languages

Keywords
garbage collection, heap size, page faults, dynamic tuning

1. INTRODUCTION
Most nontrivial programs require some dynamic memory

allocation for objects. If a program is long-running or its
objects are large, such allocation can significantly increase
the memory footprint and degrade its performance. This
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can be avoided by deallocating memory occupied by objects
that are no longer needed, so the space can be reused.

Manual memory deallocation is tedious and prone to error.
Many languages therefore relieve programmers of this task
by having a garbage collector do the deallocation on their
behalf. Several such languages are now widely used, e.g.
Java, C#, Python and Ruby.

Garbage collection is restricted to the heap, i.e. the part
of user memory where the dynamically created objects are
located. The application, also called the mutator, therefore
shares access to the heap with the garbage collector.

1.1 The Problem
The heap size H can have a significant effect on mutator

performance. Garbage collection is usually prompted by a
shortage of heap space, so a smaller H triggers more frequent
runs of the garbage collector. These runs interrupt mutator
execution, and can seriously dilate execution time.

Furthermore, garbage collection pollutes hardware caches,
causing cache misses for the mutator when it resumes exe-
cution; it also disrupts the mutator’s reference pattern, pos-
sibly undermining the effectiveness of the page replacement
policy used by virtual memory management [7, 10].

While a larger heap size can reduce garbage collection and
its negative impact, H cannot be arbitrarily large either. A
process will only get some fraction of main memory allocated
to it. If H exceeds the memory allocation M , part of the
heap will have to reside on disk. This will likely result in
page faults, if not caused by a mutator reference to the heap,
then by the garbage collector. (In this paper, page fault
always refers to a major fault that requires a read from disk.)
In fact, it has been observed that garbage collection can
cause more page faults than mutator execution when the
heap extends beyond main memory [20].

Fig. 1 presents measurements from running mutator pmd

(from the DaCapo benchmark suite [5]) with JikesRVM [1],
using GenMS in its MMTk toolkit as the garbage collector. It
illustrates the impact of H on how page faults vary with M .

In the worst case, H > M can cause page thrashing. Even
if the situation is not so dire, page faults are costly — reading
from disk is several orders of magnitude slower than from
main memory — and should be avoided. It is thus clear
that performance tuning for garbage-collected applications
requires a careful choice of heap size.

Consider the case H = 140MBytes in Fig. 1. If M =
50MBytes, then shrinking the heap to H = 60MBytes would
trigger more garbage collection and double the number of
page faults. If M = 110MBytes, however, setting H =
60MBytes would reduce the faults to just cold misses, and
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Figure 1: How heap size H and memory allocation
M affect the number of page faults n. The garbage
collector is GenMS and the mutator is pmd from the
Dacapo benchmark suite.

the increase in compute time would be more than compen-
sated by the reduction in fault latency. This possibility of
adjusting memory footprint to fit memory allocation is a
feature for garbage-collected systems — garbage collection
not only raises offline programmer productivity, it can also
improve run-time application performance.

However, the choice of H should not be static: from clas-
sical multiprogramming to virtual machines and cloud com-
puting, there is constant competition for resources and con-
tinually shifting memory allocation. In the above exam-
ple, if H = 60MBytes and M changes from 110MBytes to
50MBytes, the number of faults will increase drastically and
performance will plummet. H must therefore be dynami-
cally adjusted to suit changes in M . This is the issue ad-
dressed by our paper:
How should heap size H vary with memory allocation M?

Given the overwhelming cost of page faults, it would help
if we know how the number of faults n incurred by the mu-
tator and garbage collector is related to M and H. This re-
lationship is determined by the complex interaction among
the operating system (e.g. page replacement policy), the
garbage collector (e.g. its memory references change with
H) and the mutator (e.g. its execution may vary with in-
put [11]). Nonetheless, this paper models this relationship,
and applies it to dynamic heap sizing.

1.2 Our Contribution
The first contribution in this paper is an equation that

relates the number of faults n to memory allocation M and
heap size H. This equation has several parameters that en-
capsulate properties of the mutator, garbage collector and
operating system. It is a refinement of the Page Fault Equa-
tion (for generic, possibly non-garbage-collected workloads)
in previous work [16].

Our second contribution is the following
Heap Sizing Rule:

H =

8<
:

M−b
a

for aHmin + b < M < aHmax + b

Hmax otherwise
(1)

This rule, illustrated in Fig. 2, reflects any change in work-
load through changes in the values of the parameters a, b,

minH

Hmax

minH +ba H +ba max

μ

M

H

Figure 2: Heap Sizing Rule. (µ is a lower bound for
M∗ in Eqn. (6); µ ≈ 80 in Fig. 1.)

Hmin and Hmax. Once these values are known, the garbage
collector just needs minimal knowledge from the operating
system — namely, M — to determine H. There is no need to
patch the kernel [8], tailor the page replacement policy [19],
require notification when memory allocation stalls [7], track
page references [20], measure heap utilization [1], watch al-
location rate [6] or profile the application [21].

Rule (1) is in closed-form, so there is no need for iter-
ative adjustments [7, 18, 19, 21]. If M changes dynami-
cally, the rule can be used to tune H accordingly, in contrast
to static command-line configuration with parameters and
thresholds [2, 4, 9, 12].

Most techniques for heap sizing are specific to the collec-
tors’ algorithms. In contrast, our rule requires only knowl-
edge of the parameter values, so it can even be used if there
is hot-swapping of garbage collectors [13].

1.3 An overview
We begin in Section 2 by introducing the Page Fault Equa-

tion. We validate it for some garbage-collected workloads,
then refine it to derive the heap-aware version.

Section 3 derives the Heap Sizing Rule (1), and presents
experiments to show its effectiveness for static M and dy-
namic M . We conclude with a summary in Section 4.

Due to space constraint, we omit some details (experi-
mental set-up, parameter calibration, etc.) but they can be
found in the full paper [15].

2. HEAP-AWARE PAGE FAULT EQUATION
We first recall Tay and Zou’s parameterized Page Fault

Equation in Section 2.1, and Section 2.2 verifies that it works
for garbage-collected workloads. Section 2.3 then derives
from it the heap-aware version.

2.1 Page Fault Equation
Suppose an application gets main memory allocation M

(in pages or MBytes), and consequently incurs n page faults
during its execution. The Page Fault Equation says

n =

j
n∗ for M ≥ M∗
1
2

`
K +

√
K2 − 4

´
(n∗ + n0) − n0 for M < M∗

where K = 1 +
M∗ + Mo

M + Mo
.

(2)
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Figure 3: The Page Fault Equation can fit data for different heap sizes, mutators and garbage collectors.
(i) For H = 60MB, n∗ = 480, M∗ = 89.0, Mo = 14.8 and n0 = 64021 (R2 = 0.994). For H = 140MB, n∗ = 480,
M∗ = 146.2, Mo = 22.7 and n0 = 12721 (R2 = 0.993). (ii) For pmd, n∗ = 420, M∗ = 162.4, Mo = −12.2 and n0 = 220561
(R2 = 0.995). For xalan, n∗ = 480, M∗ = 151.6, Mo = 23.4 and n0 = 12421 (R2 = 0.997). (iii) For MarkSweep,
n∗ = 420, M∗ = 120.6, Mo = 7.9 and n0 = 314318 (R2 = 0.997). For SemiSpace, n∗ = 420, M∗ = 129.0, Mo = −5.5 and
n0 = 260659 (R2 = 0.992).

The parameters n∗, M∗, Mo and n0 have values that depend
on the application, its input, the operating system, hardware
configuration, etc. Having these four parameters is minimal,
in the following sense:
• n∗ is the number of cold misses (i.e. first reference to a

page on disk). It is an inherent property of every reference
pattern, and any equation for n must account for it.
• When n is plotted against M , we generally get a decreas-

ing curve. Previous equations for n models this decrease as
continuing forever [3]. This cannot be; there must be some
M = M∗ at which n reaches its minimum n∗. Identifying
this M∗ is critical to our use of the equation for heap sizing.
• The interpretation for Mo varies with the context [16,

17]. For the Linux experiments in this paper, we cannot
precisely control M , so Mo is a correction term for our esti-
mation of M . Mo can be positive or negative.
• Like Mo, n0 is a correction term for n that aggregates

various effects of the reference pattern and memory manage-
ment. For example, dynamic memory allocation increases
n0, and prefetching may decrease n0 [16]. Again, n0 can be
positive or negative; geometrically, it controls the convexity
of the page fault curve.

2.2 Universality: experimental validation
The Page Fault Equation was derived with minimal as-

sumptions about the reference pattern and memory man-
agement, and experiments have shown that it fits work-
loads with different applications (e.g. processor-intensive,
IO-intensive, memory-intensive, interactive), different replace-
ment algorithms and different operating systems [16]; in this
sense, the equation is universal.

Garbage-collected applications are particularly challeng-
ing because the heap size affects garbage collection frequency,
and thus the reference pattern and page fault behavior. This
is illustrated in Fig. 1, which shows how heap size affects the
number of page faults. Details on the set-up for this and
subsequent experiments are given in the full paper [15].

Classical page fault analysis is bottom-up: it starts with
a model of reference pattern and an idealized page replace-
ment policy, then analyzes their interaction. We have not
found any bottom-up model that incorporates the impact of
heap size on reference behavior.

In contrast, for Eqn. (2) to fit the result of a change in
H, one simply changes the parametric values. Fig. 3(i) il-
lustrates this for the workload of Fig. 1: it shows that the
equation gives a good fit of the page fault data for two very
different heap sizes. The goodness of fit is measured with
the widely-used coefficient of determination R2 (the closer
to 1, the better the fit). Details on how we use regression to
fit Eqn. (2) to the data are in the full paper [15].

A universal equation should still work if we change the
mutator itself. Fig. 3(ii) illustrates this for pmd and xalan,
using the MarkSweep garbage collector and H = 130MBytes.

Universality also means the equation should fit data from
different garbage collectors. Fig. 3(iii) illustrates this for
pmd run with MarkSweep and with another garbage collector,
SemiSpace, using H = 90MBytes.

2.3 Top-down refinement
The Page Fault Equation fits the various data sets by

changing the numerical values of n∗, Mo, M∗ and n0 when
the workload is changed. In the context of heap sizing, how
does heap size H affect these parameters?

The cold misses n∗ is a property of the mutator, so it
is not affected by H. Although the workload has estimated
memory allocation M , it may use more or less than that, and
Mo measures the difference. Our experiments show that, for
a given workload, Mo varies somewhat randomly when heap
size is changed, with no discernible trend. Henceforth, we
consider Mo as constant with respect to H.

Garbage collectors like MarkSweep access the entire heap
when they go about collecting garbage; their memory foot-
print thus grows with heap size, so we expect M∗ to increase
with H. Our experiments show that, in fact, M∗ varies lin-
early with H for all our workloads, i.e.

M∗ = aH + b for some constants a and b. (3)

Yang et al. defined a metric R that is the minimum real
memory required to run an application without substantial
paging [20], and found that R is approximately linear in H.
Their R is approximately our M∗, so Eqn. (3) agrees with
their observation.
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Figure 4: n0 decreases linearly with H, then flattens out.

As for n0, Fig. 4 shows that n0 decreases linearly with H,
then flattens out, i.e.

n0 =

j
cH + d for H < Hmax

cHmax + d for H ≥ Hmax
(4)

for some constants c, d and Hmax. Furthermore, a heap
cannot be arbitrarily small; there is a smallest heap size
such that, for any smaller H, the workload will run out of
memory before completion [14]. There is therefore a bound

Hmin ≤ H for all H. (5)

Eqns. (2), (3), (4) and (5) together give the following:
Heap-Aware Page Fault Equation

n =

j
n∗ for M ≥ M∗
1
2

`
K +

√
K2 − 4

´
(n∗ + n0) − n0 for M < M∗

where K = 1 +
M∗ + Mo

M + Mo
, M∗ = aH + b,

and n0 =

j
cH + d for Hmin ≤ H < Hmax

cHmax + d for H ≥ Hmax

(6)

Note that, rather than a bottom-up derivation, we have
used a top-down refinement of the Page Fault Equation to
derive the heap-aware version.

Besides, Hmin, the refinement introduces new parameters
a, b, c, d and Hmax; what do they mean? We agree with
Yang et al. that the gradient a is a property of the the
collection algorithm. As for the intercept b, it is a measure
of space overhead that is independent of H.

As H increases, there is less garbage collection and n0

decreases; in fact, our experiments show that n0 varies lin-
early with the number of garbage collection. The gradient
c is a measure of the memory taken from the freelist during
garbage collection, Hmax is the smallest H that suffices to
contain all objects created by the workload, and d is im-
plicitly determined by c and the kink in Fig. 4. The full
paper [15] describes these interpretations in greater detail;
it also identifies a lower bound µ for M∗, indicated in Fig. 2.

3. HEAP SIZING
How large should a heap be? A larger heap would reduce

the number of garbage collections, which would in turn re-
duce the application execution time, unless the heap is so
large as to exceed (main) memory allocation and incur page

faults. Heap sizing therefore consists in determining an ap-
propriate heap size H for any given memory allocation M .

The results in Section 2 suggest two guidelines for heap
sizing, which we combine into one in Section 3.1. For static
M , Section 3.2 compares this Rule to that used by JikesRVM’s
default heap size manager. In Section 3.3, we do another
comparison, but with M changing dynamically.

3.1 Heap Sizing Rule
The Heap-Aware Page Fault Equation says that, for a

given H (so M∗ and n0 are constant parameters), the num-
ber of page faults decreases with M for M < M∗, and re-
mains constant as cold misses for M ≥ M∗. Since M∗ =
aH + b, the boundary M = M∗ is H = M−b

a
. We thus get

one guideline for heap sizing, as illustrated in Fig. 5(i).
Recall that the workload cannot run with a heap size

smaller than Hmin. For H > Hmin, a bigger heap would re-
quire less garbage collection. Since garbage collection varies
linearly with n0, and Fig. 4 shows that n0 stops decreasing
when H > Hmax, the heap should not grow beyond Hmax:
the benefit to the mutator is marginal, but more work is cre-
ated for the garbage collector. We thus get another guideline
for heap sizing, as illustrated in Fig. 5(ii).

The two guidelines combine to give the Heap Sizing Rule (1)
that is illustrated in Fig. 2

3.2 Experiments with static M

We first test the Heap Sizing Rule for a static M that is
held fixed throughout the run of the workload. We wanted to
compare the effectiveness of the Rule against previous work
on heap sizing [7, 8, 19, 21]. However, we have no access
to their implementation, some of which require significant
changes to the kernel or mutator.

We therefore compare the Rule to JikesRVM’s heap sizing
policy, which dynamically adjusts the heap size according to
heap utilization during execution. This adjustment is done
even if M is fixed, since an execution typically goes through
phases, and its need for memory varies accordingly.

Fig. 6(i) shows that, for pmd run with MarkSweep, JikesRVM’s
automatic heap sizing indeed results in fewer faults than if H
is fixed at 60MBytes or at 140MBytes for small M ; for large
M (≥ 80MBytes), however, its dynamic adjustments fail to
reduce the number of faults below that for H = 60MBytes.

It is hence unsurprising that, although our Rule fixes H for
a static M , it consistently yields less faults than JikesRVM;
i.e. it suffices to choose an appropriate H for M , rather than
adjust H dynamically according to JikesRVM’s policy.
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M − b
aH=

M

H
.

cold misses only

implies fewer faults
bigger M

(i)

bigger H
implies less garbage collection

Hmax

M

H

minH

.

marginal benefit

not feasible

(ii)

Figure 5: Guideline for heap sizing from (i) the
Heap-Aware Page Fault Equation (6) and (ii) Fig. 4.

Notice that, around M = 80MBytes, page faults under
the Rule drop sharply to just cold misses. This corresponds
to the discontinuity in Fig. 2 at M = aHmin + b.

Since disks are much slower than processors, one expects
page faults to dominate execution time. Fig. 6(ii) bears this
out: the relative performance in execution time between the
two policies is similar to that in Fig. 6(i). The cold miss
segments in the two plots illustrate how, by trading less
page faults for more garbage collection, the Rule effectively
reduces execution time. Fig. 6(iii) shows similar results for
pmd run with SemiSpace.

3.3 Experiments with dynamic M

We next test the Heap Sizing Rule in experiments where
M is changing dynamically.

To do so, we modify the garbage collectors so that, after
each collection, they estimate M by adding Resident Set

Size RSS in /proc/pid/stat and free memory space Mem-

Free in /proc/meminfo (the experiments are run on Linux).
H is then adjusted according to the Rule.

To change M dynamically, we run a background process
that first mlock enough memory to start putting pressure
on the workload, then executes a loop that repeatedly locks
30MBytes (in 10MByte increments) and unlocks them. To
prolong the execution time, we run the mutator 5 times in
succession.

Fig. 7 shows how H responds to such changes for three of
the workloads in our experiments. Since we do not modify
the operating system to inform the garbage collector about
every change in M , adjustments in H occur less frequently
(only when there is garbage collection). Consequently, there
are periods during which H is different from that specified
by the Rule for the prevailing M .

Even so, Table 1 shows that page faults under the Rule is
an order of magnitude less than those under JikesRVM’s au-
tomatic sizing. The gap for execution time is similar. These
indicate the Rule’s effectiveness for dynamic heap sizing.

4. CONCLUSION
Garbage collection increases programmer productivity but

degrades application performance. This run-time effect is
the result of interaction between garbage collection and vir-
tual memory. The interaction is sensitive to heap size H,
which should therefore be adjusted to suit dynamic changes
in main memory allocation M .

We present a Heap Sizing Rule (Fig. 2) for how H should
vary with M . It aims to first minimize page faults (Fig. 5(i)),
then garbage collection (Fig. 5(ii)), as disk retrievals im-
pose a punishing penalty on execution time. Comparisons
with JikesRVM’s automatic heap sizing policy shows that
the Rule is effective for both static M (Fig. 6) and dynamic
M (Table 1). This Rule can thus add a run-time advan-
tage to garbage-collected languages: execution time can be
improved by exchanging less page faults for more garbage
collection (Fig. 6(i) and Fig. 6(ii)).

The Rule is based on a Heap-Aware Page Fault Equa-
tion (6) that models the number of faults as a parameter-
ized function of H and M . The Equation fits experimental
measurements with a variety of garbage collectors and mu-
tators (Fig. 3), thus demonstrating its universality. Its pa-
rameters have interpretations that relate to the garbage col-
lection algorithm and the mutators’ memory requirements
(Section 2.3).
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MarkSweep SemiSpace MarkSweep

pmd pmd xalan

page RVM 425828 680575 352338
faults Rule 36228 36470 64580
execution RVM 4762 8362 4202
time (sec) Rule 419 404 761

Table 1: Automatic heap sizing when M changes dy-
namically: a comparison of JikesRVM’s default policy
and our Heap Sizing Rule.

Our application of the Equation is focused on M∗. Al-
though M∗ is partly determined by the rest of the page
fault curve, we have not used the latter. Tran et al. have
demonstrated how the curve, in its entirety, can be ap-
plied to fairly partition memory and enforce performance
targets when there is memory pressure among competing
workloads [17]. In future work, we plan to similarly apply
the Equation to dynamic heap sharing.
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