
Relating Layered Queueing Networks and
Process Algebra Models

Mirco Tribastone
School of Informatics

The University of Edinburgh
Edinburgh, United Kingdom
mtribast@inf.ed.ac.uk

ABSTRACT
This paper presents a process-algebraic interpretation of the
Layered Queueing Network model. The semantics of lay-
ered multi-class servers, resource contention, multiplicity of
threads and processors are mapped into a model described
in the stochastic process algebra PEPA. The accuracy of the
translation is validated through a case study of a distributed
computer system and the numerical results are used to dis-
cuss the relative strengths and weaknesses of the different
forms of analysis available in both approaches, i.e., simula-
tion, mean-value analysis, and differential approximation.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development—
Modeling methodologies; D.2.8 [Software Engineering]:
Metrics—Performance measures

General Terms
Performance

1. INTRODUCTION
One of the main advatanges of queueing networks for the

performance evaluation of software systems is the availabil-
ity of computationally inexpensive analysis techniques which
scale well with increasing sizes of the system under study.
Queueing models can be subjected to mean-value analysis
(MVA) [19] and more efficient variants thereof [4, 7], which
use the arrival theorem and Little’s law to compute accurate
estimates of average steady-state performance metrics (e.g.
throughput, utilisation, and response time), many orders of
magnitude faster than simulative approaches.

The widespread acceptance of queueing theory in the soft-
ware performance evaluation community has fostered a large
body of research on extending this theory to capture the
dynamics which naturally emerge from complex distributed
software systems. A fundamental contribution of this line
of inquiry is the notion of layered servers. In Woodside’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP/SIPEW’10, January 28–30, 2010, San Jose, California, USA.
Copyright 2009 ACM 978-1-60558-563-5/10/01 ...$10.00.

Stochastic Rendezvous Network model servers may also act
as clients for services offered by other lower-level servers.
In addition, a service may consist of two or more phases,
in which the first phase models the time between the re-
quest and the corresponding reply to the client, whereas
the subsequent ones describe server-side independent com-
putation [23]. Rolia’s Method of Layers proposes a simi-
lar approach for the description of software/hardware mod-
els with layers and resource contention [20]. The Layered
Queueing Network (LQN) model has been shown to include
all these features and support further extensions, includ-
ing activity graphs for sequence, conditional (probabilistic)
branching, fork/join semantics, and quorum consensus syn-
chronisation [9].

As an alternative approach, the distributed nature of the
computation can be captured with process-algebraic tech-
niques. Here, models are constructed as compositions of
agents which are capable of carrying out activities either
autonomously or in cooperation with other agents (e.g, [17,
16]). This form of cooperation models a synchronisation
point which can be used to express communication. Pro-
cess algebras were originally developed as formal specifica-
tion techniques in which time was not explicitly considered,
thus serving as useful tools for the verification of qualitative
properties only. More recently, stochastic extensions have
provided mappings onto continuous-time Markov chains for
performance evaluation [2, 12, 14].

The present work was inspired by [13], in which the au-
thors present a comparison between the Method of Layers
model and stochastic process algebras. The two techniques
are presented as achieving orthogonal goals: on the one
hand, layered queues have the advantage of relatively low
computational cost, but performance results are limited to
mean performance indices; on the other hand, process alge-
bras can provide a richer set of qualitative and quantitative
results. However, the computational cost is usually high be-
cause of the discrete nature of the underlying mathematics,
which is likely to cause combinatorial growth of the state
space with increasing number of components in the system
(state-space explosion problem).

This paper revisits this relationship from a different per-
spective, discussing the benefits of a process-algebraic inter-
pretation of LQN models in light of recent theoretical devel-
opments for the scalability of the analysis of process algebra
models. In particular, the focus is on the process algebra
PEPA [14], in which the problem of state explosion has been
tackled by providing a semantics onto an efficient stochastic
simulation model [3], and more radically with a continuous-

183

think
[0.01] Client

<2>

(3) (1) (1)

(1)

(1)

notify
[0.08]visit Server

<2>

Backup <1>

update
[0.01]

get
[0.01]

(0,1)(0,1)

external
[0.003]

internal
[0.001]

0.95

prepare
[0.01]

ship
[0.01]

&

display
[0.001]

buy

(1) (1)

save
[0.02]

 FileServer <1>

write
[0.001 0.04]

read
[0.01]

PClient
<2>

PServer
<2>

PFileServer
<2>

pack
[0.03]

&

0.05
+

cache
[0.001]

Figure 1: LQN model of a distributed application.

state mapping based on ordinary differential equations [15].
Section 2 gives an overview of the LQN model and PEPA,
emphasising the main notions which will be used in the re-
mainder of the paper. Section 3 presents a methodology
for mapping LQN elements into PEPA processes, cover-
ing many important features such as multiplicity of classes
of servers, multithreaded and multiprocessor computation,
synchronicity of service requests, and the fork/join paradigm
for concurrent behaviour. It also discusses how to obtain
corresponding indices in the PEPA model for throughput
and utilisation. The overall methodology—which is general
and thus can be implemented for automatic translations—is
practically applied to a case study of a distributed system.
In Section 4, this model is used to validate the translation
and compare all forms of analysis available for the two tech-
niques on the basis of accuracy, computational cost, and
richness of the result set. Finally, Section 5 concludes the
paper and gives directions for future work.

2. BACKGROUND

2.1 Layered Queueing Networks
This section gives an informal overview of the LQN model

by means of a running example. The reader is referred
to [9] (and the rich bibliography therein) for a more detailed
treatment. Figure 1 shows a LQN of a distributed appli-
cation which features all of the elements considered in this
paper. Servers (called tasks) are drawn as stacked parallelo-
grams and its multiplicity is indicated within angular brack-
ets alongside the task’s name. For instance, File Server <1>

denotes one single thread of execution for the file server. A
task is deployed onto a processor, depicted as a circle con-
nected to the task. Concurrency levels for processors are
denoted similarly to tasks.

Distinct kinds of services (called entries) exposed by a
task are represented by small parallelograms drawn inside
the task. Each entry is associated with an execution graph
consisting of atomic units of computation called activities,
drawn as rectangles. Activities are arranged through oper-
ators for sequencing (directed arrows), conditional branch-
ing/merging (small circle with the + symbol) and fork/join
synchronisation (small circle with the & symbol). Each ac-
tivity is characterised by a service time demand on the pro-
cessor with which the task is associated, indicated within
square brackets. For the sake of graphical convenience, ex-
ecution graphs which consist of a single activity are not ex-
plicitly drawn, and the activity’s execution demand is di-
rectly shown within the associated entry. In Figure 1 only
the execution graphs of entry visit and buy are drawn. The
former models an activity which accesses some cached in-
formation, after which it performs an internal activity with
probability 0.95 or a more expensive external activity with
probability 0.05. In buy, after the activity prepare is per-
formed the two activities packaging and shipping are exe-
cuted in parallel. When they both finish, display is executed.

Layering of services is modelled by means of requests made
from an activity to an entry in another task in the network.
Requests are indicated by directed arrows and may be of
two kinds: synchronous, with closed arrowheads, and asyn-
chronous, with open arrowheads. Each request is labelled
with a number between parentheses, which gives the num-
ber of requests per execution. This can be interpreted de-
terministically or as the mean of a geometric distribution.
The total number of requests performed by an activity de-
termines the distribution of its execution demand. The total
demand is divided into slices whose duration is drawn from
independent exponential distributions with mean equal to
the ratio between total execution demand and total number
of requests. The execution of one slice is interposed be-
tween successive requests to other entries. Reference tasks
are tasks which do not accept requests and they are used to
model system workload.

For entries which accept synchronous requests, their over-
all behaviour may be subdivided into two phases. The first
phase models the computation carried out from the receipt
of the request until the reply to the caller. Such a reply
is denoted as a dashed arrow pointing to the activity’s en-
try. All such activities in the execution graph that follow
the replying entry are part of the second phase, indicating
an autonomous continuation during which the caller is not
blocked. Execution graphs consisting of two activities such
that each represents the behaviour of one phase can be con-
veniently drawn in a compact form, as illustrated by write
in Figure 1. The execution demand for each phase is drawn
inside the entry within square brackets. The requests from
multi-phase entries are labelled with pairs, in which the i-
th element represents the number of requests made by the
activity in the i-th phase.

2.2 PEPA
A PEPA model consists of a composition of entities which

can perform actions sequentially (sequential components).
Actions may be performed autonomously (independent ac-

184

Table 1: Summary of notation.

Symbol Meaning Meta-variables

A Set of LQN activities a

E Set of LQN entries e

K Synchronicity type. K = {sync, async} k

P Set of LQN processors p

T Set of LQN tasks t

act(p) : P → 2A Set of activities executed on p

act−1(a) : A → P Process on which a is executed

dem(a) : A → R≥0 Total execution demand of activity a

ent(t) : T → 2E Set of entries in task t

mpr(p) : P → N Multiplicity of processor p

mtk(t) : T → N Multiplicity of task t

rep(a) : A → E The entry to which activity a replies (may be empty)

req(a) : A → 2E×N×K Set of requests made by activity a (e, n, k)

N(a) =
P

(e,n,k)∈req(a) n Total number of requests made during activity a

tions) or in synchronisation with other sequential compo-
nents of the system (shared actions). The language supports
the following operators:

Prefix (α, r).P constitutes the atomic unit of computation
of a PEPA model. It is a sequential component which
may perform an action of type α, subsequently behav-
ing as P , which is said to be a local derivative (or local
state) of the component. The duration of the action
is drawn from an exponential distribution with mean
1/r time units.

Choice P + Q indicates that the sequential component may
behave as P or Q . For instance (α, r).P + (β, s).Q
is said to enable actions α and β, which are executed
with probabilities r/(r +s) and s/(r +s), respectively.
Choice between distinct action types will be used to
model different entries within the same task. With a
slight abuse, a PEPA choice between prefixes will be
described using the following sigma notation:X

{(α, r).P |P(α, r ,P)} ,

where P(α, r , P) is a predicate of the choice’s consti-
tuting prefixes, e.g.,X

{(α, i · r).Pi | 1 ≤ i ≤ 2)} def
= (α, r).P1 + (α, 2r).P2

Constant A
def
= P is used to model cyclic behaviour. For

instance, A
def
= (α, r).(β, s).A is a sequential component

with two local derivatives which performs sequences of
α- and β-activities forever.

Cooperation P ��
L

Q is the synchronisation operator of
the language. The processes P and Q are required
to synchronise over the action types in the set L. All
the other actions are performed autonomously. For

instance (α, r).(β, s).P ��
{α}

(α, t).(γ, u).Q is a cooper-

ation between two sequential components which may

perform a shared activity of type α, subsequently be-

having as (β, s).P ��
{α}

(γ, u).Q . Then actions β and γ

are carried autonomously. By contrast, in the coopera-

tion (α, r).P ��
{α}

(β, s).Q the process (α, r).P does not

progress because α is not available in the right hand
side of the cooperation. The set of all shared action
types between P and Q will be denoted by the symbol
∗. Cooperation will be used in the translation of LQNs
into PEPA for two main modelling situations: (i) the
definition of synchronisation point in forks and joins;
(ii) passing the focus of control from one sequential
component to another, e.g., a request from an activity
to an entry.

Hiding P/L renames all the action types of P as silent
actions, indicated by the action type τ . Hiding is not
used in the remainder of this paper.

3. PEPA INTERPRETATION OF LQNS
The main rationale behind the PEPA interpretation of

LQNs presented in this section is to exploit the inherent
concurrent behaviour of replicated tasks and processors, and
model those as copies of identical sequential components
in the process-algebra model. Thus, if T is the sequential
component which describes the behaviour of a task thread,

then the whole server is described as T ��
∅

T ��
∅

· · · ��
∅

T| {z }
N

,

where N is the multiplicity of the server in the LQN model.
The main benefit in using replicated components is that
the model can be subjected to symmetry reduction, leading
to potentially much smaller underlying Markov chains [11].
Furthermore, when interpreted against the continuous-state
semantics, the size and structure of the differential equation
is not dependent upon the actual population levels of the
system. The interpretation of each LQN element is now dis-
cussed in more detail. Table 1 summarises the notation used
in this section.

185

Procp
def
= (acquirep , ν).Execp

Execp
def
=

X
a∈act(p):dem(a)>0

`
a, (N(a) + 1) · dem(a)−1

´
.Procp

Figure 2: Translation of an LQN Processor.

PFileServer ′ def
= (acquirepfs , ν).PFileServer ′′

PFileServer ′′ def
= (read , 1/0.01).PFileServer ′

+ (write1 , 1/0.001).PFileServer ′

+ (write2 , 3/0.04).PFileServer ′

+ (get , 1/0.01).PFileServer ′

+ (update , 1/0.01).PFileServer ′

Figure 3: Translation of PFileServer.

3.1 Processor
The template for the translation of a single processor p is

illustrated in Figure 2, showing a cyclic two-state sequential
component. The first state Procp models an activity which
grants exclusive access to the processor. The rate ν for this
action is assumed to be much faster than any other activity
in the system. The impact of this rate on the performance
results will be examined in Section 4.1.

The second state Execp enables all the actions correspond-
ing to the activities which are executed on p, by means of
the choice operator. Each activity phase is mapped onto a
distinct action type in PEPA and the rate of execution re-
flects the fragmentation of the computation into slices. For
any activity a, the rate of execution of a slice is denoted by
s(a) and it is equal to (cfr. process Execp in Figure 2):

s(a) =

(
(N(a) + 1) · dem(a)−1 if dem(a) > 0

0 if dem(a) = 0

Notice that this interpretation produces a concise descrip-
tion for a processor, whose size is not dependent upon the
distinct classes of service enabled. For example, the trans-
lation of a PFileServer is shown in Figure 3.

3.2 Activity and Request
An LQN activity subsumes a sequence of PEPA prefixes,

whose length depends upon the number of outgoing requests
and their synchronicity. A synchronous call is modelled with
a sequence of two prefixes which model the request and the
reply. The PEPA action type for the request has the form
requesta,e , where a is the activity from which the request
originates and e is the entry called by a. Similarly, the action
type for the reply has the form replya,e . An asynchronous
call is represented with a single prefix of type requesta,e .

The PEPA process corresponding to the LQN activity in-
terposes executions of slices of a between requests. The rates
for requests and replies are here set to ν, i.e., it is assumed
that the delay for message exchange is negligible with re-
spect to the execution demands on the processors. With
respect to the LQN interpretation, this means that the rate
of transition of jobs between queues is very fast. The fol-
lowing snippets of PEPA descriptions will be useful for the

Acta1
def
= Acqa .Acta2

Actai+1
def
=

8>>>><>>>>:
Synca,ei . · · · .Synca,ei| {z }

ni

.Actai+2 if ki = sync

Asynca,ei . · · · .Asynca,ei| {z }
ni

.Actai+2 if ki = async

(ei, ni, ki) ∈ req(a), for all 1 ≤ i < |req(a)|

Case rep(a) = ∅:

Acta|req(a)|+2
def
= Enda

Case rep(a) �= ∅:

Acta|req(a)|+2
def
=

X n
(replya′ ,rep(a), ν).Enda

| ∃(e, n, k) ∈ req(a′) : e = rep(a),∀a′ ∈ A
o

Figure 4: Translation of an LQN Activity.

translation of an activity:

Acqa ≡

8<:
“
acquireact−1(a), ν

”
. (a, s (a)) if s(a) > 0

ε if s(a) = 0

Synca,e ≡ (requesta,e , ν) . (replya,e , ν) .Acqa

Asynca,e ≡ (requesta,e , ν) .Acqa

where Acqa models the access to the processor and the exe-
cution of a slice of activity a. It is an empty string ε if the
activity has no execution demand (with usual properties of
concatenations of empty strings with arbitrary PEPA defini-
tions). Synca,e and Asynca,e model the sequences of prefixes
for synchronous and asynchronous requests (followed by slice
executions), respectively.

The translation of an LQN activity is shown in Figure 4.
The first process definition Acta1 models the first slice exe-
cution. If the activity replies to a synchronous request then
the last constant enables all actions which model replies to
any other activity in the network making a request to the
entry which owns a. The constant Enda is left unspecified
and it is defined according to the structure of the LQN,
as discussed in Section 3.3. As a concrete application, the
translation of write is given in Figure 5. Recalling the se-
mantics of implicit activity invocation, write represents two
distinct activities, here denoted by write1 and write2. Ac-
tivity write1 does not make requests to lower-level server
but it replies to requests to entry write made by get. Activ-
ity write2 is the autonomous continuation which makes two
synchronous requests to the entries get and update of task
Backup.

3.3 Execution Graph
The interpretation of execution graphs follows the ratio-

nale behind the translation of UML activity diagrams into
PEPA models presented in [22]. (The reader is referred to
that paper for a detailed algorithmic description) This sec-
tion presents a conceptual view of the approach, focussing
on the main differences with respect to the original work.
The analogue of a UML action node in the LQN context
is an activity, which represents the atomic unit of computa-

186

First phase

Write ′
1

def
= (acquirepfs , ν).(write1 , 1/0.001).Write ′

2

Write ′
2

def
= (replysave,write , ν).EndWrite ′

Second phase

Write ′′
1

def
= (acquirepfs , ν).(write2 , 3/0.04).Write ′′

2

Write ′′
2

def
= (requestwrite2 ,get , ν).(replywrite2 ,get , ν).

(acquirepfs , ν).(write2 , 3/0.04).Write ′′
3

Write ′′
3

def
= (requestwrite2 ,update , ν).(replywrite2 ,update , ν).

(acquirepfs , ν).(write2 , 3/0.04).EndWrite ′′

Figure 5: Translation of activity write.

tion in an execution graph. However, while an action node is
translated into a single PEPA prefix, an activity is a sequen-
tial component with several local derivatives. Nevertheless,
the two representations share the property that they ex-
hibit some form of sequential computation whose collective
behaviour for the purposes of the translation can be sum-
marised by two PEPA constants which define the initial and
the final state (i.e., Acta1 and Enda in the LQN model). Such
definitions are modified in order to combine distinct activi-
ties according to the semantics of the execution graph.

For activity/execution graphs, the translation algorithm
identifies a number of concurrent control flows. Flows are
created by means of fork nodes (called And-Forks in the
LQN model). For each entry there will be at least one flow,
called the main flow, which executes the initial activity of
the entry’s execution graph. The overall model of an exe-

cution graph can be written in the form Main ��
L

S , where
S is an arbitrary PEPA process consisting of the sequential
components which model the remaining control flows, called
secondary flows.

Precedence
The operator of precedence models the behaviour of one ac-
tivity being executed after the previous one terminates. It
is visually represented by directed arrows connecting two el-
ements of the graph and it can also be implicitly defined by
second-phase entries. The notion of precedence in PEPA is
represented by letting the final state of the preceding ele-
ment coincide with the initial state of the subsequent one.
For instance, the two phases of the entry write—represented
in Figure 5 as two unrelated sequential components with no
notion of precedence relationship—are transformed into a

sequence of activities by letting EndWrite ′ def
= Write ′′

1 (recall
that EndWrite ′ was left intentionally unspecified for this
purpose).

Probabilistic Branching
The translation of probabilistic branching (called Or-fork in
the LQN model) involves manipulating all of the activities
enabled in the final state of its predecessor and retrieving
the information about the constant names which define the
initial states of all the successors of the node. According
to the template for a basic activity in Figure 4, cache is
translated into a sequential component in the simple form

Cache1
def
= (acquireps , ν).(cache , 1/0.001).EndCache .

Being the predecessor of a branching operator, its last ac-
tivity cache is replaced with a PEPA choice as follows:

(cache , 1/0.001).EndCache →
(cache , 0.95 × 1/0.001).Internal1

+ (cache , 0.05 × 1/0.001).External1

This component is capable of performing the activity cache
at the original rate 1/0.001 (obtained as the sum of the two
alternative behaviours), but with probability 0.95 and 0.05
it then behaves as one of its successors, i.e., Internal1 and
External1 , respectively.

Alternative behaviours may merge back into one (Or-join
operator). This is translated in PEPA by letting all of the
final states of the merging elements coincide with the initial
state of the merged behaviour. Or-join nodes are not used
in the running example.

Fork/Join Synchronisation
The presence of a fork/join synchronisation mechanism im-
plies that an entry has explicit concurrent behaviour. This
is captured in PEPA by assigning a sequential component
to each distinct concurrent control flow. Such flows per-
form the activities autonomously and synchronise over ac-
tion types corresponding to fork and join nodes in the exe-
cution graph. A basic activity is uniquely assigned to one
flow and the algorithm keeps track of the initial state of all
flows. This is necessary to define the constituting sequential
components in a cyclic manner. The initial activity of an en-
try’s execution graph is said to start the main control flow
of the entry. All subsequent activities are executed within
the same control flow as is the case for the entry visit. Con-
versely, the entry buy has three control flows. In addition to
the main one started by prepare, two further are spawned by
the fork operator. Their initial states are Prepare1 , Pack1 ,
and Ship1 , respectively defined as follows:

Prepare1
def
= (acquireps , ν).(prepare , 1/0.01).EndPrepare

Pack1
def
= (acquireps , ν).(pack , 1/0.03).EndPack

Ship1
def
= (acquireps , ν).(ship, 1/0.01).EndShip

As with probabilistic branching, the translation of a fork
operator takes as input the set of activities enabled by final
state of the incoming flow and the set of initial states of
the spawned flows. Each activity in the former set is pre-
fixed with a fork activity, carried out at rate ν, indicating
a negligible rate of spawning new processes. Each state in
the latter set is instead modified so as to have fork as the
first enabled activity. For instance, the PEPA component
corresponding to the basic activity prepare is modified to
become

Prepare1
def
= (acquireps , ν).(prepare , 1/0.01).ForkPrepare

ForkPrepare
def
= (fork1 , ν).EndPrepare

where the subscript in the action fork1 is used to uniquely
assign a type to each fork node in the execution graph, for
instance by mapping them into integers. Similarly, Pack1

and Ship1 are prefixed with the fork1 , i.e.,

Pack1
def
= (fork1 , ν).(acquireps , ν).(pack , 1/0.03).EndPack

Ship1
def
= (fork1 , ν).(acquireps , ν).(ship, 1/0.01).EndShip

187

At a join, the algorithm resolves the unspecified final con-
stants of its incoming flows, by making them synchronise
over a join activity (performed at rate ν) and subsequently
cycle back to the flows’ initial states. In the example,

EndPack
def
= (join1 , ν).Pack1

EndShip
def
= (join1 , ν).Ship1

Furthermore, the translation of a join is responsible for re-
solving the unspecified final constant of the incoming flow
at the matching fork, to capture the following semantics: at
a fork, the incoming flow of execution spawns as many flows
as the number of successors, and it is suspended until all of
them have terminated; then, it behaves as the flow corre-
sponding to the outgoing edge at the matching join. In the
example, the component

Display1
def
= (acquireps , ν).(display , 1/0.001).EndDisplay

models the behaviour of the outgoing edge of the join. The
unspecified constant EndPrepare is defined as follows:

EndPrepare
def
= (join1 , ν).Display1

Overall Model of an Execution Graph
Finally, the complete model of an execution graph is repre-
sented as a composition of all the flows’ sequential compo-
nents, cooperating over the action types for forking and join-
ing. The definitions of the secondary flows are not modified
any further, thus they are instantiated with suitable repli-
cation according to the multiplicity of the task to which the
execution graph belongs. Instead, the definitions of the main
flow will be altered when translating an LQN task, during
which its multiplicity will be adjusted. In the example, the
PEPA model of the execution graph for buy is:

Prepare1 ��
L

`
Pack1 [2] ��

L
Ship1 [2]

´
, L = {fork1 , join1}

The overall behaviour of visit, consisting of a single flow
of control is simply represented by the flow’s initial state
Cache1 . In the remainder of this paper, the overall model
of an execution graph will be denoted by the component

Maine ��
Le

Sece , where Maine is the behaviour of the main

flow, without information on its multiplicity, and Sece com-
prises all the secondary flows, with proper multiplicites. The
cooperation set Le consists of fork/join actions in which the
main flow is involved throughout its execution. Under con-
ditions of balanced branching (i.e., each flow spawned at a
fork eventually joins), only one constant corresponding to
the final behaviour of the main flow will be left unspeci-
fied — for instance, Merge in visit, EndDisplay in Buy, and
EndWrite ′′ in write. For an entry e such a constant will be
denoted by Laste .

3.4 Task
A reference task, here denoted by t∗, has the same be-

haviour as its unique entry, denoted by e∗. Instead, a non-
reference task is modelled as a PEPA process which initially
enables the activities corresponding to the invocations of all
its entries, modelled as an initial choice component. When
one of such activities is chosen, the process behaves as the
initial state of the main flow of the execution graph corre-
sponding to that entry. Then, after all activities in that
execution graph are performed, the task component returns
to its initial state in which any entry may be executed. The

Reference Task

Taskt∗
def
= Maine∗

Laste∗
def
= Taskt∗

Non-Reference Task

Taskt
def
=

X n
(requesta,e , ν).Maine | ∃(e, n, k) ∈ req(a) :

e ∈ ent(t),∀a ∈ A
o

Laste
def
= Taskt , for each e ∈ ent(t)

Figure 6: Translation of an LQN Task.

FileServer
def
= (requestexternal,read , ν).Read1

+ (requestthink,read , ν).Read1

+ (requestsave,write1 , ν).Write ′
1

Read1
def
= (acquirepfs , ν).(read , 1/0.01).EndRead

EndRead
def
= FileServer

Write ′
1

def
= . . .

. . . (cfr. Figure 5)

EndWrite ′′ def
= FileServer

Figure 7: Translation of task FileServer.

pattern of transformation of a task is shown in Figure 6.
For instance, the complete translation of the non-reference
task FileServer is given in Figure 7. The entry read starts
executing upon the receipt of either of two messages from
external or think, modelled as two distinct prefixes in the
initial choice which behave as the same component Read1

(the actual behaviour of the entry is independent from the
originator of the request).

3.5 Network
The complete LQN is represented by a PEPA cooperation

which arranges all the components as inferred above and in-
troduces the concurrency levels for the entries’ main flows
and the processors. The pattern of translation is shown

Compt
def
= Taskt [mtk(t)] ��

bL“
Sece1

��
∅

Sece2
��
∅

· · · ��
∅

Sece|ent(t)|

”
where bL =

S|ent(t)|
i=1 Lei , for all t ∈ T

LQN
def
=

“
Compt1

��
cM

Compt2 · · · ��
cM

Compt|T |

”
��
∗“

Procp1 [mpr(p1)] ��∅ Procp2 [mpr(p2)] ��∅ · · ·

��
∅

Proc|P|[mpr(p|P|)]
”
,

where, cM = ∗ −
S

p∈P {acquirep}.

Figure 8: Translation of an LQN.

188

in Figure 8. The definition Compt describes the overall
behaviour of a multithreaded server with multiple entries.
The task behaviour Taskt (subsuming all the main flows of
a task’s entries) is instantiated with the concurrency level
of the task. It is composed in parallel with a group of com-
ponents (within curly braces), each collecting the behaviour
of a secondary control flow for each entry of the task. The
cooperation sets between secondary flows of distinct entries
are empty because no form of communication is possible be-
tween two entries within the same task—an entry’s activity
may only request service from another task of the network.
Conversely, Taskt is composed with all its secondary flows
over a cooperation set which includes all the fork/join action
types in which the main flow of any task’s entry is involved.

The definitions Compt are combined together using coop-

eration sets which can be denoted by the same expression cM .
However, notice that the actual instantiations are all differ-
ent because of the dependence of the set ∗ upon the operands
of the cooperation. In fact, it is possible to show that all such
sets are pairwise disjoint. Observe that, by construction, all

the acquirep action types are not contained in the sets cM .
Any pair of components of type Compt does not exhibit the
same action type for the execution of a basic activity, since
each activity belongs to only one task. The same fork/join
action type cannot be exhibited because these activities are
executed within the same task, and distinct fork/join nodes
give rise to distinct action types in the PEPA model. Thus,

the only potential elements of cM are the action types for
message exchange requesta,e and replya,e . The fact that sets
with such action types are pairwise disjoint follows imme-
diately from the uniqueness of activity and entry names in
the LQN and can be proven by structural induction. For an
arbitrary composition of three components Compt , i.e.,

Compt1
��

cM
Compt2

��
cM

Compt3 ,

component Compt1 may enable request/reply actions with
subscripts (a′, e′), (a′′, e′′), . . . , where e′, e′′, . . . ∈ ent(t1)
and a, b, . . . are basic activities. If some action with sub-
script (a, e) was present in both cooperation sets then it
would mean that both Compt2 and Compt3 can perform the
same basic activity a, which is a contradiction. Then, as-
suming that the property holds for a cooperation among
n > 3 components

Compt1
��

cM
Compt2

��
cM

Compt3
��

cM
· · · ��

cM
Comptn ,

in order to prove that it holds for n + 1 components

Compt1
��

cM
Compt2

��
cM

Compt3
��

cM

· · · ��
cM

Comptn
��

cM
Comptn+1 ,

it suffices to prove that the cooperation set cM in position

· · ·Compti
��

cM
Compti+1 · · · is disjoint from the cooperation

set · · ·Comptn
��

cM
Comptn+1 , for all 1 ≤ i ≤ n − 1. Suppose

that for some i Compti
��

cM
Compti+1 has some action in

common with the set in Comptn
��

cM
Comptn+1 . This im-

plies that the action must be a request/reply action with
subscript (a, e), e ∈ ent(tn+1), because it belongs to the set

Comptn
��

cM
Comptn+1 , and that e ∈ ent(ti+1), which is a

contradiction because i + 1 �= n + 1 but one entry must be-

long to only one task. This property is of crucial importance
because it guarantees that at most two distinct components
Compt synchronise for message exchange.

The group of task components is finally combined with
the group of processors, each taken with its own multiplic-
ity. Processors do not cooperate with each other because
any execution slice must be performed on a single proces-
sor. However, the cooperation set between all task compo-
nents and all processors records the fact that any task may
be deployed on any processor, but the actual processor p
which executes a given activity a will be the only one which
exhibits a in its state Execp (cfr. Figure 2).

The complete PEPA model for the LQN in Figure 1 is
shown in Appendix A.

3.6 Performance Measures
This section is concerned with establishing a relationship

between the utilisation and throughput, as computed from
the solution of the LQN model, and the corresponding per-
formance results which can be obtained from the analysis of
the corresponding PEPA model. Such metrics will be used
in Section 4 to quantitatively assess the soundness of the
translation proposed in this paper.

Utilisation
In the LQN model, utilisation is a performance measure
which indicates the mean number of busy processors at equi-
librium. Hence, it is a figure between zero and the multiplic-
ity of a processor. More fine-grained results can be obtained
by considering the distinct contributions from each of the
activities which run on the processor, the total utilisation
figure being the sum across all such contributions.

In the PEPA model, the total utilisation for a processor p
may be obtained by the mean number of components which
are in state Execp (cfr. Figure 2). However, this information
alone is not sufficient to obtain the contributions from each
of the activities. In order to do so, it is necessary to com-
pute the expectations of all the sequential components of
an activity which perform execution slices on the processor.
Then, the contribution for an activity is given as the sum-
mation across all such expectations. Clearly, if an activity
has two phases, the total contribution is the sum of the con-
tributions of each phase. For instance, the utilisation of pro-
cessor PFileServer due to the execution of write is obtained
by inspection of the sequential components in Figure 5. The
utilisation during the first phase is obtained as the expecta-
tion of the number of sequential components which behave
as (write1 , 1/0.001).Write ′

2 , whereas the utilisation during
the second phase is the sum of the expectation of the follow-
ing three sequential components: (write2 , 3/0.04).Write ′′

2 ,
(write2 , 3/0.04).Write ′′

3 , and (write2 , 3/0.04).EndWrite ′′
2 .

Throughput
The notion of throughput in the LQN model is associated
with a basic activity and it indicates the average number
of executions per unit of time. If the activity makes fur-
ther requests to other entries, the time taken by the other
servers is also taken into account. Conversely, the traditional
definition of throughput for PEPA is related to an action
type (e.g., [22]), implying that it is given for the execution
of a single slice of an activity. Therefore, the throughput
in the sense of the LQN model may be obtained by divid-
ing the throughput per execution slice by the total number

189

Table 2: Sensitivity of rate ν in the PEPA model of
Figure 1. First row: reference values. Other rows:
relative differences with respect to first row.

ν U(PClient) U(PServer) U(PFileServer)

Reference values

1.2E08 0.093856 1.476351 0.680454

Relative differences

1.2E04 1.6846% 1.6846% 1.6848%

1.2E05 0.1708% 0.1714% 0.1708%

1.2E06 0.0169% 0.0170% 0.0170%

1.2E07 0.0015% 0.0015% 0.0015%

of slices for a basic activity. If the activity has two phases,
the throughputs of each phase are summed and then divided
by the total number of execution slices. For instance, the
throughput of write in the sense of the LQN model corre-
sponds to the sum of the throughputs of actions write1 and
write2 , divided by four. As a special case, the LQN through-
put of an activity corresponds to the PEPA throughput of
the associated action type if the activity makes no requests
to other entries.

4. VALIDATION
The model in Figure 1 was used to conduct a validation

study on the quality of the translation. The notion of accu-
racy used throughout this section is based on the difference
between the performance measure obtained from the LQN
model and the corresponding estimate (as discussed in Sec-
tion 3.6) from the PEPA model, according to the following
definition of percentage relative error:

Error % =

˛̨̨̨
PEPA metric − LQN metric

LQN metric

˛̨̨̨
× 100.

This study considered all of the analysis techniques avail-
able in both formalisms, with emphasis on the issue of scala-
bility, i.e., the resilience of the solution methods to increases
in the size of the model under consideration. Here, scala-
bility was studied empirically by estimating the incremental
cost (i.e., runtime) of solving models which maintain the
same topology but with increasingly large resource concur-
rency levels of some of its components. The performance
metrics of interest were the steady-state average utilisations
of the three (multi-) processors, denoted by U(PClient),
U(PServer), and U(PFileServer). The comparison of through-
put measures showed a very similar trend, and it is not re-
ported here due to lack of space.

The results were obtained with the PEPA Eclipse Plug-
in [21] and the Layered Queueing Network Solver software
package [18]. For statistical significance, the execution times
of all analyses presented in this section were averaged over
five independent runs on an ordinary desktop machine.

4.1 Accuracy of the Translation
The exact form of analysis of PEPA models is the nu-

merical solution of the underlying Markov chain, which was
compared against simulation of the LQN using the method
of batch means with automatic blocking and imposing a ter-
mination condition of 1% radius at 95% confidence intervals.

Unless otherwise stated, these are the parameters used in
the remainder of this paper for the simulation of all LQN
models. Given the rapid growth of the state space of the
Markov chain with increasing population sizes, the multi-
plicity of tasks and processors was kept low in this validation
study. However, insight into the sensitivity of the accuracy
was given by varying the execution demands in the model,
which do not have an impact on the cardinality of the state
space.

A crucial element in the PEPA model is ν, the only pa-
rameter which has no counterpart in the LQN model. Be-
cause of its semantics illustrated in the previous section, ν
is to be chosen such that the duration of the activities as-
sociated with this rate is negligible with respect to all other
activities in the system. Table 2 shows the results of a sen-
sitivity analysis conducted across an array of increasingly
large values of ν. The slowest rate, i.e. 1.2E04, is equal to
twenty times the fastest individual rate in the LQN model
(i.e., one slice execution of external). The table reports the
utilisations in terms of percentage relative differences with
respect to the utilisations of the model with largest ν, i.e.,
1.2E08. A tenfold increase to the value ν corresponds to a
decrease in the difference by the same factor, however for
relatively small values of ν the accuracy is very good, with
discrepancies considerably less than one percent.

The level of precision obtained for ν = 1.2E08 was consid-
ered sufficient for the purposes of the present study. The re-
sults are presented in Table 3, which compares the processor
utilisations for different execution demands and multiplicity
of resources. Using the original concurrency levels, the accu-
racy improves by increasing the execution demand of cache,
resulting in the entries of Server having similar overall exe-
cution demands. A noticeable reduction of the error can be
noted when dem(cache) = 0.1, and adjusting the first phase
of write brought only marginal improvements. Configura-
tion B, featuring slightly larger population levels, presents
more accurate results. Overall, there is good agreement be-
tween the two models, and despite the rather large numer-
ical error in some instances, their qualitative behaviour is
compatible.

4.2 Comparison of Simulation Approaches
The exponential growth of the state-space can be tackled

by abandoning explicit enumeration in favour of stochas-
tic simulation. PEPA has been equipped with a semantics
which maps onto Gillespie’s simulation model [10], partic-
ularly suited for systems with large numbers of replicated
agents [3]. The accuracy and scalability of this approach
was compared against LQN simulation. Five instances of
the model in Figure 1 were obtained by varying the mul-
tiplicity of tasks and processors, as listed in Table 4. The
PEPA models were simulated using the method of indepen-
dent replicas run over a sufficiently large time interval so
as to reach equilibrium, using the same confidence-interval
criterion used for the LQN model.

The results in Table 5 show the utilisation U(PFileServer)
and the runtimes obtained for each instance. This metric
was arbitrarily chosen as a representative performance in-
dex, since all the other measures behaved very similarly, as
can be observed by the results presented in Table 3. The
agreement improves with larger populations, giving excel-
lent results as the system under study has tens or hundreds
of clients and many server threads and processing resources.

190

Table 3: Accuracy of the translation of the LQN in Figure 1 (solution of the Markov chain in PEPA vs.
simulation of the LQN). Concurrency configurations: (A) original model; (B) all multiplicities of tasks and
processors set to two. The execution demands not shown in the table are set as in the original model.

Concurrency Demands U(PClient) U(PServer) U(PFileServer)

configuration dem(cache) dem(write1) PEPA LQN Error PEPA LQN Error PEPA LQN Error

A 0.0001 0.0010 0.0950 0.0843 12.67% 1.4681 1.3024 12.72% 0.6888 0.6108 12.78%

A 0.0010 0.0010 0.0939 0.0825 12.44% 1.4763 1.3136 12.39% 0.6804 0.6052 12.42%

A 0.0100 0.0010 0.0844 0.0762 10.80% 1.5561 1.4034 10.88% 0.6121 0.5497 11.35%

A 0.1000 0.0010 0.0406 0.0385 5.57% 1.8465 1.7493 5.56% 0.2947 0.2786 5.79%

A 0.1000 0.0600 0.0349 0.0331 5.20% 1.5839 1.5045 5.28% 0.4585 0.4355 5.28%

B 0.0010 0.0010 0.1172 0.1075 9.03% 1.8440 1.6902 9.10% 0.8499 0.7800 8.96%

B 0.1000 0.0600 0.0380 0.0371 2.53% 1.7267 1.6840 2.54% 0.4998 0.4887 2.28%

Table 4: Model configurations of the LQN in Fig-
ure 1.

Configuration C1 C2 C3 C4 C5

Component

Client 2 10 50 200 1000

Server 2 2 8 20 100

FileServer 2 2 8 20 50

Backup 2 2 8 20 30

PClient 2 2 2 10 30

PServer 2 2 2 10 30

PFileServer 2 2 2 10 30

Table 5: Simulation results for U(PFileServer).

Conf. PEPA LQN Error

Metric (hh:mm:ss) Metric (hh:mm:ss)

C1 0.8494 00:44:41 0.7792 00:00:41 9.05%

C2 0.8660 00:52:50 0.8307 00:01:36 2.34%

C3 0.9314 01:14:25 0.9208 00:08:55 1.14%

C4 4.6002 02:32:19 4.6101 00:39:07 0.21%

C5 13.8640 03:42:31 13.8280 04:47:12 0.26%

Furthermore, the stochastic simulation algorithm for PEPA
is more scalable with respect to increases in the population
levels of the model’s components. For instance, the largest
model was about five times as costly as the smallest one
(whose population levels are about two orders of magnitude
smaller), as opposed to a corresponding increase by a factor
of over 400 in the runtime of the LQN simulation. How-
ever, in absolute terms LQN simulation was much faster
than PEPA simulation in the first four cases, with runtimes
of the same magnitude only for configuration C5.

4.3 Comparison of Approximate Techniques
The main advantage in using approximate techniques is

solution efficiency. This section discusses the MVA approach
for LQNs and the fluid-flow approximation of PEPA based
on ordinary differential equations [15]. Similarly to the pre-
vious section, the comparison considers the computational
cost as well as the accuracy of these forms of analysis using

the model configurations listed in Table 4. The differential
equations were numerically integrated using an implemen-
tation of the adaptive step-size fitfh-order Dormand-Prince
algorithm [8], over an interval of five time units, which en-
sured equilibrium in all cases. For this analysis, the value of
ν was set to 1.2E05. The default parameters of the LQN
analytical solver were not satisfactory for this study, in-
stead Conway’s algorithm [5] was used and the solver op-
tion stop-on-message-loss was turned on to deal with the
asynchronous requests at Server.

Table 6 shows the estimates of the utilisation of PFile-
Server, with percentage errors calculated with respect to the
averages obtained by simulation of the LQN model in Ta-
ble 5. In these instances, fluid-flow analysis is consistently
more accurate than MVA. The error trend of the fluid-flow
approximation of PEPA suggests that it behaves better as
the population sizes in the system increase, reflecting several
general results on the deterministic convergence of stochastic
processes (e.g., [6]). Furthermore, the computational cost of
fluid-flow analysis is low and largely independent from the
population sizes. However, the numerical integration of the
differential equation was found to be stiff with respect to
ν, causing solution runtimes to grow proportionally with its
actual value. For this reason, the value 1.2E05 was consid-
ered to be a better candidate than 1.2E08 in the trade-off
between accuracy and solution efficiency.

In contrast to fluid-flow analysis, the execution runtimes
for MVA were dependent upon the system size, although
they were in general significantly faster than fluid-flow anal-
ysis (between about four and thirty times for configurations
C1–C4 and executing with comparable runtime for config-
uration C5). According to other experiences published in
the literature [9], models with such approximation errors as
those reported here can be considered as being problematic
with respect to the applicability of MVA, and in general one
should expect more accurate results (i.e., within 5%). Nev-
ertheless, these slightly large approximation errors in such
particularly unfavourable instances are an adequate price to
pay for the high efficiency of this solution technique.

4.4 Discussion
The numerical investigation presented in this paper sug-

gests that the PEPA translation of LQN models offers com-
plementary rather than competing analysis techniques for
the performance evaluation of software systems. The origi-
nal semantics of PEPA permits explicit enumeration of the

191

Table 6: Comparison between MVA and fluid-flow
analysis for the estimation of U(PFileServer). Per-
centage relative errors calculated with respect to the
simulation results in Table 5.

Conf. PEPA LQN

Metric (s) Error Metric (s) Error

C1 0.9142 17.5 17.50% 0.6177 0.4 20.59%

C2 0.9157 17.7 10.34% 0.7123 0.7 14.17%

C3 0.9150 16.8 0.76% 1.0895 1.1 18.16%

C4 4.5771 20.9 0.71% 4.1717 6.5 9.51%

C5 13.7303 17.4 0.71% 11.1700 22.5 19.22%

complete state space of the model, enabling forms of anal-
ysis, e.g., model-checking, which do not require the solu-
tion of a performance model, but nevertheless give insight
into the qualitative behaviour of the system. In relatively
small models for which the numerical solution of the under-
lying Markov chain is feasible, other indices of performance
are possible beyond those considered in the LQN model.
For instance, the technology of stochastic probes for PEPA
supports passage-time analysis in which complex passages
over the Markov chain can be described using a rich lan-
guage based on regular expressions over the model’s process-
algebraic terms [1].

As observed in Table 5, the rapid growth of the LQN
simulation time with increasing concurrency levels indicates
that PEPA stochastic simulation is preferred for the analysis
of systems with many independent replicas, for which results
are provided with very good accuracy. Conversely, LQN
simulation is the method of choice when the multiplicities
levels are relatively low, since the execution runtimes may
be some orders of magnitude smaller.

More interesting is the comparison between MVA and
fluid-flow analysis. Although both techniques are sufficiently
accurate, fluid-flow analysis behaved remarkably well in the
instances analysed in Section 4.3, especially in cases ex-
hibiting components with an appreciable number of replicas.
Fluid-flow analysis has very strong resilience to increases in
the mutiplicity levels, executing in similar lengths of time
across the whole validation set. Again, for this reason this
solution techique is more desirable than MVA for large-scale
systems. In smaller models fluid-flow analysis appears to
be less advantageous because of its higher computational
cost. However, it should be noted that the execution time
is a function of the integration interval, which was here set
conservatively to five time units to ensure steady-state con-
ditions in all cases. Thus, speed-up of fluid-flow analysis
should be expected if the numerical integrator employed ter-
mination conditions based on the detection of equilibrium
points for the solution.

Nevertheless, fluid-flow analysis in smaller models may
be still preferred over MVA because it also provides tran-
sient measures of performance, extracted from the solution
of the differential equation over a finite time interval. This
information can be used to reason about different quanti-
tative characteristics, such as warm-up periods (defined as
the time interval necessary to reach equilibrium from some
initial condition) and peak throughputs and utilisations. An
example is shown in Figure 9, which plots the temporal evo-

0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

40

Time

U
til

is
at

io
n

U(PClient)
U(PServer)
U(PFileServer)

Figure 9: Temporal evolution of the utilisation of
the processors of configuration C5 over the first two
time units.

lution of the utilisation of the processors over the first two
time units for the model configuration C5, clearly identify-
ing PServer as the bottleneck of the system since almost all
(i.e., 29.74) of the available processors are kept busy after a
warm-up period of about 0.02 time units.

5. CONCLUSIONS
This paper presented an interpretation of LQNs as PEPA

process algebra models. It supports a generous subset of the
LQN model, including: synchronous and asynchronous re-
quest types, multiplicity of tasks and processors, two-phase
activities, and execution graphs for the description of se-
quentiality, conditional branching, and fork/join synchroni-
sation. Ongoing work is concerned with extending this ap-
proach to other features not considered here, such as loop-
ing in execution graphs, synchronisation based on quorum
consensus mechanisms, and forwarded replies (whereby the
reply of one entry is delegated to some other entry in the
network). The interpretation of the request count parame-
ter corresponds to the deterministic semantics of the LQN
model, i.e., the request is performed exactly the number of
times shown in the request label. This is being extended
to include requests with geometrical distributions. Finally,
here all execution demands are assumed to be distributed
exponentially, although the LQN model supports activities
with arbitrary variance. This extension can be included in
the present approach by using suitable phase-type distribu-
tions.

The validation conducted on a model which incorporates
all of the supported features gave confidence on the sound-
ness of the translation. Most important, it has shown that
the solution methods of PEPA can be exploited in the LQN
context to improve the efficiency of the analysis under the
condition of models with large numbers of replicas, as well
as to enrich the analysis with information on the transient
behaviour of the system under study.

192

6. ACKNOWLEDGEMENT
The author thanks Stephen Gilmore for his comments on

an earlier draft of this paper.
This work is supported by the EU FET-IST Global Com-

puting 2 project SENSORIA (“Software Engineering for Service-
Oriented Overlay Computers”) IST-3-016004-IP-09).

7. REFERENCES
[1] A. Argent-Katwala, J. Bradley, and N. Dingle.

Expressing performance requirements using regular
expressions to specify stochastic probes over process
algebra models. In Proceedings of the Fourth
International Workshop on Software and
Performance, pages 49–58, Redwood Shores,
California, USA, Jan. 2004. ACM Press.

[2] M. Bernardo and R. Gorrieri. A tutorial on EMPA: A
theory of concurrent processes with nondeterminism,
priorities, probabilities and time. Theor. Comput. Sci.,
202(1-2):1–54, 1998.

[3] J. T. Bradley and S. T. Gilmore. Stochastic simulation
methods applied to a secure electronic voting model.
Electr. Notes Theor. Comput. Sci., 151(3):5–25, 2006.

[4] K. M. Chandy and D. Neuse. Linearizer: A heuristic
algorithm for queueing network models of computing
systems. Commun. ACM, 25(2):126–134, 1982.

[5] A. Conway. Fast approximate solution of queueing
networks with multi-server chain-dependent fcfs
queues. In R. Puigjaner and D. Potier, editors,
Modeling Techniques and Tools for Computer
Performance Evaluation, pages 385–396, New York,
1989. Plenum.

[6] R. Darling and J. Norris. Differential equation
approximations for Markov chains. Probability
Surveys, 5:37–79, 2008.

[7] E. de Souza e Silva, S. S. Lavenberg, and R. R.
Muntz. A clustering approximation technique for
queueing network models with a large number of
chains. IEEE Trans. Computers, 35(5):419–430, 1986.

[8] J. Dormand and P. Prince. A family of embedded
Runge-Kutta formulae. Journal of Computational and
Applied Mathematics, 6(1):19–26, March 1980.

[9] G. Franks, T. Omari, C. M. Woodside, O. Das, and
S. Derisavi. Enhanced modeling and solution of
layered queueing networks. IEEE Trans. Software
Eng., 35(2):148–161, 2009.

[10] D. Gillespie. Exact stochastic simulation of coupled
chemical reactions. Journal of Physical Chemistry,
81(25):2340–2361, December 1977.

[11] S. Gilmore, J. Hillston, and M. Ribaudo. An efficient
algorithm for aggregating PEPA models. IEEE
Transactions on Software Engineering, 27(5):449–464,
May 2001.

[12] N. Götz, U. Herzog, and M. Rettelbach. TIPP—a
language for timed processes and performance
evaluation. Technical Report 4/92, IMMD7, University
of Erlangen-Nürnberg, Germany, Nov. 1992.

[13] U. Herzog and J. A. Rolia. Performance validation
tools for software/hardware systems. Perform. Eval.,
45(2-3):125–146, 2001.

[14] J. Hillston. A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

[15] J. Hillston. Fluid flow approximation of PEPA models.
In Proceedings of the Second International Conference
on the Quantitative Evaluation of Systems, pages
33–43, Torino, Italy, Sept. 2005. IEEE Computer
Society Press.

[16] C. A. R. Hoare. Communicating sequential processes.
Commun. ACM, 21(8):666–677, 1978.

[17] R. Milner. A Calculus of Communicating Systems.
Springer-Verlag, 1980.

[18] Real-Time and Distributed Systems group,
Department of Systems and Computer Engineering,
University of Carleton. LQNS software package.
http://www.sce.carleton.ca/rads/lqns.

[19] M. Reiser and S. S. Lavenberg. Mean-value analysis of
closed multichain queuing networks. J. ACM,
27(2):313–322, 1980.

[20] J. A. Rolia and K. C. Sevcik. The method of layers.
IEEE Trans. Software Eng., 21(8):689–700, 1995.

[21] M. Tribastone, A. Duguid, and S. Gilmore. The PEPA
Eclipse Plug-in. Performance Evaluation Review,
36(4):28–33, March 2009.

[22] M. Tribastone and S. Gilmore. Automatic extraction
of PEPA performance models from UML activity
diagrams annotated with the MARTE profile. In
A. Avritzer, E. J. Weyuker, and C. M. Woodside,
editors, Proceedings of the 7th International Workshop
on Software and Performance, WOSP, pages 67–78,
Princeton NJ, USA, 2008. ACM.

[23] C. M. Woodside. Throughput calculation for basic
stochastic rendezvous networks. Perform. Eval.,
9(2):143–160, 1989.

APPENDIX

A. COMPLETE PEPA MODEL
Client (Reference Task)

Client1
def
= (acquirepc , ν).(think , 8/0.01).Client2

Client2
def
= (requestthink,visit , ν).(replythink,visit , ν).

(acquirepc , ν).(think , 8/0.01).Client3

Client3
def
= (requestthink,visit , ν).(replythink,visit , ν).

(acquirepc , ν).(think , 8/0.01).Client4

Client4
def
= (requestthink,visit , ν).(replythink,visit , ν).

(acquirepc , ν).(think , 8/0.01).Client5

Client5
def
= (requestthink,buy , ν).(replythink,buy , ν).

(acquirepc , ν).(think , 8/0.01).Client6

Client6
def
= (requestthink,notify , ν).

(acquirepc , ν).(think , 8/0.01).Client7

Client8
def
= (requestthink,save , ν).(replythink,save , ν).

(acquirepc , ν).(think , 8/0.01).Client9

Client9
def
= (requestthink,read , ν).(replythink,read , ν).

(acquirepc , ν).(think , 8/0.01).Client1

193

Server

Server
def
= (requestthink,visit , ν).Cache1

+ (requestthink,buy , ν).Prepare1

+ (requestthink,notify , ν).Notify1

+ (requestthink,save , ν).Save1

Cache1
def
= (acquireps , ν).h

(cache , 0.95 × 1/0.001).Internal1

+ (cache , 0.05 × 1/0.001).External1
i

Internal1
def
= (acquireps , ν).(internal , 1/0.001).Internal2

Internal2
def
= (replythink,visit , ν).EndInternal

EndInternal
def
= Server

External1
def
= (acquireps , ν).(external , 2/0.001).External2

External2
def
= (requestexternal,read , ν).(replyexternal,read , ν).

(acquireps , ν).(external , 2/0.001).External3

External3
def
= (replythink,visit , ν).EndExternal

EndExternal
def
= Server

Prepare1
def
= (acquireps , ν).(prepare , 1/0.01).ForkPrepare

ForkPrepare
def
= (fork1 , ν).EndPrepare

EndPrepare
def
= (join1 , ν).Display1

Display1
def
= (acquireps , ν).(display , 1/0.001).Display2

Display2
def
= (replythink,buy , ν).EndDisplay

EndDisplay
def
= Server

Notify1
def
= (acquireps , ν).(notify , 1/0.08).EndNotify

EndNotify
def
= Server

Save1
def
= (acquireps , ν).(save , 2/0.02).Save2

Save2
def
= (requestsave,write , ν).(replysave,write , ν).

(acquireps , ν).(save , 2/0.02).Save3

Save3
def
= (replythink,save , ν).EndSave

EndSave
def
= Server

Server’s Secondary Flows

Pack1
def
= (fork1 , ν).(acquireps , ν).(pack , 1/0.03).EndPack

EndPack
def
= (join1 , ν).Pack1

Ship1
def
= (fork1 , ν).(acquireps , ν).(ship, 1/0.01).EndShip

EndShip
def
= (join1 , ν).Ship1

FileServer

FileServer
def
= (requestthink,read , ν).Read1

+ (requestexternal,read , ν).Read1

+ (requestsave,write1 , ν).Write′
1

Read1
def
= (acquirepfs , ν).(read , 1/0.01).Read2

Read2
def
= (replythink,read , ν).EndRead

+ (replyexternal,read , ν).EndRead

EndRead
def
= FileServer

Write′
1

def
= (acquirepfs , ν).(write1 , 1/0.001).Write′

2

Write′
2

def
= (replysave,write1 , ν).EndWrite′

EndWrite′ def
= Write′′

1

Write′′
1

def
= (acquirepfs , ν).(write2 , 3/0.04).Write′′

2

Write′′
2

def
= (requestwrite2 ,get , ν).(replywrite2 ,get , ν).

(acquirepfs , ν).(write2 , 3/0.04).Write′′
3

Write′′
3

def
= (requestwrite2 ,update , ν).(replywrite2 ,update , ν).

(acquirepfs , ν).(write2 , 3/0.04).EndWrite′′

EndWrite′′ def
= FileServer

Backup

Backup
def
= (requestwrite2 ,get , ν).Get1

+ (requestwrite2 ,update , ν).Update1

Get1
def
= (acquirepfs , ν).(get , 1/0.01).Get2

Get2
def
= (replywrite2 ,get , ν).EndGet

EndGet
def
= Backup

Update1
def
= (acquirepfs , ν).(update , 1/0.01).Update2

Update2
def
= (replywrite2 ,update , ν).EndUpdate

EndUpdate
def
= Backup

PClient

PClient ′ def
= (acquirepc , ν).PClient ′′

PClient ′′ def
= (think , 8/0.01).PClient ′

PServer

PServer ′ def
= (acquireps , ν).PServer ′′

PServer ′′ def
= (cache , 1/0.001).PServer ′

+ (internal , 1/0.001).PServer ′

+ (external , 2/0.001).PServer ′

+ (prepare , 1/0.01).PServer ′

+ (pack , 1/0.03).PServer ′ + (ship, 1/0.01).PServer ′

+ (display , 1/0.001).PServer ′

PFileServer: (cfr. Figure 3)
Complete Layered Queueing Network“

Client [2] ��
M1

`
Server [2] ��

L1
Pack1 [2] ��

L2
Ship1 [2]

´
��
M2

FileServer [1] ��
M3

Backup[1]
”

��
M4

“
PClient [2] ��

∅
PServer [2] ��

∅
PFileServer [2]

”
,

M1 =
˘
requestthink,visit , replythink,visit requestthink,buy ,

replythink,buy , requestthink,notify , requestthink,save ,

replythink,save

¯

L1 = L2 =
˘
fork1 , join1

¯

M2 =
˘
requestthink,read , replythink,read , requestexternal,read

¯

replyexternal,read , requestsave,write1 , replysave,write1

¯

M3 =
˘
requestwrite2 ,get , replywrite2 ,get , requestwrite2 ,update ,

replywrite2 ,update

¯

M4 =
˘
acquirepc , think , acquireps , cache , internal , external ,

prepare , pack , ship, display ,notify, display , acquirepfs ,

read , write, get, update
¯

194

