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ABSTRACT
In this paper we provide a general method to derive product-
form solutions for stochastic models. We take inspiration
from the Reversed Compound Agent Theorem [14] and we
provide a different formulation using labeled automata, a
generalization which encompasses a bigger class of product-
form solutions, and a new proof based on the solution of
the system of global balance equations. We show that our
result may have practical applications in the performance
evaluation of complex software and hardware architectures
and can be the base for the development of new analysis
tools or the extension of existing ones.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Modeling tech-
niques

General Terms
Performance

Keywords
Queuing theory, Product form solutions.

1. INTRODUCTION
Performance engineering is about development of efficient

computer and communication systems by providing a crucial
performance analysis during the design phase. In essence,
this requires the definition of a model and the analysis of
relevant properties. Creating a model for analysis is quite
common to both software engineering and performance anal-
ysis communities. The kind of model and the analysis dis-
tinguish the two communities.
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It has been established [29] that performance evaluation
should be introduced at the early stages of development
of software to avoid disproportionate costs of redesign and
reimplementation of software. This means finding a suit-
able modeling formalism that allows both software develop-
ment and performance analysis. In this direction a lot of
work has been done by annotating UML or by directly us-
ing process calculi in the design and validation of complex
interactive systems [19]. Transition systems, which are la-
beled automata, are also used in software engineering for
development of distributed systems [24]. An automaton is a
state machine that formally establishes how a system moves
from one state to another. Probabilistic and stochastic au-
tomata are also used as basis formalism for model checking
[2], which is a fundamental technique in design and verifica-
tion of complex systems.

In this paper we focus on developing a performance anal-
ysis technique that may be applied to a variety of different
distributed systems. For this reason, we formulate our anal-
ysis in terms of labeled automata, or transition systems. The
stochastic models that we study are those whose underlying
processes are Continuous Time Markov Chains (CTMCs).
In particular, we focus our attention on characterizing the
steady-state probability distributions as product-form solu-
tions. Product-form solutions express the steady-state prob-
abilities of a model as the product of the marginal steady-
state distributions of the components which the system is
composed of. This is particularly useful in the analysis of
systems with large state spaces, when computing the steady-
state probabilities is quite expensive or unfeasible. Steady-
state probabilities are the core of performance analysis as
they are needed to obtain significant performance measures,
such as the throughput or response time distribution [11,
18]. Response time distribution is crucial in guaranteeing
the Quality of Service (QoS) since it determines the dis-
tribution of the time customers spend waiting for service.
Product-form solutions are very useful in software engineer-
ing: in fact, in presence of product-form solutions, differ-
ent metrics of performance that depend on the steady-state
probabilities, can be calculated in a modular way starting
from the components of the system [18]. For example in [5,
6] the authors maps a set of UML diagrams into product-
form queueing networks, so that they can efficiently perform
an exact analysis and derive the desired performance mea-
sures.

Product-form solutions have been extensively studied, e.g.,
[21, 27, 7, 25, 12, 8], for different systems in the theory of
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Markovian stochastic models. The holy grail in this field
consists in finding general conditions that characterize (most
of) the systems that have product-form solution. In this
direction a lot of work has been done using Generalized
Stochastic Petri Nets (GSPNs) [10, 3, 4] and Performance
Evaluation Process Algebra (PEPA) [13, 28, 20, 9]. In this
paper we take a different approach [17] and we use a variant
of labeled automata. Before presenting the novel results, we
informally describe the type of synchronization we deal with
in labeled automata. Roughly speaking, two automata syn-
chronize in the sense that some transitions in one of them
cause a transition in the other. The synchronized transi-
tions cannot be done by an automaton in an autonomous
way. We call active transitions those that govern the syn-
chronization, and passive the others. Our starting point is
the Reversed Compound Agent Theorem (RCAT)[14], yet
we expand that work in several directions:

• We first notice that in the original formulation there
were some limitations [14]. In the example of Section 4
we show that there exist models such that the original
structural conditions of RCAT do not hold even if they
are in product-form. The logical conclusion is that
there exist more general conditions that characterize
a larger class of systems in product-form. Specifically,
one of the original conditions of RCAT imposes that in
each possible state of the automata there exists only
one synchronizing incoming active action. In this pa-
per, we generalize this condition by considering a finite
number of incoming active actions in each state of the
components of the system.

• We provide a new, entirely different proof of the theo-
rem (with respect to that formulated for RCAT) based
on the global balance equations (GBEs) analysis. The
proofs in the original papers [14, 16] and all their subse-
quents were based on the application of Kolmogorov’s
criteria. Finally, we think that it is worthwhile point-
ing out that the usage of the GBEs allows us to give
a formulation that does not explicitly need the idea of
reversed processes. The latter is not at all intuitive
when working with models of real systems.

• We have decided to depart from the original formula-
tion of the theorem in terms of PEPA in favor of the
new formulation based on labeled automata. There
are several motivations for this choice:

1. Automata are widely used in software engineering
for distributed system. We think that this should
make the application of our results easier.

2. The definition of automata retains the composi-
tionality of process algebra, and allows for mod-
ular descriptions of systems.

3. Since most of the results about product-form con-
cerns stochastic models with an underlying CTMC,
we think that using automata is appropriate for
both comparing in the same formalism the well
known results, and for being able to describe hy-
brid models, i.e. models that consist of compo-
nents specified by different formalisms. In par-
ticular, the synchronization semantic that we use
is suitable for specifying the interactions among

queues in a queueing network, or among the tran-
sitions in stochastic Petri nets. The only limi-
tation is that a synchronized transition must in-
volve exactly two automata. Future extensions
may deal with multiple synchronizations.

In the paper we provide a detailed comparison of our work
both with RCAT and the conditions of the Markov implies
Markov property (M ⇒ M). This property, introduced by
Muntz in [27] plays a pivotal role in the characterization
of the queueing disciplines which lead to a product-form
like BCMP. We show that the generalization that we pro-
pose is not trivial, and indeed characterizes a larger class
of product-form solutions than those identified both by the
M ⇒ M and RCAT. Informally, we can say that the main
theorem that we present defines a unique framework which
includes both RCAT and the M ⇒ M product-form model
classes.

Finally, we provide a practical example (see Figure 6) to
show that our theoretical work has useful applications in the
performance evaluation of distributed systems. Our exam-
ple, taken from distributed service could not have been dealt
by either RCAT or the M ⇒M . Yet, the product-form solu-
tion follows from the application of Theorem 1 very straight-
forwardly. Briefly, our system consists of two databases,
namely DB1 and DB2. DB1 serves the requests of TYPEA,
while DB2 serves the requests of TYPEB. The requests ar-
rive to the databases through a communication line that
has two channels. The databases require a sort of synchro-
nisation and it can happen that a transaction in the first
database causes a canceling of a transaction in the second
database (or vice-versa). The two databases are modeled as
G-queues [12], while the channel that receives the requests
and sends back the answers is a Multiserver Station with
Concurrent Class of Customers (MSCCC) as described in
[25].

The rest of the paper is organized as follows: in Section 2
we provide the basic definitions for the Labeled Markov Au-
tomata (LMAs) and how the underlying CTMCs are defined;
in Section 3 we discuss our theorem and we compare it with
RCAT and with the M =⇒ M property. We also provide
a sketch of the proof of the theorem. In Section 4 we use
the theoretical results in an example taken from distributed
system analysis. We comment on the fact that none of the
results before could deal with such an example. Conclusion
of our work and suggestion for future work follow.

2. LABELED MARKOV AUTOMATA (LMA)
We assume the reader familiar with probability theory and

the basics of CTMCs.
In this section we provide the basic definitions that will

allow us to define the cooperation among CTMCs.

Definition 1 (Labeled automaton) A Markov automa-
ton is a tuple

M = 〈S,Act,→〉
such that:

1. S is the denumerable set of states ( state space) with
s1, s2, . . . sn, . . . range over it,

2. Act is the set of action labels with a, b, . . . range over
it,
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Figure 1: Graphical representation of the Markov
automaton M1

3. → is the transition relation between states defined as
follows:

→: S× Act× (IR+ ∪Var)× S,

where IR+ is the set of positive real numbers and Var
is the set of variable names such that if a ∈ Act the
xa ∈ Var.

For readability, we write (s1, a, λ, s′1) ∈→ as s1
a,λ−→ s′1. We

define two sets A(M) and P(M), active actions and passive

actions, such that for every a ∈ Act if s
a,λ−→ s′, with λ ∈ IR+,

then a ∈ A(M), and if s
a,xa−→ s′, with xa ∈ Var, then

a ∈ P(M).

Initially, one can think a LMA as a CTMC were the tran-
sitions have been labeled. An easy way to understand the
behavior of LMAs is to draw (when possible) the transitions
as in the following example.

Example 1 Let us consider the following labeled automaton
that is depicted by Figure 1:

M1 = 〈S1,Act1,→〉
where S1 = {s1, s2, s3} and Act1 = {a, b, c, d} and

→= {(s1, a, λ, s2), (s2, c, δ, s3), (s3, b, ν, s2), (s1, d, δ, s1)}
A more readable notation would be: s1

a,λ−→ s2, s1
d,δ−→ s1,

s2
d,δ−→ s3, s3

b,ν−→ s1.

The reader might be puzzled by the use of labels in Markov
Automata. Their rôle will become apparent in the following
definition of interactive Markov automata, where the labels
will help in defining which actions should co-operate and
which should not.

Definition 2 (Interacting LMAs) Let

M1 = 〈S1,Act1,→1〉 and M2 = 〈S2,Act2,→2〉
be two LMAs.

The interacting LMAM1⊕LM2 = 〈S, Act,→, 〉 with L ⊆
Act1 ∩Act2 is a new automata defined as follows:

1. S = S1 × S2.

2. Act = Act1 ∪Act2.

3. → is the smallest relation defined by the rules below:

s1
a,λ−→1 s′1 s2

a,xa−→2 s′2

(s1, s2)
a,λ−→ (s′1, s

′
2)

(a ∈ L)

s1
a,xa−→1 s′1 s2

a,λ−→2 s′2

(s1, s2)
a,λ−→ (s′1, s

′
2)

(a ∈ L)

s1
a,r−→1 s′1

(s1, s2)
a,r−→ (s′1, s2)

(a /∈ L)

s2
a,r−→2 s′2

(s1, s2)
a,r−→ (s1, s

′
2)

(a /∈ L)

We reserve the Greek letters to range over IR+, the and the
Romans u, q, p over IR+ ∪Var and the letter xa, ya, za . . . or
simply x, y, z, . . . to range over Var. We call the set of labels
L the cooperation set.

The definitions above clearly show that LMAs are more
than simple labeled CTMCs. First of all, transitions are di-
vided into active and passive. Active transitions are those
with an associated delay, i.e., a rate which is a real number;
Passive transitions are those whose delays are undefined,
i.e.,the rate is a variable. Passive transitions are meaningful
to define the cooperation among automata. Cooperation be-
tween automata happens only between an active and a pas-
sive action, never between two active actions or two passive
actions. In the cooperation the unspecified rate moves at the
speed of the automaton with the active rate. The meaning of
passive transition is directly inspired by PEPA [19], instead
of using the symbol � we use variables for convenience. We
will see later that we are assuming that each state in each
automaton has at most one outgoing passive transition with
respect to each label. We do not need to attach weights to
the passive actions as in PEPA [19]. Note that our coopera-
tion is more restrictive with respect to that defined in PEPA,
yet fully adequate to the purpose of our work here. Gener-
alization of cooperating automata that deals with active-
active transitions is possible, but outside the scope of our
work. The use of variables at this point is just needed to de-
note that a passive transition occurs with an unknown rate,
since it depends on the transitions of other automata. If
an automaton does not contain any passive transition, then
the underlying model description is a CTMC. To see this it

suffices to associate to each transition s1
a,λ−→ s2 a random

variable Xa,λ such that IP(Xa,λ ≤ t) = 1 − e−λt. On this
basis we justify the following definitions.

Definition 3 (Open and closed automata) We distin-
guish the following classes of automata:

1. A LMA M = 〈S, Act,→〉 is called open if there exists
a label a ∈ Act and a state s ∈ S such that a passively
enabled in s, i.e., ∃s′ ∈ S such that s

a,xa−→ s′ and s �= s′.

2. A LMAM = 〈S, Act,→〉 is called closed if is not open.

Given a closed LMAM all the transitions are carried out
according to an exponentially distributed random delay. If
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more than one transition is possible from a state s then that
with the minimum random delay will occur. Therefore, the
state residence time is exponentially distributed and we can
define the underlying time-homogenuous CTMC as follows:

• each state of the automaton is a state of the CTMC

• the transition rate q(s, s′) from state s to state s′ in
the CTMC is given by the sum of the rates of all the
labeled transitions of the automaton from s to s′, i.e.:

q(s, s′) =
X

(a,λ):s
a,λ−→s′

s�=s′

λ

Differently from CTMC, an automaton can perform self-
loops, which are not relevant in the underlying CTMC. There-
fore, for closed automata we can directly derive the CTMC.
In this setting we can also define the instantaneous transi-
tion q(s, a, s′) due to activity-type a is defined as:

q(s, a, s′) =
X

λ: s
a,λ→ s′

s�=s′

λ.

Clearly, the stochastic process underlying any automaton
defined by the interaction of two LMAs is a CTMC.

Finally, we introduce the notion of irreducible LMA.

Definition 4 (Reachability set) Let M = 〈S,Act,→〉 be
a LMA.

1. A state s′ is said to be reachable in one step from s if

for some a ∈ Act and t ∈ IR+ ∪Var, s
a,t−→ s′.

2. A state sn is said to be reachable from s1 if for some
a1, . . . , an ∈ Act and t1, . . . tn ∈ IR+∪Var and s2, . . . ,

sn−1 ∈ S we have s1
a1,t1−→ s2

a2,t2−→ s3 . . . sn−1
an,tn−→ sn.

We write Reach(s) the set of all reachable states from s.

Definition 5 (Irreducible LMA) A LMAM = 〈S,Act,→
〉 is irreducible if for all s ∈ S Reach(s) = S.

Once established how to derive the CTMC we can talk di-
rectly about the properties of the LMA, meaning that those
properties refer to the CTMC. Therefore, we can talk about
a stationary closed LMA or the steady-state distribution of
the LMA meaning that its CTMC is stationary or it has a
steady-state distribution. For steady-state distribution we
write π(M) meaning the �πQ = 0, where Q is the generator
matrix of the underlying CTMC ofM and �π is the vector of
probability distribution of the states in S.

Since a complete analysis of LMAs modeling power is out
of the scope of this paper, we introduce a set of restrictions
that will simplify the presentation of the theoretical result
about the product-form solutions of cooperating LMAs. It
should be pointed out that although these restrictions limit
the flexibility of LMA modeling, they do not reduce the
applicability of the results that will follow. In practice, we
require a well-formed LMA M = 〈S,Act,→〉 to satisfy the
following properties:

1. given a label a ∈ Act then all the transitions labeled
by a are either active or passive. Hence, we can say
that label a is active or passive for the automaton. We

s1 s2

a,λ

xa, xb,a

xb, b

b

Figure 2: An automaton which is not well formed.

s1 s2

a,λ

xd, xd, d,d,

xb, b

xb, b

Figure 3: An automaton which is well-formed.

call A(M) and P(M) the sets of active and passive
labels, respectively. Formally:

A(M) ∩ P(M) = ∅

2. if a is a passive label, then for every state s of the
automaton there exists only one transition labeled by
a outgoing from s. Formally, we define:

∀s∃s′ ∈ S such that s
a,xa−→ s′

∀s, s′, s′′ ∈ S, s
a,xa−→ s′ ∧ s

a,xa−→ s′′ =⇒ s′ = s′′

In Figure 2 we show an example of a not well-formed au-
tomaton. In fact, a passive and an active transition with
label a are enabled in state s1 which violates Condition (1);
in the state s2 two passive transitions with the same label
b are enabled which violates Condition (2). Conversely, the
automaton of Figure 3 is well-formed. Indeed, the passive
transitions outgoing from state s2 are differently labeled and
Condition (1) holds. Moreover, P(M) = {b, d} and every
state ofM has one outgoing transition labeled by b and one
labeled by d.

For the rest of the paper we assume to work with well-
formed stochastic automata.

Note that the interaction between two well-formed au-
tomata is well-formed, as the following proposition states.

Proposition 1 LetM1,M2 be two well-formed LMAs. The
interactive LMA M1 ⊕LM2 is also well-formed.

3. PRODUCT-FORM SOLUTIONS
Let us consider two (well-formed) automataM1 andM2.

We are interested in those interactionsM1⊕LM2 that orig-
inate a closed LMA. This happens if L = P(M1) ∪ P(M2)
and, obviously, L ⊆ A(M1) ∪A(M2).

Before introducing the main theorem we define a last op-
eration on the automata, i.e., the closure with respect to
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s1

a, x

b,

s1 s3

a, x

yc,λ

s1

a,

b,  

s1 s3

a,

yc,λ

M

M μ μ

a a

{a ←μ}

Figure 4: An open automaton where transition a
becomes active

a label. Let us consider a well-formed open automaton M
and let a ∈ P(M). Then the automaton M{a ← λ} is the
automaton M in which every transition labeled a becomes
active and all the rates associated with the transitions la-
beled with a are set to λ. Note that this means that we
associate to each passive transition labeled a the same rate.
We show in Figure 4 the effect of M{a ← μ}. Note that
passive transition c in the original automaton M remains
passive, but the transition a becomes active, and every oc-
currence of the transition has not the same rate μ. Formally,
we define:

Definition 6 (Closure of an automaton) Let

M = 〈S,Act,→M〉
be a LMA and a ∈ P(M), then the closure of M written
M{a← λ}, is defined as follows:

M{a← λ} = 〈S,Act,→M{a←λ}〉,
where

→M{a←λ}= {(si, b, r, sj) : (si, b, r, sj) ∈→M ∧ b �= a}
∪ {(si, a, λ, sj) : (si, a, xa, sj) ∈→M}

Several closures may be specified (M{a ← λ1}){b ← λ2}
and a natural question is whether the order of the substitu-
tions affects the outcome.

Proposition 2 LetM = 〈S,Act,→M〉 be a LMA such that
P(M) = {a1, a2}. Then for any λ1, λ2 it holds that (M{a1 ←
λ1}){a2 ← λ2} = (M{a2 ← λ2}){a1 ← λ1}
The proposition above can be generalised to any number of
labels. Thus, since the order is not important, we can write
then M{ai ← λi : ai ∈ P(M)} corresponds to (((M{a1 ←
λ1}){a2 ← λ2}) . . . {an ← λn}) if {a1, a2, . . . an} ∈ P(M).

In the following theorem we use a1, a2, . . . to denote the
labels, and x1, x2, . . . to denote the variables (instead of xa1 ,
xa2 . . . ).

Theorem 1 Let M1 and M2 be two well-formed LMAs
that cooperate on a finite set of labels L = {a1, . . . , an},
such that M1 ⊕LM2 is ergodic.

If there exists the set of rates {λ1, . . . , λn} which satisfies
the following equations:

∀sk ∈ S1,∀ai ∈ A(M1)P
sj∈S1

q(sj , ai, sk)π1(sj)

π1(sk)
= λi (1)

or

∀sk ∈ S2,∀ai ∈ A(M2)P
sj∈S2

q(sj , ai, sk)π2(sj)

π2(sk)
= λi (2)

where π1 and π2 are the stationary probability distributions
of the closed automata M†1 and M†2:

M†1 = M1{ai ← λi : ai ∈ P(M1)}
M†2 = M2{ai ← λi : ai ∈ P(M2)}

then the steady-state solution ofM1⊕LM2 has the product-
form:

π(M1 ⊕LM2) ∝ π1(M†1)π2(M†2) (3)

where πi is the steady state distribution ofMi, with i = 1, 2.

The solution of the system of equations (1) and (2) can be
seen as the solution of the traffic equations of the model.
It has been proved in [14] that if we model Jackson queue-
ing networks then these equations become exactly the traffic
equations of queueing network, and similarly for G-networks
[15]. Finally, note that Equations (1) and (2) basically say
that the total flow incoming into a state due to the active
transitions labeled by a must be proportional to the station-
ary probability of that state in the closure of the automaton.

Proof. We present the proof assuming that automata
synchronize on label ‘a′ only. This is only for readability.
The proof with any number of synchronizing labels is a sim-
ple generalization of the one presented below. Without loss
of generality we assume that a is active in M1 and passive
inM2. The global balance equations (GBEs) for a r ∈ SM1

and s ∈ SM†
2

are:

πM1(r)
` X

r′∈SM1

qM1(r, a, r′) +
X

r′∈SM1
b�=a

qM1(r, b, r
′)

´
=

qM1(r
′, a, r)πM1(r

′) +
X

r′∈SM1
b�=a

qM1(r
′, b, r)πM1(r

′) (4)

πM†
2
(s)

`
qM†

2
(s, a, s′)| {z }

λ

+
X

s′∈SM†
2

b�=a

qM†
2
(s, b, s′)

´
=

X
s′∈SM†

2
b�=a

qM†
2
(s′, b, s)πM†

2
(s′)+

X
s′∈SM†

2

qM†
2
(s′, a, s)| {z }

λ

πM†
2
(s′)

(5)

where λ is the rate that we substitute into the passive tran-
sition of M2 to make itM†2.
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The GBEs for the joint state space (r, s) ∈ SM1 × SM2

are:

π
`
(r, s)

´“ X
r′∈SM1

b�=a

q((r, s), b, (r′, s)) +
X

s′∈SM2
b�=a

q((r, s), b, (r, s′))

+
X

(r′,s′)∈SM1
×SM2

q((r, s), a, (r′, s′))
”

=

X
r′∈SM1

b�=a

q((r′, s), b, (r, s))π
`
(r′, s)

´

+
X

s′∈SM2
b�=a

q((r, s′), b, (r, s))π
`
(r, s′)

´

+
X

(r′,s′)∈SM1
×SM2

q((r′, s′), a, (r, si))π
`
(r′, s′)

´
(6)

We substitute product form and we rewrite the rates in each
terms with the rates of each automaton taking into account
self loops:

πM1(r)πM†
2
(s)

“ X
r′∈SM1

b�=a

qM1(r, b, r′)+
X

s′∈SM†
2

b�=a

qM†
2
(s, b, s′)+

X
(r,s)

a,q(r,a,r′)−→ (r′,s′)

qM1(r, a, r′) +
X

(r,s)
a,q(r,a,r)−→ (r,s′)

qM1(r, a, r)
”

=
X

r′∈SM1
b�=a

qM1(r
′, b, r)πM1(r′)πM†

2
(s) +

X
s′∈SM†

2
b�=a

qM†
2
(s′, b, s)πM1(r)πM†

2
(s′) +

X
(r′,s′)a,q(r′,a,r)−→ (r,s)

qM1(r
′, a, r)πM1(r

′)πM†
2
(s′) +

X
(r,s′)a,q(r,a,r)−→ (r,s)

qM1(r, a, r)πM1(r)πM†
2
(s′)

After a few algebraic manipulations substituting the right
part of equation (4) we obtain:

qM1(r′, a, r)
πM1(r

′)
πM1(r)

+
X

(r,s)
a,q(r,a,r)−→ (r,s′)

qM1(r, a, r) +

X
s′∈SM†

2
b�=a

qM†
2
(s, b, s′) =

X
s′∈SM†

2
b�=a

qM†
2
(s′, b, s)

πM†
2
(s′)

πM†
2
(s)

+

X
(r′,s′)a,q(r′,a,r)−→ (r,s)

qM1(r
′, a, r)

πM1(r
′)πM†

2
(s′)

πM†
2
(s)πM1(r)

+

X
(r,s′)a,q(r,a,r)−→ (r,s)

qM1(r, a, r)
πM†

2
(s′)

πM†
2
(s)

By observing that λ is the reversed rate and with further
algebraic manipulations we obtain the following.

πM†
2
(s)(qM†

2
(s, a, s′) +

X

(r,s)
a,q(r,a,r)−→ (r,s′)

qM1 (r, a, r) +

X

s′∈SM†
2

b�=a

qM†
2
(s, b, s′)) =

X

s′∈SM†
2

b�=a

qM†
2
(s′, b, s)πM†

2
(s′) +

X

s′∈SM†
2

qM†
2
(s′, a, s)πM†

2
(s′) +

X

(r,s′)a,q(r,a,r)−→ (r,s)

qM1 (r, a, r)πM†
2
(s′)

This latter can be derived from (5).

Note that in the proof above self-loops were considered.
While self-loops do not change the behavior of the Markov
Chain, i.e., they have no effect on the global balance equa-
tions of a single automaton, they are important in the defi-
nition of the structure of the interacting LMA.

Note that Theorem 1 implies that every state of an au-
tomaton must have at least one incoming transition for each
active label.

Corollary 1 Let M1 and M2 be two well-formed LMAs
that cooperate on a finite set of labels L = {a1, . . . , an} such
that they satisfy the condition in Theorem 1. If ai ∈ A(Mj)

then for all s ∈ Sj there exists a s′ such that s′
ai,μ−→ s with

μ > 0 and ai ∈ L and j = 1, 2.

3.1 Comparison of Theorem 1 with other re-
sults on product-form solutions

In this part of the section we briefly illustrate the dif-
ferences between the result stated by Theorem 1 an other
results on product-form. We show that, as far as we know,
the novelty of Theorem 1 is not just the reformulation of
a well-known result in terms of LMAs. In particular, we
wish to point out the differences with a couple of general
results about product-form models, i.e., RCAT [14] and the
M ⇒M property [27]. We show in terms of simple examples
that Theorem 1 is more general than both these results.

Comparison with M ⇒M .
The M ⇒ M property has been introduced almost at

the same time of the BCMP theorem definition [7]. The
main result proved in [27] states that a multi-class queueing
network whose stations fulfill the M ⇒ M property have
a product-form solution and a linear system of traffic equa-
tions. A work-conserving, multi-class queueing station with-
out priority and with the one-step behavior (for a definition
of these concepts see, e.g., [22]), fulfills the M ⇒ M prop-
erty if under class-independent Poisson arrivals it exhibits
class-independent Poisson departures. Obviously, since the
state is work-conserving by hypothesis, the departure rate
for a customer class is equal to the arrival rate for that
class. We now briefly illustrate the necessary and sufficient
condidition to decide the M ⇒M property for a multi-class
queueing station. Let Γ be the state space, c = 1, . . . , C be
the customer classes and λ∗c be the arrival rate for class c.
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We assume that the station has a stationary solution π(si)
with si ∈ Γ. The condition for the M ⇒M property is that:

∀c,∀si ∈ Γ
X

sj∈L+c(si)

π(sj)q(sj , si) = π(si)λ
∗
c , (7)

where L+c(si) is the set of all the states in Γ with a cus-
tomer of class c more than those that are present in si and
q(sj , si) is the transition rate from state sj to state si. If
we model such a queueing station in our framework, we de-
fine an automaton whose state space is the same state space
of the queueing station. We may label each active transi-
tion of the automaton corresponding to the departure of a
class c customer by dc. Note that, since the station is work-
conserving, if state sj has one more class c customer than
state si, and si is reachable form sj , then the transition(s)
from sj to si must be labeled by dc. It is now trivial to ob-
serve that Equation (7) is Condition (1) where λc = λ∗c for
c = 1, . . . , C. Therefore, in the framework we are presenting
we are able to deal with the product-form of all the set of
stations that satisfy the M ⇒M property that includes the
BCMP stations (that may be multi-class and with Coxian
service time distribution) and more recent ones (e.g., [1, 25])

Comparison with RCAT.
In this paragraph we aim to point out the main difference

between Theorem 1 and RCAT.

• RCAT is formulated in terms of PEPA and it is based
on the analysis of the reversed process of the interact-
ing agents.

• We provide a novel and elegant proof of our theorem
using a general form of balance equations.

• The notion of active and passive actions is identical to
the usage of active and passive transitions provided in
the current framework. Our notion of well-formed au-
tomaton reflects a structural condition of RCAT, i.e.,
for each passive label a, exactly one passive transition
outgoes from every state. Moreover, RCAT requires
that:

∀sk ∈ S1,∀ai ∈ A(M1)
q(sj , ai, sk)π1(sj)

π1(sk)
= λ (8)

where sj is the only state in M†1 with an active tran-
sition labeled by ai going into that state sk. If we
observe that λi is the reversed rate of q(sj , ai, sk) [23],
then we can see that RCAT requires that the reversed
rate of any active action a has to be constant. By
contrast, in our theorem we require the sum of the re-
versed rates of the active transitions to be constant in
each state rather that the reversed rate of each active
transition. This is a generalization of the condition of
RCAT. The distinction presented here is not trivial.
In fact, in what follows we show an example in which
Theorem 1 holds while the original RCAT does not.

Example 2 In this example we study the interaction be-
tween the automata depicted in Figure 5 (A) and (B). In par-
ticular, we show that the automaton generated by the com-
position is in product-form by Theorem 1 but not by RCAT.
Let us call the automaton of Figure 5 (A) M1 and that of
Figure 5 (B)M2. SinceM1 has no passive transitions, i.e.,

it is closed, we immediately haveM1 =M†1. Hence, we can
immediately verify Condition (1) knowing that π(1) = 1/5
and π(2) = 4/5:

state 1 : π1(2)q(2, a, 1) = π1(1)λ

state 2 : π1(1)q(1, a, 2) + π1(2)q(2, a, 2) = π1(2)λ.

Condition 1 is verified for λ = 1. Now we can derive the
automaton M†2 =M2{a← 1}, which has the following sta-
tionary distribution: π2(A) = 2/3 and π2(B) = 1/3. By
Theorem 1 if (i, j) with i = 1, 2 and j = A,B is a state of

the automata M†1 ⊕{a}M†2 then π(i, j) ∝ π1(i)π2(j).
It is worth noting that in this case RCAT cannot be applied

as the reversed rate of the active transitions with label a are

not constant: 2
a,7/8−→ 2 thus by Equation (8) (4/5)(7/8)

4/5
= 7/8

but 1
a,1/2−→ 2 thus (1/2)(1/5)

4/5
= 1/8.

4. EXAMPLE
In this section we illustrate an example of a software and

hardware architecture that can be studied by the theoretical
results provided in this paper. The aim of this example is
showing a model whose product-form is not trivial, i.e., it
cannot be straightforwardly studied with the existing tools.
Indeed, the model consists of a component which can be seen
as non-BCMP queueing station that satisfies the M ⇒ M
property, and other components that are G-queues. As a
consequence, neither the tools developed for the analysis of
BCMP queueing networks, neither those developed for the
analysis of the G-networks can be applied and our approach
shows its peculiarity.

System description
Let us consider a system that consists of two databases,
namely DB1 and DB2. DB1 serves the requests of TYPEA,
while DB2 serves the requests of TYPEB. The requests ar-
rive to the databases through a communication line that
has two channels. Each of them works just in one direc-
tion at a given time, i.e., from the databases to outside or
vice-versa. A request (both of TYPEA and TYPEB) ar-
rives to the communication line and waits in queue for an
available channel according to a FCFS discipline. Once the
transmission starts we assume that it takes a random time
to be completed. The databases serve the requests in a ran-
dom time. The databases require a sort of synchronization
and it can happen that a transaction in the first database
causes a canceling of a transaction in the second database
(or vice-versa). A further assumption is that we require the
requests of the same type to be processed in the order they
arrive to the communication line. By now, this simply im-
plies that even if the communication line has an available
channel, it is not allowed to transmit two requests of the
same type, because it could happen that the transmission of
the most recent request takes less time than the transmis-
sion of the oldest. When the databases finish the processing
of the requests, the answer is sent back through the same
communication line. Figure 6 illustrates an informal sketch
of the system.

Modeling assumptions
In order to be able to model the system and obtain an exact
solution we need these further assumptions:
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Figure 5: Graphical representation of the Markov automaton M1
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Figure 6: Sketch of the system analyzed in Section 4

• The requests of TYPEA and TYPEB arrive to the sys-
tem according to independent Poisson processes with
rates λ1 and λ2, respectively.

• The transmission type in the communication line is
exponentially distributed, and the two lines work in-
dependently. Moreover, the transmission time is inde-
pendent of the type of the message being sent (TY-
PEA or TYPEB request, or an answer). Let μTR be
the transmission rate of one message.

• The databases process the requests in an exponentially
distributed random time. TYPEA requests are served
by DB1 with rate μ1 and TYPEB are served by DB2
with rate μ2.

• A TYPEA (TYPEB) request, after being served by
DB1 (DB2 ) generates a request for DB2 (DB1 ) with
probability p1 (p2) and the latter one will send the
answer back. Finally, a TYPEA (TYPEB) request
causes a transaction cancel in DB2 (DB1 ) with prob-
ability q1 (q2). Note that 1 − pi − qi > 0 is the prob-
ability that a database directly sends the answer back
to the client without synchronizing with the other one,
for i = 1, 2.

Figure 7 shows a model of the system using the queueing
network usual notation.

Description of the model using LMAs
Although the queueing model represented in Figure 7 is use-
ful for understanding the flows of the messages (requests or
answers) among the network components, it still is incom-
plete. Indeed, none of the queues is a standard exponential
queue of the type studied in [21] or in [7]. In other words,
the modeler still needs to formally specify the behavior of
those components, and how they interact. We think that
using LMAs is a valid answer to these two problems.

In practice, we can identify two types of components.
The communication line with two channels can be seen as a
Multiserver Station with Concurrent Classes of Customers
(MSCCC) as described in [25] while the databases can be
seen as G-queues. In a G-queue there are two arrival streams:
one of positive customers that behave exactly as normal cus-
tomers of standard queues, and one of negative customers.

Figure 7: Queueing model of the system depicted
by Figure 6

As soon as a negative customer arrives to a G-queue it
deletes a queued positive customer if any exists, otherwise it
simply vanishes. More details on applications and analysis
of G-queues and G-networks can be found in [12]. Note that,
as far as we now, such a composition of different models has
never been studied before.

The results of this paper are applied to this example in
two ways: first we use LMAs to describe the interactions
among models specified in different contexts and second we
use Theorem 1 to derive the product-form solution, showing
that previous results would not be straightforwardly appli-
cable.

LMA of MSCCC station. A MSCCC station with three
classes of customers (TYPEA and TYPEB requests and the
answers) and two servers, i.e., the two channels, can be
modeled as follows. Let A(MSCC) = {d1, d2, d3}, where
d1, d2 and d3 are the labels associated with the transi-
tions that model the departures of TYPEA or TYPEB re-
quests and the answers. P(MSCCC) = {a1, a2, a13, a23}
where ai are the labels associated with customer arrivals:
a1 and a2 are the external arrivals, aj3 are the arrivals
from DBj. Let α = (�s,L) be a state of the automaton,
where: �s = (c1, c2, c3), ci ∈ {0, 1}, denotes the classes of
the customers being transmitted. Obviously,

P3
j=1 cj ≤ 2.
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L = �1, �2, . . . �i, . . . , �N is an ordered list representing the
waiting room, where �i ∈ {1, 2, 3} is the class of the i − th
oldest customer in the queue. Note that if

P3
j=1 cj < 2 then

�i = ck for all �i ∈ L and ck = 1. In what follows �1i denotes
a three-dimensional vector with 2 null components and a 1
in position i, L·i denotes the append of a customer in queue
according to a FCFS policy, fW (α) denotes the class of the
first customer that does not belong to set W ⊆ {1, 2, 3}
(fW = 0 if it does not exist) and L� i removes the first class
i customer from the list. Then, the possible transitions are:

• Class i customer arrival with busy channels:

(�s,L)
ai,xai−→ (�s,L · i) if

P3
j=1 cj = 2 or ci = 1.

• Class i customer arrival with an available channel:
(�s,L)

ai,xai−→ (�s +�1i) if
P3

j=1 cj < 2 and ci = 0.

• Class i job completion, i.e., cs
i > 0. In this case we

have two possibilities, i.e., let W = {j|cj > 0}� {i}:

(�s,L)
di,μTR−→

(
(�s−�1i,L) if fW(�s,L) = 0

(�s−�1i +�1k,L� k) if fW(�s,L) = k

Note that list L, under stability condition, is always finite
although it is unlimited if the population is unlimited. Nev-
ertheless, the state space of the LMA is countable.

LMA of the G-queue.
For those who are familiar with G-queues and G-networks

modeling a G-queue by an LMA is trivial. Let us consider
the G-queue corresponding to DB1 (the other LMA can be
obtained by symmetry). The LMA passive actions are asso-
ciated with the positive customer arrivals, and the negative
customer arrivals. In the former case, we can have a synchro-
nization with the LMA MSCCC (i.e., label d1) or with the
other G-queue (i.e., label D21+). In the latter case, we have
a synchronization with the other G-queue, i.e., label D21−.
Hence, we have P(DB1) = {d1, D21+, D21−}. The active
transitions are those corresponding to a departure for the
communication channel (a1), a departure for the other G-
queue either as positive (D12+) or negative (D12−) customer.
Hence, A(DB1) = {a1, D12+, D12−}. The state space is N

in case of unlimited population, and let s be a state. Then,
the transitions from s are:

• Customer arrival from MSCCC: s
d1,xd1−→ s + 1

• Positive customer arrival from DB2: s
D21+,xD21+−→ s+1

• Negative customer arrival from DB2:

s
D21−,xD21−−→

(
s− 1 if s > 0

s if s = 0

• Job completion (s > 0): s
δ,Δ−→ s − 1, where (δ,Δ) is

either (D12+, μ1p1), (D12−, μ1q1) or (a1, μ1(1 − p1 −
q1)) according to the destination of the customer, i.e.,
DB2 as positive customer, DB2 as negative customer
or MSCCC.

LMA of the external arrival.
The external arrivals are simple LMAs with one state 0

and one active transition from 0 to itself labeled by ai, with
i = 1, 2 and rate λi. Let us call these automata A1 and A2

for TYPEA and TYPEB arrivals, respectively.

Combining the models.
The automaton that we are going to study is:

M = (((MSCCC⊕{a1} A1)⊕{a2} A2)⊕{d1,a13} DB1)

⊕{d2,a23,D12+,D12−,D21+,D21−} DB2

Model analysis and product-form solution
Before solving the model, we recall some theoretical results
about MSCCC stations and G-queue. In [25] the author
derives the stationary distribution of MSCCC stations and
proves that it satisfies the M ⇒ M property. In [15] the
author proves that the product-form of the G-queues (with
several extensions) can be seen as an application of RCAT.
However, it is worthwhile pointing out that MSCCC does
not satisfy RCAT. Indeed, if we consider the state (1, 1, 0,{}),
then we observe that it can be reached from (0, 1, 1, {1}) or
(1, 0, 1, {2}) through a transition with the same label d3, i.e.,
a class 3 job completion. On the other hand, it is well-know
the G-queues do not satisfy the M ⇒M property.

In this case, Theorem 1 can be applied in order to obtain
the stationary distribution of the model, but it would not be
possible to apply only RCAT or only the M ⇒M theorem.

The traffic equations.
The traffic equations are derived by the application of

Theorem 1. The unknowns are the rates of the xs:8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

xa1 = λ1

xa2 = λ2

xa13 =
xd1

xD21−+μ1
μ1(1− p1 − q1)

xa23 =
xd2

xD12−+μ2
μ2(1− p2 − q2)

xd1 = xa1

xd2 = xa2

xD12+ =
xd1

xD21−+μ1
μ1p1

xD12− =
xd1

xD21−+μ1
μ1q1

xD21+ =
xd2

xD12−+μ2
μ2p2

xD21− =
xd2

xD12−+μ2
μ2q2

(9)

The solution of the system can be obtained with standard
numerical algorithms for non-linear equations. However, in
most of the cases, we may not know that a model satisfies
the M ⇒ M property or RCAT conditions, and we may
not know the expression of the reversed rates of the active
transitions. Indeed, System (9) has been derived thanks to
the theoretical knowledge of the LMAs that the model con-
sists of. In general, we would like to specify the LMAs, their
interactions, and apply an algorithm that tells us whether
there is product-form or not, and the solution for the un-
knowns. Although an exact solution of this problem is not
yet available, in [26] the authors define an interactive algo-
rithm that has shown to perform well for a large class of
models.

Once the unknowns are found, each LMA of the model can
be closed and solved, since they have an underlying CTMC.
Then, Theorem 1 states that the stationary distribution of
the model is proportional to the product of the stationary
distributions of the interacting LMAs closed as specified.

5. CONCLUSION
In this paper we have proposed an extension of the Re-

versed Compound Agent Theorem (RCAT) for the analysis
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of product-form models. In particular, we have shown that
it possible to relax its structural conditions in order to deal
with more general synchronization types. We think that one
of the strengths of Theorem 1 is that it unifies two of the
most important results (at in least in our opinion) about
product-form models: the original RCAT and the Markov
implies Markov property (M ⇒ M). This property has
been widely used to explain the product-form solutions of
the queueing networks and to define service disciplines that
extend the BCMP theorem [7].

Another peculiar aspect of this work concerns the formal-
ism that we decided to adopt, i.e., the LMAs. Although this
is not essential for the validity of the theoretical results, we
think that it has some strengths with respect to other for-
malism. In particular, the idea of closure of an automaton,
and the structural conditions of Theorem 1 should result
easy to understand. Moreover, using LMAs allows us to
work in a very general framework, because we can define a
LMA equivalent to any stochastic model with an underly-
ing CTMC. For instance, this can be very helpful in a tool
that allows for the definition of models whose components
are specified using different formalisms.

We think that future works should deal with the possi-
bility of defining automata with multiple passive transitions
(with the same label) outgoing from the states, and with syn-
chronizations that involve more than two automata. More-
over, the definition of an efficient technique to compute the
normalizing constant is still an open problem (shared with
many other product-form model classes) that should be ad-
dressed.
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