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ABSTRACT
In order to reduce the operating costs of IT systems, nowadays ser-
vice applications are executed in virtualized infrastructures and a
time varying fraction of the physical servers’ capacity is shared
among running applications. The performance modelling of a vir-
tualized server is very challenging as the impact of the choice of
the Virtual Machine Monitor (VMM) scheduler, its parameters and
I/O management overhead is still only partially understood. In this
paper, black-box models based on the Linear Parameter Varying
(LPV) framework are proposed for the run-time modelling and per-
formance control of Web services in virtualized hosting environ-
ments. As the behavior of the application response time is highly
time varying and the workload conditions substantially change wi-
thin the same business day, LPV models seem very promising for
predicting the performance of such systems. Specifically, the suit-
ability of subspace LPV identification methods for multi-variable
systems is investigated and their performance assessed on experi-
mental data gathered on Xen environments.
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1. INTRODUCTION
Virtualization of physical resources was proposed in the early

’70s to allow resource sharing in large expensive mainframes among
multiple application environments. With the development of dis-
tributed systems, as hardware costs went down, the need for virtu-
alization faded away. Nowadays virtualization is driving again the
interest of research both from industry and academia as a way to
improve system security and reliability, reduce costs, and provide
flexibility of the physical infrastructure [21].

In a virtualized environment, physical resources (e.g., CPU, disks,
communication network) are partitioned into multiple virtual ones,
creating isolated virtual machines each running at a fraction of the
physical system capacity. A virtual machine monitor (VMM), like
Xen [48] or VMWare [44], is installed on each physical server
and manages physical resources, providing performance differenti-
ation and performance isolation to competing running VMs. Usu-
ally, each VM is dedicated to the execution of a single application,
thus increasing system security and reliability, and has access to a
time varying fraction of the physical server capacity defined by the
VMM resource allocation parameter (i.e., VMWare shares or Xen
weights, [48, 44]).

VMM resource allocation parameters can be updated by access-
ing the VMM API and the change takes effect in few milliseconds
without introducing any system overhead. Hence, the VMM re-
source allocation parameters can be adopted effectively to control
and adapt the application performance to incoming workload vari-
ations on very fine-grained time scales.

This VMM feature is particularly important since Internet work-
load can vary by orders of magnitude within the same business day
[6]. In order to guarantee application Quality of Service (QoS)
and implement a cost-effective environment [8, 11], infrastructure
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providers can dynamically allocate resources among different VMs
according to a prediction of system performance [2, 37] under the
current workload conditions and configuration. This prediction is
based on the continuous monitoring of the system which, according
to the autonomic computing paradigm [15], can trigger dynamic
reconfiguration if the performance predicted for the running appli-
cations lead to QoS violation.

On the other hand, virtualization introduces new problems re-
lated to resource multiplexing and scheduling of multiple VMs.
The performance modelling of virtualized environments is chal-
lenging, as the impact of the choice of the VMM scheduler, its
parameters and I/O management overhead is still only partially un-
derstood (see [7]). An overview of VMM scheduling problems,
communication issues and I/O overhead management in virtualized
hosting platforms can be found in [12, 47].

Furthermore, traditional queueing network models are inadequate
for the run-time modelling of virtualized systems performance at a
very fine-grained time scale. Indeed, under strict time constraints,
only bounding techniques or mean value analysis can be consid-
ered. Both approaches are based on the assumption that the sys-
tem is in a steady state and therefore cannot accurately model sys-
tem transients. Performance models able to predict the system be-
haviour at very fine-grained time resolution (seconds) and in tran-
sient conditions are hence needed.

The aim of this work is to derive – via system identification tech-
niques – Linear Parameter Varying (LPV) models for the run-time
modelling of service based systems hosted in a virtualized envi-
ronment. A LPV model is linear in the parameters and a vector
of scheduling variables enters the system matrices in an affine or
linear fractional way [18, 3, 23]. In particular black-box models
are derived from experimental data, which are capable of describ-
ing the execution of service applications with an accuracy suitable
for run-time control. Note that, due to the presence of multiple
VMs, the identification problem arising in this context is genuinely
multi-variable. To the best of the authors’ knowledge, this is the
first attempt to describe the behavior of such systems by means of
Many-Input-Many-Output (MIMO) dynamic models. LPV mod-
els performance will be assessed on experimental data gathered on
Xen environments. Results show that LPV models allows predict-
ing VMs performance with an average percentage error lower than
20% at a 10s time resolution.

This paper is organized as follows. Section 2 introduces the
adopted notation and the identification problem setting. Section
3 illustrates the LPV state space models employed for identifica-
tion and the related identification algorithms. Section 4 is devoted
to present the experimental set-up, the experiments performed, and
to discuss the obtained results. Section 5 provides a review of the
literature. Conclusions are finally drawn in Section 6.

2. PROBLEM STATEMENT
In this paper, CPU bounded Web service applications which share

a virtualized computing platform will be considered. The VMM is
configured to support work-conserving mode [12] and, for the sake
of simplicity, each VM hosts a single application. In the follow-
ing the LPV-model identification problem will be formulated for
applications running on a single core but can be easily extended to
multiple-cores system implemented in moderns CPUs. Indeed, an
independent LPV model for each core can be derived and managed
at run-time without introducing any significant overhead in the sys-
tem.

Our aim is to derive a dynamic model capable of capturing the
virtualized system behaviour at a very fine-grained time resolution
(seconds), with an accuracy suitable for control purposes. This

identification process provides a control-oriented dynamical de-
scription of the server behavior and it is the first step to be achieved
in order to design a closed-loop controller for the autonomic man-
agement of a virtualized system. The design of the closed-loop
controller is the focus of our ongoing work. In the remainder of the
paper the following notation will be adopted:

• ∆t denotes the sampling interval;

• k is the discrete time index over the interval [k∆t, (k +
1)∆t];

• Rik is the average response time, i.e., the overall time a re-
quest stays in the system, for application i in the k-th time
interval.

• φik represents the VMM resource allocation parameter, i.e.,
the fraction of capacity devoted for executing the VM which
hosts application i in the k-th time interval;

• n denotes the number of running VMs.

The VMM allocates CPU to competing VMs proportionally to
the weights φik that each VM has been assigned in the k-th time
interval. The service discipline implemented by work-conserving
mode can be modeled as a first approximation by the Generalized
Processor Sharing (GPS) scheduling. Under GPS, the server ca-
pacity devoted to the i-th VM at time t is:

φikP
i′∈I(t)

φi
′
k

where I(t) is the set of applications with waiting requests at the
server at time t. For example, if two VMs have been assigned the
same fraction of capacity, then they are guaranteed to receive 50%
of the CPU each. Under work-conserving mode [7] if one of the
two aforementioned VMs is blocked for an I/O operation (or simply
because no requests are running in the system), then the other one
can consume the entire CPU.

GPS analysis is notoriously difficult [49]. No closed formula
exists even for open models and accurate results can be obtained
only by resorting to simulation which, requiring a significant com-
putation time, cannot be adopted to predict system performance at
run-time with very fine-grained time resolutions.

In the following we assume that the system is configured such
that

Pn
i=1 φ

i
k = 1, ∀k, i.e., the entire system capacity is devoted

to application execution (this is usual in this context, see e.g. [2]).

3. LPV STATE SPACE MODELS AND
IDENTIFICATION ALGORITHMS

The problem of model identification can be formulated as the
one of deriving a mathematical representation for the behaviour of
a physical system on the basis of input-output data collected in ded-
icated experiments. As far as linear models are concerned, the main
ingredients of an identification problem are essentially: 1) a defini-
tion of the class of models to be considered and 2) a suitable algo-
rithm for the estimation of the model parameters on the basis of the
available data. Classical model identification problems for Single-
Input Single-Output (SISO) time-invariant systems are formulated
using models in input-output form (i.e., difference equations re-
lating the measured input and output variables in a direct way),
the parameters of which are estimated using least squares tech-
niques. Whenever Multiple-Input Multiple-Output and/or time-
varying systems must be dealt with, however, state-space repre-
sentations turn out to be a more flexible and reliable model class.
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Figure 1: Relation between the GPS queue model of the reference virtualized system and the control oriented LPV models.

Flexibility is due to the fact that the same parameter estimation al-
gorithms can be used regardless of the input and output dimension;
reliability stems from the numerical stability of the available pa-
rameter estimation algorithms, particularly as far as the so-called
subspace model identification (SMI) class of methods (see, e.g.,
[14, 42] and the references therein) is concerned.
In this paper, discrete-time linear state-space models will be con-
sidered, described by the following state space representation

xk+1 = Akxk +Bkuk

yk = Ckxk +Dkuk,
(1)

where x ∈ Rn is the state vector, u ∈ Rm is the vector of control
inputs and y ∈ Rl is the vector of measured outputs. More pre-
cisely, with reference to the specific modelling problem considered
in this study, uk = [φik] i = 1, . . . , n − 1 and yk = [Rik] i =
1, . . . , n, i.e., the goal of the model identification problem consid-
ered in this paper is to derive a state-space model describing the
dynamic relationship between the VMM resource allocation pa-
rameters and the server response time. Note that, under the con-
dition

Pn
i=1 φ

i
k = 1, ∀k, if n VMs are running concurrently, the

available control variables are n − 1, since there are only n − 1
VMM resource allocation parameters which are linearly indepen-
dent. The correspondence between the queue model of the refer-
ence virtualized system and the control oriented LPV model which
will be derived by black-box identification techniques is illustrated
in Figure 1.

In (1) generically time-varying state space matrices {Ak, Bk, Ck,
Dk} have been considered. In what follows, however, we will in-
troduce additional assumptions on the time-variability of the model
dynamics, suitably tailored for the model identification problems
associated with the management of virtualized systems.
More precisely, the generic time-variability will be restricted to the
LPV class. LPV systems are linear time-varying plants whose state
space matrices are fixed functions of some vector of varying pa-
rameters. LPV model identification algorithms are available in the
literature both for input-output and state-space representations of
parametrically-varying dynamics [18, 3, 23, 40, 10]. In partic-
ular, in the recent works [25, 24] an input-output modelling ap-
proach was adopted. If, however, the aim of the identification pro-
cedure is to eventually work out LPV models in state-space form
for control design purposes, one should keep in mind that the usual
equivalence notions applicable to Linear Time Invariant (LTI) sys-
tems cannot be directly used in converting LPV models from input-
output to state space form, as the time-variability of LPV systems
ought to be taken into account (see, e.g., the discussion in [36]).
Bearing this in mind, we focus in this work on state-space LPV
models

xk+1 = A(pk)xk +B(pk)uk
yk = C(pk)xk +D(pk)uk,

(2)

where pk ∈ Rs is the parameter vector. Note that in order to keep
the technical issues in the presentation of LPV models and the as-
sociated parameter estimation methods to a minimum, in the fol-
lowing we will deliberately focus on purely deterministic models,
i.e., as is already apparent comparing (1) and (2), we will ignore
the presence of the noise terms in the model representation. It is
important to point out, however, that the theory underlying the pa-
rameter estimation algorithms used in this work can effectively deal
with the presence of process and measurement noise; for a detailed
treatment of such aspects we refer the interested reader to, e.g.,
[40].
It is often necessary to introduce additional assumptions regarding
the way in which pk enters the system matrices. The most common
are the following:

1. Affine parameter dependence (LPV-A):

A(δk) = A0 +A1p1,k + . . .+Asps,k (3)

and similarly forB,C andD, and where by pi,k, i = 1, . . . ,
s we denote the i-th component of vector pk. This form can
be immediately generalized to polynomial parameter depen-
dence.

2. Input-affine parameter dependence (LPV-IA): this is a par-
ticular case of the LPV-A parameter dependence in which
only the B and D matrices are considered as parametrically-
varying, whileA andC are assumed to be constant: A = A0,
C = C0.

Identifying LPV models in general state space form is a difficult
task. It is usually convenient to consider first the simplest form, i.e.,
the LPV-IA one, as its parameters can be retrieved by using Sub-
space Model Identification (SMI) algorithms for LTI systems by
suitably extending the input vector. In this work the MOESP class
of SMI algorithms (see [41]) has been considered. LPV-IA mod-
els also provide a useful initial guess for iterative methods which
can be used for the identification of fully parameterized models in
LPV-A form, along the lines of [18, 39].

The classical way to perform linear system identification is by
minimizing the error between the real output and the predicted out-
put of the model. A similar approach can be used for LPV state-
space systems of the form (2). Letting the system matrices of (2)
be completely described by a set of parameters θ, identification can
be carried out by minimizing the cost function

VN (θ) :=

NX
k=1

||yk − byk(θ)||22 = ETN (θ)EN (θ),

with respect to θ, where

ETN (θ) =
h“
y1 − ŷ1(θ)

”T
· · ·

“
yN − ŷN (θ)

”T i
,
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Figure 2: Time history of the physical server CPU utilization
used in identification experiments.

yk denotes the measured output and byk(θ) denotes the output of
the LPV model to be identified. In general, the minimization of
VN (θ) is a non-linear, non-convex optimization problem. Differ-
ent algorithms exist to numerically search for a solution to such
an optimization problem. One popular choice is a gradient search
method known as the Levenberg-Marquardt algorithm (see [22]).
This is an iterative procedure that updates the system parameters θ
with the following rule

θ(i+1) = θ(i) − α(i)
“
β(i)I + ΨT

N (θ(i))ΨN (θ(i))
”−1

×ΨT
N (θ(i))EN (θ(i)), (4)

where α(i) is the step size, β(i) is the Levenberg-Marquardt regu-
larization parameter and ΨN (θ) := ∂EN (θ)

∂θT .
The step size α(i) can be determined by performing a line search,
for example with mixed quadratic and polynomial interpolation as
in the Matlab Optimization Toolbox.

4. EXPERIMENTAL RESULTS
In this Section the experimental setup implemented for collect-

ing the data both for identification and validation purposes will be
presented. Furthermore, the effectiveness of the LPV models to
capture Web service applications behaviour will be evaluated by
means of quantitative performance metrics.

Two different scenarios have been analyzed. In the first class of
experiments, reported in Section 4.1, a micro benchmarking Web
service application has been considered. The applications have
been instrumented to accurately determine the service time of each
request and to provide the best conditions for the application of
LPV models.

In the second scenario, reported in Section 4.2, this latter as-
sumption has been relaxed and the SPECweb2005 industrial bench-
mark suite [30] has been adopted. The data required for the parame-
trization of the LPV models (mainly the VMs’ utilization) has been
gathered from the hypervisor without instrumenting the code.

Experiments with up to 4 VMs per core have been considered.
Note that, the number of VMs which can be assigned to each core
in x86 environment with the classic VMM monitor like VMWare
ESX or Xen is limited (larger installations run up to 170 VM on 32

physical cores [45], but in order to limit performance degradation
most users run less than 10 VMs per server [4]). The experimental
evaluation of operating system based VMM like OpenVZ or Vir-
tuozzo which are intrinsically more scalable and allows supporting
a larger number of VMs per core [7] is left as part of future work.

To quantitatively evaluate the models two metrics based on the
results obtained by evaluating virtualized systems performance throu-
gh the identified model will be considered: the percentage Variance
Accounted For (VAF), defined as

V AF = 100

„
1− V ar[yk − byk]

V ar[y(k)]

«
, (5)

where yk is the measured signal and byk is the output obtained by
the identified LPV model, and the percentage average error eavg ,
computed as

eavg = 100

˛̨̨̨
Et[yk − byk]

Et[yk]

˛̨̨̨
. (6)

This choice allows to assess quantitatively the model both in a 1 and
in a 2-norm sense. In fact, even if the VAF metric is certainly the
most common in the identification community [20], in the queueing
theory field 1-norm metrics (such as the percentage average error)
are widely used [17].

Figure 3: Time history of the request rates applied during a
validation test with four VMs.

4.1 Micro-benchmarking Web Service Appli-
cation Experiments

In the experimental framework, the micro-benchmarking Web
service application is hosted within the Apache Tomcat 6.0 applica-
tion server. The Web service is a Java servlet designed to consume a
fixed CPU time. The workload is generated by a custom extension
of the Apache JMeter 2.3.1 workload injector, which allows to gen-
erate workload according to an open model (see, e.g., [28]) with a
Poisson arrival process. Several analyses of actual e-commerce site
traces, see for example [43], have shown that the Internet workload
follows a Poisson distribution as a first approximation. The anal-
ysis of burstiness behaviour and long range dependent phenomena
is left as part of future work.

The virtualization environment is based on Xen 3.0 Fedora 8.0
distribution, which runs on a AMD Opteron 2347HE Barcelona
dual socket quad-core system. Up to four instances of the micro-
benchmarking Web service applications have been considered hos-
ted in Linux Fedora 8 VMs. The VMM monitor is assigned to
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a dedicated core, while the VMs are assigned to the same core by
setting CPU affinity. Both identification and validation experiments
have been carried out for two, three and four VMs, respectively.

The application service time sik have been randomly generated
in the range 0.06 s 1.1 s following a log-normal distribution (as ob-
served for several real applications, [38]) with a coefficient of vari-
ation equal to 4 (i.e., the standard deviation is four times larger than
the average service time).

(a)

(b)

Figure 4: Detail of the measured (solid line) and response time
obtained with an LPV-IA model (dashed line) for the first (a)
and for the second (b) application of the VM on identification
data with ∆t = 10 s.

For system identification purposes, incoming request rates λi i =
1, . . . , n accessing each of the n VMs have been randomly gener-
ated and vary stepwise every 1 minute, with values between 0.1 req/s
and 1.2 req/s according to a Poisson arrival process [46].

Overall, 1,440 intervals (24 hours) have been considered and the
average utilization of the physical server (given by ρ =

Pn
i=1 λ

i
ks
i
k)

has been varied in the range [0.05, 1] in order to analyze the behav-
ior of the physical server under both light load and saturation con-
ditions. Figure 2 shows a plot of the server utilization ρ used in the
identification tests. Finally, the VMM resource allocation param-
eters φik have been selected as a realization of a uniform random
variable with values between 0.1 and 0.9. Note that the n-th VM is
then forced to have access to a capacity of φnk = 1−

Pn−1
i=1 φ

i
k.

For model validation, a synthetic workload inspired by a real-
world usage has been employed. The incoming workload repro-
duces a 24 hour trace obtained from an on-line banking applica-
tion. The workload injector is configured to follow a Poisson pro-

cess with request rate changing every minute according to the trace.
Figure 3 reports, as an example, the request rates applied to the four
VMs case during a validation test. The request rate follows a bi-
modal distribution with two peaks around 11.00 and 16.00 (see Fig-
ure 3). Resource allocation parameters have been randomly gener-
ated as in identification.

(a)

(b)

Figure 5: Detail of the measured (solid line) and response time
obtained with an LPV-IA model (dashed line) with ∆t = 1 min
for the first (a) and for the second (b) application of the VM on
validation data at high load.

Note that, the average response time Rik (i.e., the system output)
is given by:

Rik = sik + wik, (7)

where wik denotes requests average waiting time for application i,
i.e., the average time requests spend in the queue. Equation (7)
must be regarded as an additional output equation of an LPV sys-
tem of the form (1) with state xik and output wik. Therefore, Rik
can be computed at run-time at the same time instant at which the
service time sik is measured and wik is provided as output by the
LPV model without the need to recur to any prediction technique.

Since requests service time can be obtained by the instrumen-
tation, the real dynamics of the system have to be found in the
variable wik. In this Section, MIMO LPV models will be identi-
fied for the dynamics of wik only, and the final response times for
each application will then be computed by equation (7). Specifi-
cally, we consider as input the VMM parameters, i.e., uk = [φik],
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i = 1, . . . , n − 1 and use the service times sik and each appli-
cation utilization ρik = sikλ

i
k as scheduling parameters, that is

pk = [sik ρik], i = 1, · · · , n. The system outputs are the ser-
vice response times obtained for each application, that is Rik, i =
1, · · · , n. The model order - after some comparative analysis - was
set to 2 for the case of two VMs and to 4 for the cases of three and
four VMs.

According to the results discussed in [32, 33], the LPV-IA model
class was selected and the sampling time set to ∆t = 1 min and
∆t = 10 s, for comparison purposes. A plot of the response times
obtained with such models are compared to the measured ones in
Figure 4(a)-4(b) for the case of two VMs considering identification
data.

(a)

(b)

Figure 6: Detail of the measured (solid line) and response time
obtained with an LPV-IA model (dashed line) with ∆t = 10 s
for the first (a) and for the second (b) application of the VM on
validation data at high load.

It is interesting to analyze the performance of such models on
validation data: the details of the results are reported in Table 2 and
Table 3 with a sampling interval ∆t = 1 min and ∆t = 10 s, re-
spectively. There exists a trade-off between the performance (and
the optimal choice of the sampling interval) in light and heavy load
conditions. For the considered validation test (see also Figure 3),
the light load data are those in the time interval t ∈ [0, 8.30) ∪
(13.30, 14.45) ∪ (17.30, 24] h, while the heavy load data in the

time interval t ∈ [8.30, 13.30]∪ [14.45, 17.30] h. Considering the
value of VAF, it is apparent that better performance can be achieved
with a sampling interval ∆t = 10s in the heavy load, while in
the light load part of the data a smaller sampling interval has to
be selected (see also Figure 5(a)-5(b) and Figure 6(a)-6(b)). In-
deed, at a 1 minute time scale resolution, the models cannot fully
capture the heavy workload intensity, which results in a significant
underestimation of the response time in heavy load conditions (see
Figure 5(a)-5(b)). These data show that the identified models are
extremely effective at light load but lose generalization capabilities
when tested at heavy load.

This is due to the fact that, using as sampling interval ∆t =
1 min, the request rates used as inputs in the identification phase
are stepwise constant, and cannot account for the non-uniformity
of the single arrival times within the interval itself. By analyzing
the effective arrival times at which the single requests are issued in
the system, the high correlation between such data and the peaks in
the response time is apparent.

To capture this variability, the sampling interval must be reduced.
By adopting ∆t = 10 s, the effectiveness of having reduced the
sampling interval is apparent: now the models are capable of pro-
viding a response time which correctly follows the peaks of the
measured one (see Figure 5(a)-5(b)). Results are quantitatively re-
ported in Table 3. Note that, at 10s time resolution in each test the
average error is also more uniform among VMs.

∆t = 1 min ∆t = 10 s
2 VM 0.129 s 1.109 s
3 VM 0.690 s 4.696 s
4 VM 1.899 s 13.691 s

Table 1: CPU time needed for LPV model identification.

The CPU time needed to perform the identification of the LPV-
IA models for the case of two, three and four VMs are reported in
Table 1. These data have been obtained on a PC Intel Core-Duo at
3GHz with 4 GB Ram using Matlab 7.04.

Note that, as the model will be finally employed to design a con-
trol law, at run-time only the control law itself will be computed.
The control law complexity can vary according to the chosen con-
trol strategy. In the case where an LPV controller is designed, it
will result in a dynamic LPV model of the same complexity as that
of the identified ones. As such, the update of the control law re-
quires a matrix-vector product which can be computed in few CPU
milliseconds.

In general, these results confirm the suitability of the proposed
models for control design purposes and run-time performance as-
sessment. Since, as the incoming traffic can be regarded as a mea-
surable disturbance and as the computational complexity and avail-
able memory pose no particular constraints in this type of appli-
cations, it is possible to have different models (and corresponding
controllers) on board of the server (the one identified on a 10s and
on 1 min basis), which can be selected based on workload condi-
tions. Further observations concerning the fact that the use of a
short sampling interval causes the models to privilege the expla-
nation of fast transients phenomena, i.e., those pertaining to heavy
load conditions, can be found in [32, 33]. As a final consideration,
increasing the number of VMs requires to increase also the order
of the model. This could be expected, since the behaviour of the
GPS scheduling implemented by the VMM depends on the queue
length of each single VM which is captured as a part of the state of
the LPV model.
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VAF on 24h VAF light-load VAF heavy-load eavg on 24h eavg light-load eavg heavy-load

2 VMs VM1 82.21% 82.8% 82.48% 5.46% 1.43% 13.4%
VM2 73.41% 72.49% 82.22% 2.63% 6.42% 13.18%

3 VMs
VM1 81.59% 78.33% 88.26% 4.61% 4.13% 5.38%
VM2 81.1% 79.45% 86.17% 1.16% 1.59% 6.08%
VM3 72.97% 73.48% 61.62% 11.07% 12.84% 7.63%

4 VMs

VM1 78.66% 72.45% 90.09% 8.12% 8.73% 7.18%
VM2 73.12% 70.69% 86% 11.36% 14.98% 4.79%
VM3 73.57% 77.67% 67.88% 7.74% 7.53% 8.02%
VM4 56.27% 52.52% 85.67% 15.06% 19.04% 7.15%

Table 2: Performance of the identified models with ∆t = 1min on validation data.

VAF on 24h VAF light-load VAF heavy-load eavg on 24h eavg light-load eavg heavy-load

2 VMs VM1 74.85% 74.8% 86.15% 6.5% 8.3% 4.07%
VM2 70.56% 67.9% 83.94% 3.4% 2.5% 4.17%

3 VMs
VM1 78.5% 75.19% 83.05% 6.9% 1.5% 12.76%
VM2 78.46% 75.51% 88.78% 6.5% 3.27% 19.58%
VM3 70.75% 69.14% 83.3% 2.76% 16.55% 18.21%

4 VMs

VM1 75.97% 66.37% 88.97% 6.91% 10.35% 3.16%
VM2 72.72% 68.1% 87.23% 9.14% 12.23% 5.24%
VM3 74.85% 69.22% 82.94% 5.84% 7.29% 4.38%
VM4 66.80% 62.38% 89.06% 11.99% 16.92% 4.77%

Table 3: Performance of the identified models with ∆t = 10s on validation data.

4.2 SPECweb2005 Experiments
SPECweb2005 is the industry standard benchmark for the per-

formance assessment of Web servers. The benchmark includes
three different loads, banking, e-commerce and support which sim-
ulate respectively the access to an on-line banking, an on-line trad-
ing and an enterprise products catalogue Web site. In the following
a two VMs test case running the banking and e-commerce loads
will be discussed, the support load analysis is left as part of future
work.

Figure 7: Time history of the physical server CPU utilization
used in identification experiments in scenario 1.

The benchmark suite includes four components: the load gen-
erators, the client coordinator, the Web server, and the back-end
simulator. The SPECweb2005 load generators inject workload to

the system according to a closed model. Users sessions are started
according to a given number of users who continuously send re-
quests for dynamic Web pages, wait for an average 10s think time,
and then access another page or leave the system according to a
pre-defined session profile. The client coordinator initializes all
the other systems, monitors the test, and collects the results. The
Web server is the component target of the performance assessment,
while the back-end simulator emulates the database and applica-
tion parts of the benchmark and is used to determine the dynamic
content of the Web pages.

Our experimental setup includes an AMD machine configured
as in the previous Section which runs into independendent VMs
two load generators, two client coordinators and two backend sim-
ulators. The load generators are configured to access two different
VMs hosting the Web components which provide the pages of the
e-commerce and banking loads. These latter VMs run on a Xen 3.3
Ubuntu Server 8.10 environment, supported by an Intel Nehalem
dual socket quad-core system. Also in this case, the Xen hyper-
visor is assigned to a dedicated core, while the two VMs under
analysis are assigned to the same core by setting CPU affinity.

To assess the suitability of LPV models two different scenarios
have been considered. In the first scenario the workload profiles
and resource allocation parameters have been randomly generated,
while in the second one they are inspired to real application set-
tings. In both cases the model order - after some comparative anal-
ysis - was set equal to 4.

In the first scenario, two data sets have been generated (one for
identification and one for validation purposes), where the number
of users N i

k accessing each of the two VMs varied stepwise every
1 minute, with values between 10 and 220. Also in this case, 1,440
intervals (24 hours) have been considered and the average utiliza-
tion of the physical server varied in the range [0.02, 0.8]. Figure 7
shows a plot of the server utilization ρ obtained in the identification
tests.
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(a)

(b)

Figure 8: Detail of the measured (solid line) and response time
obtained with an LPV-IA model (dashed line) with ∆t = 1 min
for the first (a) and for the second (b) application on validation
data measured with SPECweb2005 in the first scenario.

As in the previous Section, the VMM resource allocation param-
eters φik have been selected as a realization of a uniform random
variable with values between 0.1 and 0.9.

In this experimental setting, MIMO LPV models will be iden-
tified for the dynamics of Rik, as only the the VMs’ utilization is
gathered from the hypervisor, while the service time sik is not di-
rectly measured, as the code was not instrumented (see also Sec-
tion 4). Response time data have been obtained by the client co-
ordinators, while the utilization of the VMs has been obtained by
xentop [48] with a 5s time resolution.

Similarly to the case discussed in Section 4.1, we consider as in-
put the VMM parameters, i.e., uk = [φik], i = 1, . . . , n−1 but now
we use the number of usersN i

k and the overall server utilization ρk
as scheduling parameters, that is pk = [N i

k ρk], i = 1, · · · , n.
The system outputs are the service response times obtained for each
application, that is Rik, i = 1, · · · , n.

A plot of the response times obtained with the identified models
are compared to the measured ones in Figure 8(a)-8(b) obtained
on validation data in the first scenario. The quantitative measures
of the obtained performance both on identification and validation

data are reported in Table 4 and confirm the effectiveness of the
proposed models also on a real benchmark application.

VAF on 24h eavg on 24h

Identification data VM1 60.74% 4.05%
VM2 77.75% 4.15%

Validation data VM1 56.32% 6.48%
VM2 77.16% 10.39%

Table 4: Performance of the identified models with ∆t = 1 min
on identification and validation data in scenario 1.

In the second scenario, both in identification and validation, a
synthetic workload similar to the one reported in Figure 3 obtained
from an on-line banking application has been employed. In this
scenario the e-commerce and banking loads have been shifted by
12 hours in order to obtain a more homogeneous overall incom-
ing workload with lower peaks (see Figure 9). In this way, the
workloads have more heterogeneous profiles, with peaks in differ-
ent time periods, thus offering more opportunities for resource shar-
ing. Note that, this is representative for a service provider with cus-
tomers geographically distributed across different time zones and
identification data can be obtained by inspecting system logs.

Both φik and N i
k varied stepwise every 1 minute and φik were set

equal to:

φik = max

„
0.1,

N i
k

N1
k +N2

k

«
i.e., the capacity of the competing VMs is heuristically assigned
proportional to the incoming workload but a 10% reservation is
dedicated to the lighted loaded application in order to avoid star-
vation. Note that this proportional allocation scheme is a natural
way to assign the server capacity. It is provably the best resource
allocation scheme in terms of stability regions and it is used as a
benchmark in the autonomic computing literature (see e.g., [19]).

The average utilization of the physical server varied in the range
[0.05, 0.65]. Figure 10 shows a plot of the server utilization ρk
obtained in the identification tests.

The input/output configuration and the parameter vector are the
same as in the first scenario. A plot of the response times obtained
with the identified models are compared to the measured ones in
Figure Figure 11(a)-11(b) obtained on validation data in the sec-
ond scenario, while detailed quantitative results are reported in Ta-
ble 5. Inspecting this latter Table it is apparent that, also in this
challenging test performed on a standard benchmark and consid-
ering realistic workload and resource allocation policies, the pro-
posed identification approach remains reliable and effective.

VAF on 24h eavg on 24h

Identification data VM1 59.85% 6.85%
VM2 87.20% 6.97%

Validation data VM1 64.51% 7.34%
VM2 77.60% 10.63%

Table 5: Performance of the identified models with ∆t = 1 min
on identification and validation data in scenario 2.

LPV models have demonstrated to be able to capture the behav-
ior of a virtualized server at very fine grained time scale with an
average percentage error lower than 20% in the worst case.
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Figure 9: Plot of the number of users employed in scenario 2.

Figure 10: Time history of the physical server CPU utilization
used in identification experiments in scenario 2.

(a)

(b)

Figure 11: Detail of the measured (solid line) and response time
obtained with an LPV-IA model (dashed line) with ∆t = 1 min
for the first (a) and for the second (b) application on validation
data measured with SPECweb2005 in scenario 2.

5. RELATED WORK
The performance evaluation of a virtualized systems under work-

conserving mode is very challenging. The GPS scheduling dis-
cipline implemented by VMMs belongs to the non-product form
class. In the queueing network literature, a number of solutions
have been proposed for the analysis of GPS systems.

Authors in [9] have analyzed the steady state behaviour of a class
of two-dimensional birth-and-death processes, which can approxi-
mate the execution of two running VMs. In particular a two-class
M/M/c system with “mixed priorities’ is analyzed. Of the c servers,
k are devoted to class 1 jobs execution, and the other c− k are des-
ignated class 2. Class 1 jobs have preemptive priority over class 2
jobs on class 1 servers, while class 2 jobs have preemptive priority
on class 2 servers. Thus the serving capacity available to class 1
jobs is k when there are at least c−k class 2 jobs in the system, but
can rise (up to c) when that number drops below c−k. Similarly for
the class 2 jobs. The analysis provided a solution method by means
of the generating functions for the steady-state distribution and can
approximate the GPS scheduling when c is large. In [49], bounding
techniques are presented which are able to determine the percentile
distribution of response time of multiple-classes. Anyway, the ac-
curacy of the bounds has not been evaluated. A lot of work has been
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performed also in the IP network literature since the GPS schedul-
ing can be implemented by advanced routers in order to provide
service differentiation to voice and video packets. In [13] bound-
ing techniques have been proposed for evaluation of multiple-class
systems characterized by long range dependent traffic.

The above mentioned techniques are able to predict performance
of a system when it is in the steady state and therefore cannot accu-
rately model system transients. Vice versa, LPV models and gen-
uine feedback control techniques borrowed from the system identi-
fication and control theory research, relying on accurate dynamical
models, can predict systems performance at very fine grained time
scales and adjust the system configuration within the time frame of
a transient. The first control-oriented contributions applied to the
management of autonomic systems are reported in [1, 27, 31], and
use feedback control to limit the utilization of bottleneck resources
by means of admission control and resource allocation. More re-
cent works [16] implemented a limited look-ahead controller for
the autonomic management of a service center.

The first works which adopt the LPV framework to model and
control server systems have been presented in [25, 24], where an
input-output LPV representation has been identified to serve as a
basis for the design of a gain-scheduling controller able to pro-
vide performance guarantees by means of frequency scaling and
admission control, respectively. More recently, see [32, 33, 35], the
authors of the present paper have proposed state-space subspace-
based identification methods to model single class Web service sys-
tems where the control variable is the frequency of operation of the
CPU. The adoption of the state space representation allows a seam-
less extension to Multiple-Input-Multiple-Output systems, needed
to address multiple request classes, and a more sound model struc-
ture selection for LPV control design purposes (see [36]). The pre-
liminary results we have achieved in virtualized infrastructures lim-
ited to a two VMs case are reported in [34]. This paper extends this
latter previous work providing a more exhaustive experimentation,
considering a larger number of VMs and validating the approach
by adopting the SPECweb2005 industrial benchmark.

In the queueing theory literature, some recent proposals addressed
the problem of modelling queue network transient behaviour by
means of Markov models in order to study burstiness and long
range dependency in system workloads. Authors in [5] studied a
class of closed queueing networks where service times are repre-
sented by Markovian arrival processes which take into account time
dependent features such as burstiness in service times. In [5], very
accurate upper and lower bounds are also provided to determine
arbitrary performance indexes, but the analysis is limited to single
class models. Authors in [26] introduced matrix-analytic analysis
to study an open queueing system with Markovian Arrival Process
as input and Phase Type distribution as service time. Other studies,
[29], focused on the analyses of non-renewal workloads but, due
to the analysis complexity, only small size models based on one or
two queues can be dealt with so far.

The main limitation of Markovian models is their complexity,
which makes, even for very simple systems, e.g., a first come first
served single server queue, the number of parameters to be deter-
mined quite large. These models suffer for high computation over-
head and, hence, are presently not suitable for run-time modelling
of virtualized systems.

6. CONCLUDING REMARKS AND
OUTLOOK

This paper presented the identification of multi-variable LPV
models for the performance control of virtualized environments.

Specifically, the suitability of subspace LPV identification methods
has been checked against experimental data measured on a custom
implementation of a a micro-benchmarking Web service applica-
tion and on the SPECweb2005 industry benchmark endowed with
virtualization capabilities. A detailed analysis of the peculiarities
of the considered applications has been provided, together with a
quantitative assessment of the performance of the LPV models on
validation data. Future work will be devoted to further validate our
approach on real applications and to employ the identified model
for control purposes.
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