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ABSTRACT
Solid-State Disks (SSDs) made out of Flash devices have
gained a lot of prominence in recent years due to their in-
creasing performance and endurance. A number of mecha-
nisms are being proposed to improve the performance and
reliability of these devices from technological and operating
system perspectives, to integrate them into personal com-
puters and enterprise systems. Most of such proposals are
being implemented and evaluated directly on top of these
SSDs and require sophisticated framework and infrastruc-
ture for thorough performance evaluation. On the other
hand, to our knowledge, very little has been done on mod-
eling Flash devices and building efficient Flash simulators
that can be used to simulate SSDs. Such models and sim-
ulators can give insights to make design decisions, save a
lot of cumbersome work for setup and implementation, save
hardware costs and allow researchers to focus on the real
methods that are being proposed.

This paper presents a linear model for NAND-based Flash
devices based on the internal architecture of these devices.
Parameters of the model are presented along with micro-
benchmarks that can be used to extract these parameters.
The model is validated on the STEC Zeus Flash SSD and
extracted parameters are used to build a Flash simulator
as a kernel extension in the AIX operating system. A key
feature of the simulator is that it simulates I/O requests by
maintaining minimal state information and is independent
of the internal organization of a Flash SSD. The simulator is
validated using commercial and raw-IO applications through
experimentation on the simulator and real Flash disks.

Categories and Subject Descriptors
D.4.8 [Software]: Operating Systems—Performance; D.4.8
[Software]: Operating Systems—Storage Management

General Terms
Performance Measurement
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1. INTRODUCTION
Flash memory is rapidly becoming an important and promis-

ing technology for the next-generation storage due to a num-
ber of reasons including its (i) low access latency (ii) low
power consumption (iii) higher resistance to shocks (iv) light
weight and (v) increasing endurance. A lot of research done
in the past decade has focused on improving the performance
and reliability of Flash devices and software [7, 5, 9, 12, 19,
18, 10]. Flash devices can be made out of NAND or NOR
technologies. NAND-based Flash devices have emerged as a
more acceptable candidate in the storage market. Research
has been conducted on improving NAND Flash technology
[29, 27], Flash organization [15, 10], increasing endurance
[7], optimizations to access data at finer granularity [26] and
software optimizations and improvements [19, 6].

Today, SSDs built on NAND Flash are not only being
shipped as part of embedded systems but also as part of
personal computers [25] and enterprise systems [30]. This
recent widened and increased usage of Flash has strongly
driven research to design reliable systems using Flash. Typ-
ical approach has been to use an array of Flash devices for
higher performance and better endurance. While a lot of
work for SSDs has focused on building SSDs using Flash
devices and increasing the lifetime of SSDs, little has been
done on operating system design for Flash. Recent work
that focuses on the OS aspects of SSDs includes design of
Flash file-systems [8, 12] and algorithms for disk scheduling
[19]. Typical investigation of OS issues for Flash involves
designing, implementing and evaluating new algorithms and
methods on top of SSDs. In particular, this involves detailed
perusal of specifications of an SSD, writing device drivers for
it (or studying a shipped device driver in detail), changing
the device driver and OS to incorporate newly designed algo-
rithms, and a detailed performance evaluation using enter-
prise workloads. This not only requires expertise in OS and
device-driver development but also a detailed knowledge of
the specification of Flash devices. Therefore, designing, im-
plementing, testing and evaluating new OS algorithms and
techniques on top of real SSDs is a cumbersome task.

A promising alternative to this is the usage of modeling
and simulation. Building models for system components and
using simulators for system design in not new. One can
quote numerous examples where modeling techniques and
simulators have been extensively used for designing systems
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and system components such as processors, memory, hard
disks, network interfaces, network topologies, etc. Simula-
tors not only speed up the process of design and develop-
ment but also provide insights to make decisions that can
later be implemented and evaluated in real environments.
Models give insights and intuition into behavior of system
components and can save a lot of design and implementation
efforts. Building a simulator for a Flash device also greatly
reduces the wear and tear of it, since Flash has limited en-
durance for writes. During the design process, one could
undertake a complete state space simulation of methods in
the simulator and then evaluate only a few chosen ones on
the real Flash disk. This paper presents a model for a Flash
device and a novel way to build a Flash simulator using the
model. The simulator can be used to test new techniques
and algorithms - both for OS and for Flash itself.

Simulating Flash memories is a non-trivial task. A typical
Flash memory is made up of pages (typical page size is 2KB
or 4KB). A set of pages (usually 64 pages) forms a block
and a set of blocks forms a plane. Several planes (power of
2) form a die, and several dies form a chip. An array of such
Flash chips with a controller forms a Solid State Disk. For
accurate simulation, one not only needs to know the internal
organization of an SSD, but also the details of the associ-
ated adapter such as caching/pre-fetching effects. It is also
to be noted that some of the Flash operations can happen
in parallel (when there are multiple planes), depending on
the size of the incoming requests. In addition to all of the
above, Flash devices map reads/writes from the OS to read-
/erase/program operations that are supported by the Flash
chip. Therefore, the timing of OS read or write operations
varies significantly from request to request depending on the
size and the address of the request. While reads can be
done at page granularity (typically in tens of microseconds),
writes may involve both page-level programming (couple of
hundreds of micro-seconds) and block-level erasing (usually
in the order of milliseconds). This is because a write may
involve erasing a block and then programming the block
page by page. Thus, simulating Flash devices accurately
requires maintaining state information for each page and
logical-to-physical mappings for all the blocks in the device.
Flash devices also maintain additional ’overhead’ area for
each page that keeps track of the erase counts and CRC
(for error correction). Simulating erase counts is necessary
if one is interested in investigating endurance optimizations
for the Flash devices. On top of this, recent Flash vendors
have also provided ways to do sub-page programs [26] and
such optimizations result in an additional level of complex-
ity for effective Flash simulation. Also, as Flash technology
evolves rapidly, a simulator that bases itself on the internal
organization of the Flash chip could get outdated quickly.

We present a model and a novel way of simulating a Flash
device. The model is constructed using internal operating
details of a Flash device but the simulation itself is inde-
pendent of the Flash device and the adapter characteristics.
Since Flash devices are randomly accessible, and do not have
seek and rotational delays, the I/O time for a request is fun-
damentally dependent on the size of the request (in addition
to other queuing delays in the drivers and controller). Also,
since Flash devices might have to erase on a write, I/O time
also depends on the operation of the request. We develop a
model for the timing of a request and present a method to
efficiently simulate delay for an incoming I/O request based

on its (i) size (ii) direction of I/O and (iii) sequentiality.
We maintain minimal state information about the requests
themselves in doing so (the only information we maintain
is the previous request block number, its size and direction
of I/O). We validate the model on STEC Zeus Flash drives
and extract its model parameters using micro-benchmarks
that we designed. We then build a Flash simulator using
the extracted parameters and finally validate the simulator
using raw and commercial workloads.

The rest of the paper is organized as follows: Section 2
gives the background and basics of Flash-based SSDs. Sec-
tion 3 discusses related work. Section 4 presents the model
and parameters’ extraction process. Section 5 presents the
design of the Flash simulator and its implementation us-
ing the model parameters. Validation results for the model,
and experimental evaluation of the simulator for raw-IO and
commercial workloads are presented in Section 6. Finally,
concluding remarks, future work and key contributions of
this paper are discussed in Sections 7 and 8.

2. BACKGROUND
Flash memory has been traditionally used in portable and

mobile devices (USB storage devices, hand held devices,
etc.) because of its unique and attractive features: shock
resistance, small size, low power consumption, and low la-
tency [11]. More recently, this technology has made huge
strides into the server and personal computer storage space
in the form of SSD with the intention of replacing tradi-
tional hard disk drives (HDD). SSD devices are non-volatile
storage devices based on the NAND Flash memory type.
NAND-based memory is a solid-state memory that allows
the storage of persistent data. A key feature of SSD de-
vices is the lack of any mechanical moving parts compared
to HDD. SSD have no seek time, which are inherent in con-
ventional disks. Therefore, they can provide a much faster,
and a more uniform random access speed compared to HDD.

2.1 Organizational Layout of a Flash chip
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Flash Package.
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A Flash chip is an electronic device that can be erased
and reprogrammed electronically. It is of type EEPROM
(Electrically Erasable Programmable Read-only Memory).
Data is stored in Flash memory in an array of memory cells.
There are two types of cells: single-level cells (SLC) and
multi-level cells (MLC). In SLC, each cell can store only
one bit of information. While in MLC, multiple bits can be
stored in one cell location using multiple levels of electric
charge. Each bit in SLC technology has a default value of
1. It must be programmed to take the value of 0. MLC
chips are less expensive than SLC chips. However they have
a shorter life span and are slower than SLC chips (an MLC
can fail ten times more often than an SLC [16]). Secondary
storage Flash devices are all based on NAND Flash. As
explained earlier, a typical NAND-Flash package is com-
posed of a number of dies, each containing an even number
of planes which itself comprises of several blocks that are
typically made up of 64 pages. Each page reserves some
byte region to store metadata (error detection and correc-
tion checksum). A plane contains either odd or even blocks.
Figure 1 shows the organizational layout of a Samsung 4GB
Flash package. Other Flash vendors like Mircon and Hynix
have similar layout.

2.2 Behavior of Flash SSD
Because of the absence of mechanical parts in Flash chips,

their random read performance is almost as good as the se-
quential read performance. This is one of the major bene-
fits that Flash SSD has over HDD. Reading is done at the
granularity of a page. A Program operation is also done
at a page granularity. Within the same blocks, page pro-
grams are performed sequentially. Erase operations on the
other hand can only be done at the block level (typically 64
pages). A block erase sets all the bits in the block to 1. So
any time a bit has been set to 0, changing this bit back to
1 requires erasing the entire block that it belongs to. An
erase operation is also expensive (typically 1.5-2 ms to erase
a block). Due to this major limitation, the cost of write
performance can vary depending on whether the operation
requires an erase operation or not. Another important as-
pect of Flash SSDs is the wearing behavior. Flash memory
has a finite number of erase-write cycles. Most commercially
available SLC-based products guarantee a life-span of about
105 write-erase cycles. Wear-leveling algorithms are used in-
side Flash-controllers to spread the erase operations across
the Flash device in an attempt to increase its lifespan.

To hide the expensive erase operations and create abstrac-
tions for an in-place write, SSDs have an integrated con-
troller that implements address translation, garbage collec-
tion and and wear-leveling algorithms in a software layer
called the Flash translation layer (FTL) [19]. The FTL
emulates a block device with the standard 512-byte sec-
tors so that unmodified files systems can run on top of the
Flash SSD just as they run on top of regular block devices.
The FTL is responsible for mappings between blocks in the
micro-controller’s RAM and Flash pages, and for manag-
ing bad blocks. Several FTL schemes have been imple-
mented such as paged-based, block-based, FAST [24], and
DFTL [15].

While the basic principles of operation of Flash and the
FTL layer are well understood, the various vendor design
decisions and the implicated performance trade-offs are not
documented. Flash vendors keep their internal Flash FTL

algorithms unknown to the public. Moreover, the asymmet-
ric performance of read and writes (writes are about 4-5
times slower than reads), the poor write performance, the
wearing behavior of Flash memory, the need for the FTL
layer to balance writes and manage bad blocks makes the
understanding and modeling Flash SSD a challenging and
complex task.

3. RELATED WORK
Numerous research efforts have attempted to understand

the behavior of Flash SSDs and their overall performance in
secondary storage [6, 28, 23]. New file systems optimized for
the properties of Flash SSDs have been proposed [8, 9, 12],
and efforts have also focused on improving the technological
aspects of Flash SSDs with algorithms and data structures
suited for the various operations on Flash devices such as
wear-leveling algorithms, improving the write performance,
and bad block management [13].

So far, very little work has been done to build a NAND-
Flash SSD simulator capable of simulating various Flash
SSD devices. At Microsoft Research, Agrawal et al. [5]
built a NAND-Flash simulator based on the DiskSim sim-
ulation environment [14] from the CMU Parallel Data Lab.
DiskSim is an open source disk simulator that emulates a
hierarchy of storage components such as buses, controllers,
and disks. It is driven by externally-provided I/O request
traces or internally-generated synthetic workload. Agrawal
et al’s SSD simulator extends DiskSim by adding SSD fea-
tures such as SSD latencies, multiple request queues, logical
block maps, block erasure, and wear-leveling. This simula-
tor has been built as an ideal SSD simulator and does not
simulate a particular vendor’s device. It also simulates only
the page-based FTL scheme. CPS-SIM [22] is another Flash
SSD simulator that is limited by a single FLT scheme. Flash-
Sim [31] has an object-oriented design and supports simulat-
ing multiple FTL schemes using workload traces. FlashSim
uses also DiskSim to simulate queuing effects.

Modeling a Flash device has received far less attention.
In fact, to our knowledge, there is no prior work that de-
velops models for Flash devices (work in this direction has
been more focused on developing circuit level models [20]).
In this paper, we propose a throughput model based on the
Flash architecture and use it to develop a simulator. Com-
pared to the discussed simulators, our simulator is capable
of simulating several Flash SSD devices because its param-
eters can be extracted from any SSD. Also, our simulator is
a kernel extension that can be configured on a running OS
as a paging device. Hence, it does not require any traces as
input. Therefore, it is a good choice to test (i) the Flash
behavior of scientific and commercial applications and (ii)
the OS policy changes for Flash devices.

4. MODELING A FLASH DEVICE
This section describes the working of a Flash device in

detail and presents a model for its operation.

4.1 Flash Commands and Operation

4.1.1 Internal Architecture
Flash devices multiplex data, commands and addresses to

the same I/O pins. The I/O control logic is able to dis-
tinguish data and addresses based on the command that is
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in progress. Figure 2 shows a functional overview of inter-
nal Flash architecture. Commands are received by the I/O
Control logic which are latched into a command register to
generate internal signals. Based on the command, addresses
are latched (in consecutive cycles) and are sent to row and
column decoders. Data transfer to/from the NAND Flash
array is byte by byte through the data and the cache regis-
ters. The data register is closest to the memory array and
acts as a data buffer for the NAND Flash memory array
operation whereas the cache register is closest to I/O con-
trol circuits and acts as a data buffer for the I/O data. The
granularity of read and program operations is a page and
the granularity of erase is a block. During normal page op-
erations, the data and cache registers are tied together and
act as a single register. During cache operations, the data
and cache registers operate independently to increase data
throughput. (Note: The above discussion is adapted from
[26])
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Figure 2: Functional Block Diagram of a Flash De-
vice(Source: [26]).

4.1.2 Read and Write Operations
A read operation is triggered when the READ command

gets latched into the command register. Read of a single
page involves movement of the page from the array cells to
the data register (typically tens of microseconds) followed
by data output from the data register to the I/O bus. The
data output rate is a device characteristic and is typically of
the order of tens of nanoseconds per byte. Read of multiple
pages occurs in ’cache mode’ where data is first transferred
to the data register and then moved to the cache register
(movement happens in just a few microseconds). The cache
register outputs the data directly onto the I/O bus as the
next page is simultaneously transferred from the NAND ar-
ray to the data register.

Writes occur in a similar fashion. Write operations involve
only PROGRAM commands if sequential pages within the
same block are being written. Programming a single page is
of the order of couple of hundreds of microseconds (220µs for
devices described in [26]). However, writing a random page
(i.e., programming a random page) might require erasing

a whole block of pages using the ERASE command which
could take up to 2 milliseconds.
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Figure 3: Timing Sequence of a Read Operation.

4.2 Modeling Reads and Writes
Based on the operation details of the Flash device de-

scribed above, this subsection builds a model for the read-
/write operations.

4.2.1 Sequential Reads
Let the time to read a page from the NAND array (mem-

ory cells) to the data register be Tread, the bus transfer time
for the page (from the data or the cache register) be Ttrsfr,
the time to move the page from the data register to the cache
register be Tmove and the time to issue a command be Tcmd.
Now, time to read one page from the device is given by

TonePage = Tcmd + Tread + Ttrsfr (1)

For sequential reads, Flash devices operate in cache-mode
as explained above. So, time to read two pages in the cache
mode would be

TtwoPages = Tcmd + TreadPage1 + TmovePage1

+max[TtrsfrPage1, TreadPage2]

+TmovePage2 + TtrsfrPage2 (2)

Note that in cache mode, the last page does need to be
moved to the cache register even if there is no subsequent
page for transfer [26]. Similarly, it can be derived that the
time to read p pages would be

TpPages = Tcmd + TreadPage1 + p ∗ Tmove

+(p− 1) ∗max[TtrsfrPage, TreadPage]

+TtrsfrPagep (3)

Figure 3 shows the timing sequence for reading p pages.
Note that all the terms in equation 3 are constants except
p. In other words, time to transfer p pages (or equivalently
n bytes, as page size is a constant) can be written as

TnBytes = A+ n×B (4)
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where A and B are constants for the sequential read pat-
tern that depend on chip characteristics (they will also in-
clude associated software overheads in the OS when deter-
mined through experimentation). Therefore, sequential read
throughput for requests of size n bytes assumes the form:

Throughputsr(n) =
n

Asr + n.Bsr

for constants Asr and Bsr.
We determine constants Asr and Bsr using experimenta-

tion and feed these into the simulator (described later in
Section 6.1).

4.2.2 Random Reads, Sequential Writes and Random
Writes

A random read of a single page does not involve the cache
register. The total time to read is a constant and inde-
pendent of the page number (unlike hard disks, where the
distance between consecutive requests matters due to seek
and rotational delays). Therefore, throughput for a random
read of a single page is a constant. However, random reads
of larger block sizes lead to a similar timing sequence as de-
scribed above (request itself would be at a random block
number in the SSD but large requests of multiple pages
would be handled in cache mode). Random writes also ex-
hibit similar behavior to reads during the program oper-
ations but erase operations involve additional block erase
overhead.

Therefore, we stipulate that sequential writes, random
reads and random writes would only change the constants
of the above presented linear model. In summary, we model
read and write throughputs (for both sequential and random
patterns) according to the equation

Throughputx(n) =
n

Ax + n.Bx
(5)

and determine the constants Ax and Bx using experimen-
tation. Note that the subscript x is used here for gener-
ality. x will assume four different forms resulting in eight
different constants for our model: (Asr, Bsr) for sequential
reads, (Arr, Brr) for random reads, (Asw, Bsw) for sequen-
tial writes and (Arw, Brw) for random writes. These con-
stants constitute the parameters of this model, which we call
the throughput model. For the rest of the paper, these con-
stants will be interchangeably called as Throughput Param-
eters or Model Parameters.

4.3 Throughput Model Parameter Extraction
This section describes the parameter extraction process

and the micro-bechmarks that we used to extract parameters
required for the model. Our micro-benchmarks do not need
any details about the internal organization of a Flash chip
or the adapter. In fact, they only need one parameter: Total
Size of the Flash Device.

4.3.1 Measuring the Throughput
The entire device (SSD) is divided into (2z+1) equal zones

(odd number of zones). Starting from the second zone, we
generate sequential and random accesses in every alternate
zone for z number of zones. For example, we first gener-
ate sequential reads in a zone (for a given block size) and
measure the total time. Using the number of requests gen-
erated, the request size (block size) and the total time, we
compute the throughput for this zone. This would be the

…
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Total Device Space Exposed to the OS

Random &

sequential

accesses

in a zone

Throughput = Avg. throughput across all 

requests for all zones individually for

{Seq | Rand} {Read | Write} for each {Block size}

Figure 4: Parameter Extraction Process.

sequential read throughput for this zone for this block size.
We then move to the next (alternate) zone and continue a
similar process. Once we are done with all the zones, we take
the average of all the throughputs that we have from every
zone. This will be the sequential read throughput for this
block size for the device. We do a similar process for sequen-
tial writes, random reads and random writes. For random
accesses, we use a uniform random number generator. In
all our experiments we have used the value of z=3 (seven
zones). Figure 4 shows the high-level view of the extraction
process. We then repeat the process for various block sizes
until we reach a saturation point where block size does not
have further effect on the throughput.

The basic idea here is that we want to exercise different
areas of the device to prevent I/O requests from stressing
only a particular set of blocks or pages (or being limited to
a singe plane). At the same time, we do not want the ex-
traction process to be very time consuming and insensitive
to the wear and tear of the Flash device (due to the limited
write endurance it has). Therefore, we partition the entire
device into odd number of zones and exercise alternate zones.
Designing micro-benchmarks that minimize the number of
writes of a Flash device and effectively extracting device/-
model/throughput parameters in minimal time itself can be
a research problem and its detailed investigation is beyond
the scope of this paper. In this paper, we use this simple
technique and extract the throughput values. Note that one
of the reasons for this method to be effective is that Flash
devices are randomly accessible. The ’inter-request’ distance
does not matter so much as the block size. Yet, it is impor-
tant to stress different areas of the Flash device, particularly
for writes to avoid erasing the same set of blocks.

The throughput values are then used to fit the model de-
scribed in the previous section. The measured throughput
values, corresponding throughput parameters and details of
the linear fit are all discussed in the evaluation section (Sec-
tion 6).

19



5. FLASH DISK SIMULATOR DESIGN AND
IMPLEMENTATION

This section introduces the Flash simulator, describes its
overall design and details important features of it.

5.1 Overall Design
The Flash simulator is a dynamically loadable kernel ex-

tension (kernel module) on the AIX operating system that
’pins’ a chunk of memory and simulates it as Flash mem-
ory. Once the extension is loaded, a Flash device appears
on the system as a disk device and one can configure logical
volumes and create paging devices on top of such a device.
The OS simply knows the kernel extension as a driver for a
disk device and passes I/O requests to the kernel extension
strategy routine to handle read/write operations.

Internal to the simulator (kernel extension), every read-
/write operation arrives as an I/O request (called buf-struct).
Every buf-struct is examined to see if it is a read or a
write operation and a delay for that operation is simulated
(as explained below in Section 5.2). A dedicated kernel-
process which is bound to a processor handles all these
requests (resembling the notion of a Flash controller). In
addition, the data transfer part is simulated using a high-
performance memcpy operation implemented using firmware
calls (hypervisor calls). This allows for minimal overhead in
copy operations. It is also to be noted that the actual tim-
ing delay is simulated for a read/write operation after the
copy operation is done, so that only the remaining delay
is simulated. Delays themselves are simulated using high-
resolution nanosecond granularity timer services that are
provided in the kernel. These services are also used to main-
tain a plethora of statistics within the simulator which can
then be reported using utilities that are exported as com-
mands to the user. Installing and configuring the kernel
extension, creating logical volumes and configuring paging
devices is extremely simple, and can be done in a matter of a
couple of minutes using just a few commands. Applications
can then be run to access the Flash device as a Solid-State
Disk.

The core of the Flash simulator is the delay simulation
for I/O requests. The simulator has been implemented in
a modular fashion to allow using various models for delay
simulations. The throughput model is one example.

5.2 Simulating Read/Write Timing
Delay that is to be simulated for an operation is calcu-

lated by implementing the throughput model in the simu-
lator. Minimal state information {block size of the previ-
ous request, block number of the previous request, previous
opreation (read/write)} is maintained for this purpose. The
simulator uses the throughput parameters that are fed to it
using system calls. These values are extracted using micro-
benchmarks that are designed for this purpose (as explained
in Section 4.3).

Pseudo-code 1 shows a high-level view of implementing
delay simulation. If the current operation is same as the
previous one (curOp == prvOp) and if the current request
is immediately adjacent to the previous request on the disk
((prvBlk+prvSize) == curBlk), sequential parameters are
used for delay calculation (delay is represented by waitT ime
in the pseudo-code shown). Any other request is treated
as a random request. The throughput parameters used in
the pseudo-code are further discussed in detail in the perfor-
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Figure 5: Overall Architecture of the Flash Simula-
tor.

Pseudocode 1 : Pseudo-code implemented to simulate de-
lays for Read/Write operations

Model Parameters:
{ (Asr,Bsr),(Arr,Brr),(Asw,Bsw),(Arw,Brw) }
State:
{ prvBlk, prvSize, prvOp }

/* Procedure to calculate the delay to be simulated for an I/O op. */

time t Delay(bufstruct b)
{
{curOp, curSize, curBlk} ⇐ {b→op, b→size, b→blkNo}
access = RAND
if (curOp == prvOp) then

if ((prvBlk + prvSize) == curBlk) then
access = SEQ

end if
end if
if curOp == READ then

if access == SEQ then
(A,B)⇐ (Asr, Bsr)

else
(A,B)⇐ (Arr, Brr)

end if
else

if access == SEQ then
(A,B)⇐ (Asw, Bsw)

else
(A,B)⇐ (Arw, Brw)

end if
end if
waitT ime = A+B × curSize
{prvOp, prvSize, prvBlk} ⇐ {curOp, curSize, curBlk}
return waitT ime

}
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Figure 6: Throughput of the Zeus Flash Disk for
Various Block sizes.

mance evaluation section (Section 6). Note that the pseudo-
code shown here is just a high-level overview and omits many
implementation details for simplicity and clarity.

6. PERFORMANCE EVALUATION
This section describes experimental setup and a series of

experiments conducted to (i) validate the model presented
in Section 4 (ii) extract model parameters and (iii) validate
the simulator using raw-I/O and commercial workloads.

All the experiments were conducted on the IBM AIX ver-
sion 6 Operating System running on the POWER6 [21] pro-
cessor with 4.7 GHz clock speed, 2 physical CPUs, and 2
hardware threads (SMTs) per CPU. The Flash disks used
were the STEC Zeus 70GB Solid-State drives.

6.1 Validating the Model
To validate the throughput model, we access the SSD in

raw mode (i.e., without any caching in the OS or in the
adapter), plot the observed throughput and fit to the pro-
posed model using linear regression. The workloads were run
according to the parameter extraction process explained in
Section 4.3. Block size (size of the I/O requests) was varied
from 4KB to 64MB, random and sequential requests were
generated and the observed throughput was plotted.

Seq Rd Rand Rd Seq Wr Rand Wr
A(µs) 127.5(Asr) 230.6(Arr) 2167(Asw) 770(Arw)
B(µs/KB) 4.005(Bsr) 3.987(Brr) 4.96(Bsw) 5.382(Brw)

r2 0.999997 0.999981 0.99932 0.999722

Pvalue 5.21×10−26 1.39×10−22 1.45×10−15 2.54×10−17

Table 1: Throughput Parameters Extracted for the
STEC Zeus Flash Disk.

6.1.1 Linear Regression Fit
Figure 6 shows the throughput plot for sequential and

random patterns. The curves from Figure 6 were used to

fit the model described in Section 4. Table 1 shows the
regression output obtained for each curve. All the Ax values
(first row of Table 1) refer to the intercepts and Bx (second
row) refer to the slope coefficients. Also shown are the Pvalue

and r2 (coefficient of determination) for each fit. From the
table, firstly, Pvalues for all the curves are extremely small
(last row of the table). The largest Pvalue that we have
is of the order 10−15 which means that regression is very
significant. Secondly, values of r2 are greater than 0.999
for all the curves which means that the correlation is very
strong. This shows that the linear model fits very accurately
with experimental data and validates the throughput model.

The first two rows of the Table 1 (intercepts and the slope
coefficients) are essentially the parameters of the model that
are fed to the simulator.

6.1.2 Further interpretation and analysis of the curves
and the linear fit

We explain the behavior of the Flash device here in detail
for the sequential and random experiments conducted and
also correlate this with the linear fit:

• Firstly (from Figure 6), throughput for reads and writes
increases as the block-size increases and saturates at
block-size of 8MB. This is true for both random and
sequential patterns. One main reason for this behav-
ior is that unlike hard disks, there are no seek and
rotational delays in a Flash device. As a result, the
time to access a page/block is fairly independent of
the ’distance’ between successive I/O requests (there
is no head that needs to move from the current block
to the next block) and the actual transfer size of the
request gains much more prominence. Thus, through-
put increases with increasing block size. This is also
an implication of the fact that less commands need
to be submitted to internal decoders if the block sizes
are large. Also, software overhead involved in device
driver queuing and I/O completion handling is mini-
mized with larger block sizes. From the model itself,
this is evident from the throughput formula shown in
Equation 5. As the value of n increases, throughput
saturates to 1/Bx.

• Secondly, reads are faster than writes. This is clear
from the throughput curves in Figure 6 and from Ta-
ble 1. As explained in previous sections, writes usu-
ally consume more time because (i) per-page program
time for the NAND array (from the data register)
is of the order of couple of hundreds of µs whereas
read time from the array is only tens of µs (ii) many
writes need additional block erases which is 1 − 2ms.
This also explains the values for the intercepts(Ax) in
the Table 1. Values for sequential and random write
curves (Asw = 2167µs and Arw = 770µs) are much
higher compared to those of reads (Asr = 127.5µs and
Arr = 230µs). Note that although intercept for ran-
dom write (Arw) is lower than that of sequential write
(Asw), its x coefficient is greater (it can be seen that
random write time will be more than sequential write
time for requests > 3.3K).

• Thirdly, sequential operations are faster than random
operations. This is particularly true for writes. As
explained in Section 4, Flash devices internally allow
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I/O Operation Average Percentage Error (%)
Random Read 4.6

Sequential Read 5.31
Random Write 4.10

Sequential Write 6.57

Table 2: Average Percentage Error of the Raw I/O
Throughput of Read and Write operations between
the Flash Simulator and the Zeus Flash Disk.

data retrieval of next page from memory cells to cache
buffer as the previous page is being sent out to the
controller (similar method for writes) [26]. Due to this
overlap in data transfer for sequential operations, they
are faster. Table 1 shows this in terms of x coefficients
(Bx). Brw has the highest value(5.382µs) which means
that per-page cost of doing a random write is the max-
imum of all per-page costs in a Flash device.

In summary, sequential and random experiments conducted
on the Zeus Flash SSD using micro-benchmarks validate our
throughput model. This also gives us a set of model param-
eters that have been extracted on this Flash SSD that can
be fed to the simulator.

6.2 Validating the Simulator
This section presents the validation results for the simula-

tor. We first validate the simulator using benchmarks that
generate sequential and random I/O requests on disks. We
then configure a paging device on top of the simulator and
use two representative commercial applications: SPECJbb
2005 [2] and DayTrader [1] to validate the simulator.

6.2.1 Validation using Raw I/O Benchmarks
For the raw I/O benchmarks, we generate sequential/ran-

dom request patterns over the entire device for varying block
sizes (4KB to 8MB). We first do this on the real Flash disk
and then on the Flash simulator (running with the through-
put model and extracted parameters).

Figure 7 compares the throughput observed on the Flash
simulator and the real Flash disk for various block sizes.
Throughput behavior exhibited by the simulator closely matches
that of real SSD. Figure 7 also shows bars of the percentage
error values of the Flash simulator based on three simulator
runs. Table 2 summarizes the average percentage error ob-
served during the various raw I/O operations on the Flash
simulator. The percent errors are on average less than 7%.

6.2.2 Validation using Paging
After validating the Flash simulator using raw I/O work-

loads, we configured the Flash simulator and the real Flash
disks as paging devices. Only one type of paging device
was used in each experiment. All other paging devices were
deactivated to allow paging to either the Flash simulator
or the Flash disk. We used a paging space configuration
that consists of one AIX logical volume with a size of 2GB.
Two representative commercial benchmarks were then ex-
ecuted on this infrastructure. To trigger paging, the real
memory size available to these applications was decreased
using AIX’s dynamic reconfiguration (DR) [17] operation
for memory remove. The DR memory operations in AIX
allow a given amount of memory to be added or removed
dynamically from the underlying AIX OS instance.
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Figure 9: Performance of the SPECJbb 2005 Bench-
mark While Paging to the Flash Disk, the Flash Sim-
ulator, and the Hard Disk.

SPECJbb Paging Experiments

SPECJbb 2005 [2] is a benchmark from the Standard Per-
formance Evaluation Corporation (SPEC) [3] based on the
TPC-C benchmark specifications. It emulates a 3-tier sys-
tem in a JVM with emphasis on the middle tier. SPECJbb
was executed with 10 warehouses. Each experiment was run
for 240 seconds and the main metric of measurement was
BOPS (Business Operations Per Second).

Figure 8 shows the effect of memory size on BOPS. Mem-
ory size was varied from 3.5GB to 6GB, in the increments of
0.25GB. For a memory of 6GB, SPECJbb BOPS is around
35K and does not depend on the paging device (whether it is
hard disk, SSD or the flash simulator) as there is no paging.
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Figure 7: Read and Write Behavior of the Zeus Flash Disk and the Flash Simulator for Various Block Sizes.
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As the memory size is decreased, paging starts happening
around 5GB and BOPS starts dropping. It can be seen from
the figure that as memory decreases from 4.5GB to 3.5GB,
BOPS for the hard disk drops very rapidly. Flash disk and
Flash simulator do sustain BOPS for another 0.25GB but
then give up to the thrashing workload. However, it is clear
from the graph that the BOPS achieved using a solid state
disk is significantly higher than the BOPS observed using a
hard disk. In fact, under memory pressure, BOPS achieved
using Flash disk is roughly 10 times higher, corroborating
the fact that SSD performs better than a hard disk. Also
seen is the curve for the Flash simulator which almost com-
pletely overlaps with that of the real Flash disk. Flash sim-
ulator performs very close to the Flash disk for all the data
points. Note that at each data point, the read and write
operations are dependent on SPECJbb behavior under that
memory pressure. Thus, this benchmark is a representative
of varying read/write percentages and parallelism. Flash
simulator, using its throughput model is able to accurately
capture the behavior of Flash disks for SPECJbb. Figure
9 further zooms into the area between Memory (3.5-4GB)
and BOPS (0-1000) from Figure 8. It can be seen that Flash
simulator performs a little worse than the real Flash disk.
This is attributed to overhead involved in simulation, par-
ticularly overhead involved in timing measurements.

DayTrader Paging Experiments

IBM Websphere application server (WAS) [4] is a Java-
based web application server framework that is designed to
deploy electronic business applications across multiple com-
puting platforms. DayTrader [1] is a Websphere benchmark
application that emulates an online stock trading system. It
was originally developed at IBM and donated to the Apache
Geronimo community in 2005. The application allows users
to perform typical trading operations such as login, viewing
portfolios, looking up stock quotes, and buying or selling
stock shares. Several Web-based load drivers such as Mer-
cury LoadRunner, Rational Performance Tester, or Apache
JMeter, provide realistic workload scenarios that drive the
application. DayTrader is traditionally used to measure and
compare the performance of Java Platform and Enterprise
Edition (Java EE) application servers. DayTrader is com-
posed of a set of Java EE technologies that includes Java
Servlets and JavaServer Pages (JSPs) for the presentation
layer and Java database connectivity (JDBC), Java Message
Service (JMS), Enterprise JavaBeans (EJBs) and Message-
Driven Beans (MDBs) for the back-end business logic and
persistence layer.

Similar to the SPECJbb benchmark, we run DayTrader
under a stressed memory environment to trigger paging to
the Flash disk or the Flash simulator. We then measure
the performance of the application as seen by the simulated
users as the (i) number of web pages serviced per second
(throughput) and (ii) response time seen by the end user
for each request. Figure 10 shows the experimental setup
used to run paging experiments with DayTrader. Two ma-
chines were used in this setup. The DayTrader server is
a dedicated-processor logical partition (LPAR) running the
AIX version 6 OS on an IBM POWER6 processor with 2
CPUS and 2 hardware threads per CPU and a maximum
memory size of 10GB. The DayTrader server was hosting an
instance of the DB2 database and an instance of the Web-
Sphere Application Server (WAS). The DayTrader client is

Linux
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Figure 10: Experimental Setup for the DayTrader
Benchmark.

a Linux Intel Xeon machine running the JIBE (WebSphere
Studio Workload Simulator), which simulates a specifiable
number of concurrent browser clients. We simulated 500
clients for stressing the DayTrader application running on
the DayTrader server. This number of clients was sufficient
to keep the server continuously busy with waiting requests
to be processed. Each client sent various types of requests
(login, query account, update account; get portfolio, quote;
buy, sell, etc.) to the server.

Figure 11 shows the throughput of DayTrader while the
application was paging using the two paging space configu-
rations (one on real Flash disk and the other on the Flash
simulator) under stressful memory conditions. Due to pag-
ing, the throughput of DayTrader was very low (an average
of 14 pages/s) during both paging configurations. It can
be seen from the figure that the throughput values while
paging to the Flash simulator and the Flash disks are very
close (vary between the values of 13 pages/s and 15 pages/s).
The variance in the throughput for either of the curves is at-
tributed to other OS component disturbances and noise in
network path and scheduling. Figure 12 shows the perfor-
mance of DayTrader in terms of response time observed by
the user. Again, the results show comparable behavior of
the Flash disk and the Flash simulator in most cases with a
response time that varies between 31 and 32 seconds.

7. CONTRIBUTIONS
A fundamental way in which a Solid-State Disk made out

of Flash memory differs from a hard disk is that there are
no heads and there is no spin. Therefore, unlike hard-disks
where inter-request track/sector distance contributed to sig-
nificant portion of the I/O time (due to seek and rotational
delays), transfer size of a request gains much more promi-
nence in Flash devices.

Research presented in this paper has exploited this obser-
vation and made the following contributions: (i) A model
for read/write transfer time (and throughput) of a Flash de-
vice for sequential and random access patterns is presented.
To our knowledge, this is the first model being proposed
for internal workings of a Flash device. (ii) The model is
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Figure 11: Throughput of the DayTrader Applica-
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plication While Paging to Flash disk and the Flash
Simulator (Paging Space Size = 2GB).

validated on STEC Zeus Solid-state Disk and model param-
eters for the Zeus SSD are extracted (iii) A method to build
micro-benchmarks for parameter extraction is presented (iv)
A technique to build an efficient simulator using the model
and extracted parameters is proposed. An important feature
of this technique is that it maintains minimal state infor-
mation and simulates delays using the {size, sequentiality,
I/O direction} properties of an I/O request (v) A simulator
is built as a kernel extension in the AIX operating system.
This simulator can be configured in a matter of minutes and
commercial/scientific applications could be run without any
change or trace-collection (vi) Finally, the simulator is vali-
dated using raw-I/O and commercial workloads.

8. CONCLUSIONS AND FUTURE WORK
This paper presents a method of modeling a Flash device

and building a Flash simulator. This method exploits the
nature of Flash devices that they do not have rotational de-
lays and capitalizes on the throughput behavior of the Flash
disk. A linear model was constructed to model a Flash de-
vice. This paper also shows that one can simulate Flash
based SSDs without simulating every minor detail and in-
ternal organization of a Flash device. A throughput-based
simulation of benchmarks is within 7% error range compared
to a real Flash disk. However, it is to be noted that research
to come up with precise ways of simulating Flash devices
has just started. One could think of better ways to combine
a more detailed Flash device internal organization and the
throughput model. While we are excited about this simple
way of simulating Flash devices, work is underway to im-
prove this model, particularly to incorporate layout and en-
durance related statistics and metrics, to derive them from a
real Flash disk, and further validate this using a much wider
set of benchmarks.
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