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ABSTRACT

The idea of identifying and removing repetitive patterns in

the network data transfers, also known as protocol-independent

redundancy elimination, and its benefits have received thor-
ough consideration. However, actual implementation of such
systems received much less attention. The intention of the

redundancy elimination is to increase capacity of low-bandwidth

network connections, when searching for redundancies and
replacing them is faster than transmitting unprocessed re-
dundant data. As long as network is slow, any reason-
able implementation is beneficial. But as network capaci-
ties grow, the maximal throughput that system can provide
becomes critical for its deployment. Thus, an appropriate
choice of redundancy eliminating algorithm and its parame-
ters becomes very important. This work addresses the prob-
lem of algorithm and parameter selection. We describe pos-
sible variations of the basic scheme, and demonstrate ex-
periments that we have conducted for each variation. We
discuss the trends observed in the results and explain their
nature. We then propose a methodology to make a choice
of the algorithm and its parameters, based on the obtained
measurements.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms

Algorithms, Measurements, Performance
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1. INTRODUCTION

The key ideas behind protocol-independent network re-
dundancy elimination (RE) were originally proposed in [12]
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and [8], and remained unchanged so far. The basic princi-
ple of the RE approach is to identify repeating patterns in
the outgoing traffic and replace them with labels, so that the
original raw data could be reconstructed on the receiver side.
The mechanism to find repetitions is borrowed from exist-
ing algorithms that look for similarities between files, such
as the one proposed in [6]. The outgoing data is split into
sub-strings (also referred to as chunks) and the redundancy
is detected by looking for repeating chunks. The approach
has two major advantages. First, it is protocol-independent.
Because the method is applied to raw data, there is no need
to know which protocol is used for the particular data trans-
fer; the redundancies are identified across the whole protocol
stack. Second, the mechanism tolerates modifications of the
original objects. If some data object, such as file, is partially
modified before it is transferred for the second time, those
parts of it which remain unchanged will still benefit from
the optimization. These two features made an approach
extremely attractive for users, which, on one hand, have a
low bandwidth network connection, and, on the other hand,
transfer significant amount of redundant traffic. As the re-
sults obtained in [4,5,12] suggest, the average redundancy
of a regular office traffic, consisting mostly of Web and E-
mail data, can be from 20% to 60%, and it can get much
higher in case of large data distributions or backups. These
observations lead to emergence and success of commercial
network appliances that offer data redundancy elimination
among other services [1-3].

Consider the deployment for RE systems, shown in Fig-
ure 1. There is a central facility, a data center (DC), and a
set of branch offices (BR), connected to it through WAN. It
is assumed that WAN speed in this case is in the range of
T1-T3, and the RE appliances are inserted between DC and
BRs. Suppose that RE device can process data at 300 Mbps,
and data is 99% redundant, so expected speed-up is 100x.
For the T1 link it evaluates to 150 Mbps throughput, and
this speed can be achieved by the appliance. For the T3 link
100x speed-up means 4500 Mbps, which cannot be achieved
by the appliance, but still there is a beneficial speed-up of
about 6x. However, lately even small office Internet ac-
cess links are getting faster, becoming less of a bottleneck.
Instead, RE overhead may become a bottleneck itself. In
order to design an efficient RE system we must know what
are the key factors affecting processing speed, and what are
the key factors affecting compression. We must define how
to evaluate RE system performance and how to compare
RE systems. This paper attempts to give answers to these
questions.



Figure 1: Typical RE system deployment

The rest of the paper is structured as follows. Section 2
discusses related work. Section 3 addresses the parameters
and choices that contribute to the performance, and demon-
strates system behavior on a set of benchmarks. Section 4
describes modifications to the basic scheme that may im-
prove the performance. Section 5 describes a unified method-
ology for system evaluation. Section 6 briefly touches on
further issues faced by the RE systems design.

2. RELATED WORK

Several projects and ideas related to RE emerged from the
academic community. Most of them focus on integrating RE
into a larger data transfer architecture, such as peer-to-peer
networks [10] or CDN [9]. These are slightly different from
the problem we are considering in that they introduce a form
of protocol dependency. In [4] it is proposed to push RE ca-
pabilities down to Internet core. In [5] many valuable traffic
redundancy measurements and observations are presented.

In contrast, our work is more focused on system imple-
mentation and performance aspects, rather than on RE al-
gorithms or traffic properties.

3. ORIGINAL REDUNDANCY ELIMINATION

In this section we discuss the basic redundancy eliminat-
ing system. Due to space limitation, we omit some details,
which can be found in [7]

3.1 Main processing stages

Fingerprinting data. The goal of this operation is to fa-
cilitate identification of repeating patterns in data stream.
It is desired that minor modifications to the original data
only cause minor changes to the result of splitting. Thus,
for example, splitting data by simply dividing it into chunks
of equal size and calculating their fingerprints does not work
— any insertion or deletion in the original data will change
all chunks and no redundancies will be found. It is more ef-
ficient to use pseudo-random mechanisms, which depend on
the data itself, of which Rabin fingerprints is the common
approach [11]. The algorithm calculates fingerprint over a
sliding window of data. The byte at which special fingerprint
is found becomes the last byte of a current data chunk. The
result of a fingerprinting is a set of fingerprints and corre-
sponding byte positions.

Indexing and lookup. The goal of a lookup is to use fin-
gerprints from a previous step to search for repeating data
in the local cache. If the data has been seen earlier and was
saved to the cache, the cache must contain corresponding fin-
gerprints. Finding them means that redundancy is detected.
The lookup can be subdivided into two stages: fingerprint
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lookup and data lookup. To illustrate the difference, con-
sider the lookup algorithm proposed in [12]. There, each
fingerprint identifies a block of data of fixed size. However,
the repeated data pattern might be larger, so the fingerprint
is used only as a hint to point to the possible redundancy.
To find the exact matched pattern the bytes of the received
data are compared to the stored bytes, forward and back-
ward from the fingerprinted block. Thus, the redundant
data is represented as a fingerprint and byte offsets. In this
example, the first stage of the lookup finds a fingerprint and
its corresponding position in the cache, and the second stage
reads the stored data and compares it to the received data
to find the longest match.

Storing data. At this stage of processing the system has
to decide which data to save in its cache. RE systems tend
to increase compression ratio by increasing storage capacity,
thus eventually the data has to be stored on hard drive.
Assuming that the system is completely protocol unaware
(i.e. cannot tell, in general, whether given piece of data is
unique or highly repetitive), the decision can be based on
whether data is new or it is already present in the cache.
On one hand, saving all data to the cache consumes more
storage space; on the other hand, it improves data access
locality and may improve compression.

Reconstructing data. The task of data reconstruction is
to restore the original data from the compressed one. While
this stage poses several interesting problems, we will not be
addressing them in this paper. The problems of the data
restoration are mostly error detection and correction prob-
lems, which are corner cases, not directly affecting the per-
formance. We are limiting the paper to the other stages,
leaving data reconstruction details for the future work.

3.2 Choices and alternatives

All processing stage descriptions above allow for certain
flexibility in the implementation. One example was already
mentioned — when storing data there is a choice between
caching all data, or caching new data only. Here we further
focus on several key alternatives that can be considered by
a system designer.

Ezpected inter-fingerprint distance. This is the parameter
(further denoted inter-FP distance for brevity) of a chosen
fingerprinting method, which determines how frequent, on
average, the special fingerprints are. The trade-off here is:
in general more frequent fingerprints require more work and
more space for lookup structure, but may provide better
compression on modified files. Basically, the distance defines
granularity of detected redundancies; shorter distance will
cause more fine-grain redundant patterns eliminated.

Caching all data vs. caching new data only. Storing all
incoming data affects both performance and storage utiliza-
tion. In this paper we are not considering storage utilization,
but performance is important to us. There are two perfor-
mance impacts: adding unnecessary writes causes latency
increase at the moment of writing, but it also improves data
locality and compression, thus may bring performance ben-
efits in future.

TCP vs. IP layer. RE system may operate on an estab-
lished TCP connection or on each IP packet independently.
Operating on IP layer has several disadvantages: compres-
sion ratio becomes limited, as the length of the maximal
match is bounded by the IP packet size; also, IP packets
from concurrent connections are mingled in cache, which



results in poor data locality and will decrease compression
even further. On the other hand, the IP based systems are
faster as there is no TCP overhead.

These are the three basic factors that we are going to
investigate. As each alternative presents certain advantages
and disadvantages, our goal is to quantify them in order
to make an optimal choice. We will start by observing the
general behavior, exposed by these alternatives on several
selected benchmarks.

3.3 Experimental system and benchmarks

To measure the impact of the factors above, we have cre-
ated a simplified RE system, which replicates data encoding
path discussed in Section 3. For simplicity we did not include
a decoding path. As decoder’s main task is to read indexed
data, its performance depends more the storage I/O speed
than on algorithm’s parameters; besides, decoder does not
affect the compression ratio in any way. Our implementa-
tion includes Rabin fingerprinting with a sliding window of
32 B, 2 GB hash table for fingerprint indexing, and a set
of flat files for data storage. The system runs on a Linux
box with ext3 file system, Intel Xeon 2.33GHz CPU, and
4 GB RAM, which is very close to a mid-range commercial
RE device hardware platform.

To evaluate the system behavior, we selected four bench-
marks. Benchmark-1: randomly generated 1 GB file passed
through the system twice. This benchmark is to get the
compression upper bound and does not represent a common
case. Benchmark-2: collection of 20 Linux kernel source
trees (4 GB). This represents the transfers which gradually
change. Benchmark-3: the contents of the popular web-site
(15 GB), intended to simulate web browsing. Benchmark-
4: 10 GB (5 hours) of the traffic captured on a WAN link
between the regional offices of a large corporation.

Being deployed in a real network the system would op-
erate by reading a unit of data (IP packet or TCP buffer),
processing it, and sending it over the WAN. As such, read
sizes randomly oscillate around some value, which depends
on the network conditions and specific application. To em-
ulate that, for each test we first select the basic buffer size
from 512 B to 256 KB; the actual read size is obtained by
adding a random variance of 5% to the basic size. Thus, on
the benchmarks 1-3 we ran each test several times — one for
each basic buffer size. On the Benchmark-4 sizes of the read
data buffers are known from the trace, however, to compare
TCP- and IP-layer processing we ran each test twice: first,
accumulating packets into TCP bulffers; second, processing
packets one by one.

3.4 Observing basic trends

Figures 2, 3 and 4 demonstrate the overall trends observed
on the benchmarks (results for Benchmark-2 are similar to
Benchmark-3 and are omitted due to space limitation). In
these experiments all data was written to the cache, no mat-
ter if it was already present there or not. Note that the
graph for Benchmark-4 differs from the others, as the tests
differ too. Also note that the results for benchmarks 1-3 are
plotted on a logarithmic scale for better visibility.

On the graphs we can see the following tendencies. First of
all, we see how the compression depends on the inter-FP dis-
tance, with a higher compression corresponding to a smaller
distance, which is expected. What is worth noticing is that
difference in compression due to inter-FP distance may be
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Figure 2: Benchmark-1: Basic algorithm, all data
written

very significant (e.g. by factor of 10, as shown in Figure 2).
The throughput also depends on inter-FP distance, but in
the opposite way. The difference in throughput, however,
is not as significant as the difference in compression. An-
other important observation (Figure 4) is that TCP-layer
processing outperforms IP-layer both in compression (which
is expected) and in throughput (which is less expected). The
throughput difference is due to the constant processing over-
head per each data unit. There is some unavoidable process-
ing overhead per each piece of processed data, and, as there
are more pieces processed in IP mode (IP packets) than in
TCP mode (TCP buffers), the overhead has a noticeable im-
pact. Remember, however, that we are discussing sequential
processing. In case of parallel processing, IP mode through-
put might get higher, as multiple IP packets of the same
connection can be processed in parallel. However, it will
also cause problems related to the packets being delivered
out of order and creating inconsistencies between sender and
receiver caches. Third observation, related to the second
one, is that both compression and throughput tend to grow
with the processed unit size. In general, a system cannot
control read data sizes, because they depend on application
behavior. Thus, while the RE systems favors larger amounts
of read data, evaluation must take into account that these
amounts might be small. So, unlike the TCP or IP mode,
we do not consider a read size to be a part of the algorithm
configuration.

On the throughput graph in Figure 2 it can be seen that
the throughput for the higher inter-FP distances first drops,
while read size grows, which seems to contradict with state-
ments in a previous paragraph. The reason for that is that
with large inter-FP distance and small read size the amount
of detected redundancies is so small, that the system does
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Figure 3: Benchmark-3: Basic algorithm, all data
written

not perform any compression work — the data simply goes
as is, with much higher throughput. As more redundancies
are detected, the throughput goes down. This also explains
the intersection of IP and TCP throughput graphs in Fig-
ure 4. These points illustrate that a high throughput is not
always a good thing: there is no reason to deploy an RE
system if it does not provide a good compression.

On Figure 5 we see what happens if we write only new
data instead of writing all data. The key thing to notice
here is that the impact on the compression is negligible. The
impact on the throughput is more significant. The biggest
difference is revealed when the compression drops. When the
compression is high, it is the lookup that dominates in the
processing, so the overhead from writing data is concealed.
When the compression is low, the lookup contribution to
the processing decreases, revealing the impact of the disk
writes. Also, the special fingerprints are getting sparse as
the inter-FP distance grows, which causes more writes to
be skipped. However, when the inter-FP distance is small,
the throughput is slightly higher when all data is written to
the cache. This is where the data access locality comes into
play. The results of this test for the other benchmarks are
similar and are omitted to avoid redundancy.

4. MODIFIED REDUNDANCY ELIMINATION

We have profiled the system operations (fingerprinting,
lookup and store), and discovered that they take approxi-
mately equal amounts of time (36%/32%/32%, respectively).
The performance of the Rabin fingerprint algorithm is mostly
determined by the memory I/O speed. Similarly, store speed
is determined by the disk I/O. The lookup also involves disk
read, and accesses each byte for comparison. This, however,
is not mandatory. In this section we propose a modification
of the basic scheme, which allows to speed-up the lookup
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Figure 4: Benchmark-4: Basic algorithm, all data
written

component, by omitting disk reads and byte comparison.
The idea is simple. As the fingerprinting algorithm moves
the sliding window, we also maintain a Rabin fingerprint
value for the whole block of data between the two special
fingerprints. At the time when the next special fingerprint is
found, we also have a unique identifier of the byte sequence
encountered while searching for it. We use this identifier
to search for redundancies. This does not require going to
disk at all — a hit in the hash table means that the whole
byte sequence is found. The approach has two major draw-
backs. First, the granularity of the detected redundancies is
strictly limited by the inter-FP distance. Second, calculating
the unique identifier (essentially one more Rabin fingerprint)
doubles the number of arithmetic operations per each byte
of input data. Fortunately it does not cause extra mem-
ory access, as the same byte is used for both fingerprints.
Thus, while the lookup performance may increase, it might
be outweighed by the mentioned disadvantages.

In order to investigate benefits and losses of the proposed
approach, we integrated the new lookup scheme into our
system, and ran the same benchmark tests. The results are
shown in Figures 6, 7, 8 and 9.

While the tendencies remained similar, the absolute val-
ues are quite different. Indeed, there is an improvement
in the throughput (we observed 3x to 5X increase in the
lookup speed), and there is a decrease in the compression
(especially on the Benchmark-1, which determines the com-
pression upper bound).

5. SYSTEM EVALUATION METHODOLOGY

The benchmark results help us to reveal the trade-offs in
RE systems, but it is not sufficient for choosing the best
system configuration. In this section we propose a method-
ology for RE system evaluation. We will combine experi-
mental data into a single score value, which can be used for
comparison.
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We define a benefit function as: [(w) Here
w is the WAN link bandwidth, and T'(w) is the effective
throughput. If the compression ratio is r, and the maxi-
mal throughput that the system can sustain is Tyqe, then
T(w) = min(Tmaz, 7). The benefit function determines a
benefit for a given WAN link. As WAN links may vary across
the system deployment field, we generalize our measure to a
range, or a set of links. Let W be a space of possible WAN
link capacities. Then we define a value of a given configura-

tion for a given test data as [ B(w)dw. This approximates
w
how much benefit a system provides on a given set of WAN

links. If there are multiple experiments, we assign a weight,
ai, to the i-th experiment, and calculate the final score of
the algorithm, S, as follows:

S:Zai/ﬁi(w)dw
.

Let us demonstrate it on our tests. First, we assign weights
to the benchmarks 1-3 as 2/49/49 (normalized to 100),be-
cause we assume that the first benchmark is rare. We chose
minimal WAN speed, wWmin, to be 256 Kbps, and set W;

(1)

[Wimin, Tihaw), Where Tt ., is the maximal throughput, achieved

_ omin(T,, 7255)—w

for the i-th test. Then, 8;(w) =
substitute into Equation 1.

We use the same approach for Benchmark-4, except all
tests there get the weight of 1. We have calculated the scores
for our experiments, and, according to them, the best con-
figuration is the one with 128 bytes inter-FP distance, TCP
mode, modified algorithm, and only new data being written
to cache. The result is consistent between benchmarks 1-3
and Benchmark-4. The scores for Benchmark-4 are listed in
Table 1. The scores for 1-3 are similar and are omitted.

o , which we
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Modified algorithm,

Algorithm | Write| Inter-FP TCP Score
distance or IP
modified new 128 TCP 23.51
modified new 64 TCP 22.81
modified all 128 TCP 22.27
modified new 256 TCP 21.99
modified all 64 TCP 21.36
modified all 256 TCP 20.89
original new 512 TCP 20.36
original all 256 TCP 20.26
original all 512 TCP 19.97
original new 256 TCP 19.43

Table 1: Rankings and scores of algorithm configu-
rations on Benchmark-4 (top 10)

6. CONCLUSIONS

In this paper we demonstrated the evaluation methodol-
ogy for the network redundancy eliminating systems. We
discussed the design alternatives and tendencies in the sys-
tem behavior, based on our measurements. We proposed
certain modifications that may improve system performance.
We also proposed a criteria to compare RE algorithms and
system configurations. To our knowledge this is the first at-
tempt of such a criteria, and we believe it might be useful
as a starting point.

We deliberately avoided several important aspects related
to RE system performance. We have skipped the error de-
tection and correction. We did not address concurrency and
parallelism. We assumed no limitations on disk or memory,
and did not account for their usage. If these factors are of
the importance to the user, they must be included in the
measure, and may change the scores. We are leaving these
issues for future work.
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