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ABSTRACT

In this paper we develop, implement and evaluate an ap-
proach to quickly reassign resources for a virtualized utility
computing platform. The approach provides this platform
agility using ghost virtual machines (VMs), which partici-
pate in application clusters, but do not handle client requests
until needed. We show that our approach is applicable to
and can benefit different virtualization technologies.

We tested an implementation of our approach on two
virtualization platforms with agility results showing that a
sudden increase in application load could be detected and
a ghost VM activated handling client load in 18 seconds.
In comparison with legacy systems needing to resume VMs
in the face of sharply increased demand, our approach ex-
hibits much better performance across a set of metrics. We
also found that it demonstrates competitive performance
when compared with scripted resource changes based on a
known workload. Finally the approach performs well when
used with multiple applications exhibiting periodic workload
changes.
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1. INTRODUCTION
Utility computing delivers computing resources to multi-

ple Web applications across one or more data centers. A cen-
tral problem in utility computing is managing the resources
to support the varying demand for these applications. One
approach is to simply over-provision the resources needed
by each application, but this approach wastes resources. An
alternate approach is to maintain a pool of spare resource
capacity that is allocated to applications as they experience
increased load and retrieved from applications that no longer
need additional resources.

The problem of dynamic allocation of resources is to do
it in a timely manner relative to changes in load. Load
increases can be gradual making the detection and realloca-
tion of resources relatively straightforward or increases can
be sudden, such as what occurs with flash crowds [2], in
which case timely detection and reallocation of resources is
critical. We refer to the capability of a utility computing
platform to quickly reassign resources as the agility of the
platform [10].

A promising approach for achieving agility is to build util-
ity computing platforms using virtual machines (VMs). Vir-
tualization technologies typically offer control APIs that al-
low virtual machines to be programmatically stopped and
booted, or suspended and resumed; this provides a founda-
tion for an obvious approach for dynamic management of
active VMs running a particular application.

However, these actions can take a long time when the vir-
tual machine to be activated has been previously swapped
out to disk. Furthermore, modern Internet applications typ-
ically run within application servers that often operate in an
application cluster. The application servers on a suspended
machine will be considered inoperable by the cluster and, as
we found in initial work [10], take a long time to re-integrate
into the cluster upon reactivation. One could attempt to
compensate for this delay by activating a machine early, us-
ing an artificially low utilization threshold that triggers the
activation. However, this leads to an increased overall num-
ber of active machines, which, as we will see in Figure 1, can
be detrimental to performance.

As an alternate, we proposed the idea of ghost virtual
machines [10]. Ghost VMs are spare VMs maintained on
each physical machine within a utility computing platform
that remain active, but detached from the Internet. These
VMs do not service client requests, but their application
servers do participate in their respective clusters so that
when needed these ghost VMs can be activated by making
their existence known to the front-end content switch receiv-
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ing and redirecting client requests. We call these ghost VMs
because their existence is “invisible” to the content switch
and hence to the Internet. A small number of these ghost
VMs on each physical machine are allocated a slice of the
physical memory, but their CPU consumption is negligible.
Once the decision is made to activate a ghost VM, resource
allocation simply involves reconfiguring the content switch,
which we found takes on the order of a few seconds.

While promising, our previous work only proposed and
made a preliminary case for ghost VMs [10]. In the present
work, we implement the ghost VM concept into a fully func-
tioning utility computing prototype and evaluate the result-
ing platform. We further show that the ghost concept is
general enough to apply across different virtualization tech-
nologies. To demonstrate this aspect, we implemented and
deployed our architecture with two virtualization technolo-
gies at the opposite ends of the degree of resource isolation
they provide. Specifically, we used the VMWare ESX tech-
nology, which allows VMs to be allocated hard slices of phys-
ical resources, and VMWare Server, which only guarantees
memory allocation. Each technology also allows controls on
the number of cores assigned to a VM.

Our focus on the agility is in contrast to related algo-
rithmic work concerning resource allocation in shared data
centers [7, 11]. While the latter seeks to find high-quality
solutions for a required number and placement of applica-
tion instances on physical machines, our goal is to reduce
the time for enacting those decisions.

This work makes a number of contributions:

1. We introduce a utility computing platform, based on
the use of ghost VMs, that provides agility in quickly
reacting to changes in application demand.

2. By instantiating our platform on top of two distinct
virtualization products, we show that our approach,
including both the architecture and the resource allo-
cation algorithm, is applicable across different virtual-
ization technologies.

3. We evaluate our approach by testing a fully functioning
prototype using an external benchmark application—
TPC-W. Our results show that our approach effec-
tively reassigns resources among applications as dic-
tated by their changing demand and significantly im-
proves the agility in reacting to demand changes.

In the remainder of the paper, Section 2 presents back-
ground on VM agility measures we have performed while
Section 3 discusses the approach used to manage resources
in a virtualized utility computing platform along with the
reallocation approach. In Section 4 we discuss our imple-
mentation of our architecture and in Section 5 describe how
its performance is studied in two utility computing plat-
forms. Results from this study are shown and discussed in
Section 6. We conclude the paper with a presentation of
related work in Section 7 along with a summary and future
work in Section 8.

2. BACKGROUND
Agility, the capability to quickly reassign resources in a

data center, is a desirable property of a virtualized utility
computing. As background for this work we revisit the rel-
ative costs of different approaches for reassigning resources.
These costs are based on preliminary measurements reported

in [10] as well as additional experiments we have performed
for this work.

We consider four current approaches for reallocation of
resources as well a new approach to resource reassignment—
the deployment of ghost VMs. Each of these alternatives
along with ghost VMs is described below, along with costs
each incurs for reallocation.

1. Stop/Boot of VM. One approach for reassigning re-
sources among applications is to stop some instances
of VMs running an application with excess capacity
and boot more instances of VMs running an applica-
tion with insufficient capacity. In [10] we found the
average startup time for a VM took on the order of
45-65s depending on how much of a VM’s memory was
already in place from previous use. Furthermore, we
found that starting the cluster agent can take around
20s. We measured the time to start an application
server to be about 97s on average when done for the
first time after a VM reboot. Thus, the total time it
takes before the new VM can serve client requests to
be on the order of 180s—not a good result for agility.

2. Redeployment of Application Servers On De-
mand. Instead of stopping and rebooting VMs across
hosts, in this method we consider pre-deploying VMs
across the set of hosts and use them for different ap-
plications as dictated by the demand. In [10] we mea-
sured 95s to stop a cluster member, 19s to start a new
cluster member and 97s to start the new application
as a cluster member for an average time on the order
of 210s. Again this approach does not achieve good
agility.

3. Live VM Migration. One could add capacity to
an application by migrating a VM with this applica-
tion from a physical server that is highly utilized with
competing applications to a physical server with more
spare capacity. Recently, techniques have been devel-
oped for live migration of a VM, where the migration
occurs without stopping the source VM, and the up-
dates to the source VM state are forwarded to the tar-
get host during migration [5, 14]. This method dra-
matically reduces the downtime during migration but
does not by itself improve the agility of resource reas-
signment. Results in [14] show that live VM migration
can move a 256MB VM from one physical machine to
another in 20s. However this measurement does not
account for any disk space and VMs are increasing in
size (e.g., we use sizes of 512MB and 1GB in our cur-
rent work). Thus higher migration delays are more
realistic. In addition, the source machine will not be
relieved of the overload due to the operation of the
source VM until the migration is complete.

4. Suspend/Resume VMs. This method also uses a
number of pre-deployed VMs across all hosts, but each
VM always runs its assigned application. With some
number of VMs left alive for serving client requests in
the initial stage, all other VMs are suspended. We then
suspend or resume VMs on different hosts depending
on the observed demand for their corresponding appli-
cations. In [10], we measured the time to resume a sus-
pended VM with one competing active VM to be 14s
on average. However, these experiments did not have
the suspended VM memory pushed out of RAM and

130



only accounted for when the resume API completes,
not when the application is ready to process requests.
In subsequent experiments we have found the resump-
tion time to be between 40 and 80s depending on the
number of competing VMs and the degree to which
VM memory has been pushed out of RAM.

5. Active/Ghost VMs. In this new approach, first pro-
posed in [10], we pre-deploy VMs, each with its own
application(s), on hosts in the data center. In contrast
to previous methods, all VMs are alive using this ap-
proach. However, the switch at each data center is con-
figured so that it is not aware of all of these VMs and
consequently not all are used to service client requests.
We refer to VMs that are known by the switch and can
handle client requests as active VMs and the others as
ghost VMs1. While hidden from the public Internet be-
hind the switch, the ghost VMs can still communicate
with each other using either the hosts’ second network
card, available on most modern servers, or through the
L2 functionality of the switch. All VMs (both active
and ghosts) use this “private” network for managing
application clusters. Thus, the application servers on
ghost VMs fully participate in their application clus-
ters and maintain both their membership in these clus-
ters and the current application state. When another
active VM for an application is needed, if a ghost VM
for the application is available then we found in [10]
that it takes as little as 2s to reconfigure the switch
before the activated VM is handling requests.

Given the relative performance for each of these reconfig-
uration approaches, this work seeks to exploit the agility of
the ghost VM approach for rapid resource reallocation. The
architecture for this approach and the algorithm we used to
manage its resources are described in the following section.

3. APPROACH
Our work focuses on the problem of resource reallocation

providing agility within a data center for a virtualized util-
ity computing platform. We use a typical model that each
data center is deployed using a three-tiered model with a
front-end content switch redistributing client requests to a
set of application servers backed by one or more underlying
database servers. Each VM runs only one application server
and each application server runs only one instance of an
application. We assume that all physical machines running
VMs with application servers are identical and each can sup-
port the execution of multiple VMs. Multiple instances of
an application can exist if multiple VMs for that application
are active.

In conjunction with our resource reallocation algorithm
is the request distributed algorithm used by the front-end
switch to load balance incoming client requests amongst the
set of active VMs for an application. In the model for our
algorithm and its deployment we configure the switch to
use a weighted round-robin algorithm to distribute requests

1In principle, the same effect could be achieved if the switch
was aware of the ghost VMs but configured not to send
any requests to it. Unfortunately, with at least one of the
switches we use (the Alteon switch - see Section 5) the min-
imum load one can specify for any active machine is one
concurrent connection. Thus, the only way to shield a ma-
chine from load is to “hide” it from the switch.

in proportion to the relative capacity of each active VM
for an application. However, due to variations in request
complexity and competing VMs on each physical machine,
the load amongst the active VMs for an application may
exhibit some imbalance requiring ongoing monitoring of the
VMs.

Given this model of a data center, in the remainder of
this section we define measures of capacity and utilization,
show how reconfiguration changes affect these measures and
present the state transition diagram used by the resource re-
allocation algorithm we developed for such a platform. The
algorithm was developed with a number of key ideas:

1. Ghost VMs are used as a “stepping stone” for rapid
promotion to and demotion from active VMs running
an instance of an application. Because these ghost
VMs are already participating in the cluster manage-
ment of their respective applications, deployment of
these ghosts simply requires reconfiguring the content
switch.

2. Extra capacity within a data center is not deployed to
VMs until needed and some amount of this extra ca-
pacity is dedicated to ghost VMs so deployment can be
done quickly. The alternative is to dedicate all capac-
ity of a data center to active VMs, but our preliminary
experiment, with results shown in Figure 1, indicates
that needlessly activating VMs, versus leaving them
in the ghost state, does not improve reply rate and re-
sponse time for incoming requests. In this experiment,
we used httperf to send a total of 1700 requests/sec
to a sample WebSphere application deployed on seven
VMs within the same physical machine. Each VM is
either in active or ghost state, and the requests are
load-balanced among the active machines. The VMs
are all configured to have 0.5GB memory and run on
a server with 4G physical memory, to avoid VM mem-
ory swapping. The results show that, even when all
VMs together fit into physical memory, unneeded ac-
tive VMs do not improve, and actually degrade, the
overall system performance. We attribute this to the
scheduling overhead of VMs, such as context switch-
ing.
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Figure 1: Impact of Active/Ghost VM Tradeoff on
Reply Rate and Response Time

3. The resource reallocation algorithm is controlled by
high and low watermarks, which define when a VM is
overloaded or underloaded. The goal of the algorithm
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is to allocate additional resources and deallocate excess
resources so VMs are neither over nor underloaded.

4. Additional resources can be assigned to an application
either by increasing the capacity of existing instances
of an active VM running the application or by pro-
moting a ghost VM of the application. When possible,
overloaded conditions are alleviated by increasing the
capacity of an existing VM so as to minimize the num-
ber of active VMs. Similarly, resources can be deallo-
cating by reducing the capacity of a VM or demoting
an active VM to a ghost VM. No more than one VM
(active or ghost) is allocated to an application on a
physical machine—if additional capacity exists on the
physical machine then the capacity of an existing ac-
tive VM should be increased rather than creating an
additional VM on the machine.

5. The algorithm is intended for deployment on a variety
of virtualization products with the only requirement
that each provides a means to bound the amount of
memory that each VM consumes on a physical ma-
chine. The algorithm works with products supporting
this minimal feature, but is also able to exploit features
of other products that allow proportional allocation of
CPU and network resources to each VM.

6. Because virtualization products do not allow the amount
of allocated memory to be increased once a VM is cre-
ated, we focus capacity and utilization measures on
CPU consumption, although the algorithm could be
easily extended to account for a weighted combination
of memory, CPU and network consumption.

3.1 Capacity and Utilization
An important aspect of our approach is that it formulates

a general framework that applies to different virtualization
technologies. This approach simplifies the construction of
large utility computing platforms from heterogeneous server
clusters. The basic notions behind our general framework
are observed and projected capacity and utilization. These
notions are defined based on one key notion—the capacity
of a virtual machine. We re-target the framework by simply
redefining this one notion for a particular virtualization tech-
nology. For virtualization technologies that provide strong
resource isolation by allowing one to configure virtual ma-
chines with hard slices of physical resources, such as ESX,
the VM capacity is determined by the actual slice. For the
virtualization technologies that do not provide this capabil-
ity, such as VMWare Server, our framework treats the VM
capacity as a desired capacity. The desired capacity is a soft
limit that is not enforced by VMWare Server, but is adhered
to in our algorithm. The algorithm adjusts the “soft slice”
capacity for each VM over time and because it runs periodi-
cally, the duration a VM will be overloaded is limited. Note
that with soft slices, the observed VM utilization (since it is
computed relative to the desired capacity) can exceed 100%.

3.1.1 Observed Capacity and Utilization

Let c(Pi) be the capacity of physical machine (PM) Pi

and c(Vi,j) be the capacity of the jth VM on Pi. Intuitively,
the capacity of a PM is greater than or equals to the total
capacity of its VMs. Thus, we assume that VM capacities
are assigned to satisfy the following constraint where mi is

the number of VMs on PM Pi:

c(Pi) ≥

mi
X

j=1

c(Vi,j) (1)

Let u(Vi,j) be the resource utilization on PM Pi due to
running VM Vi,j . Let ur(Vi,j) be the relative utilization of
VM Vi,j , then

ur(Vi,j) = u(Vi,j) ×
c(Pi)

c(Vi,j)
(2)

For example, suppose the capacity of Vi,j is 30% of Pi. If
Vi,j consumes 24% of the resources on Pi, i.e., u(Vi,j) = 24%,
then the relative utilization ur(Vi,j) = 80%. That is to say,
Vi,j consumes 80% of its assigned resources.

Let u(Pi) be the overall resource utilization of PM Pi. In-
tuitively, the overall utilization equals to the sum utilization
of its VMs (we ignore the small overhead for the host OS or
hypervisor), i.e.,

u(Pi) =

mi
X

j=1

u(Vi,j) =

Pmi

j=1
(ur(Vi,j) × c(Vi,j))

c(Pi)
(3)

Let c(Ak) be the total capacity of application Ak. It is
the sum capacity of VMs running application Ak, i.e.,

c(Ak) =
X

c(Vi,j), ∀ app(Vi,j) = Ak (4)

Let u(Ak) be the average server utilization of application
Ak, then

u(Ak) =

P

(ur(Vi,j) × c(Vi,j))

c(Ak)
, ∀ app(Vi,j) = Ak (5)

We introduce two load watermarks into our platform, high-

watermark (HW ) and low-watermark (LW ). We define the
overloaded/underloaded situation for the servers and appli-
cations as follows:

If ur(Vi,j) > HW , Vi,j is overloaded. If ur(Vi,j) < LW ,
Vi,j is underloaded. If u(Pi) > HW , Pi is overloaded. If
u(Pi) < LW , Pi is underloaded. If u(Ak) > HW , Ak is
overloaded. If u(Ak) < LW , Ak is underloaded.

For example, suppose HW = 90%, then any VM which
consumes more than 90% of its assigned resource, or any
application which has an average utilization over 90%, is
considered overloaded.

The goal of our resource reallocation algorithm is reassign-
ing resources among VMs, PMs, and applications, so that
none of them is overloaded, i.e., ∀i, j, k , none of ur(Vi,j),
u(Pi), or u(Ak) is greater than HW . In doing so we focus
on keeping the VMs from being overloaded.

If a VM Vi,j running Ak is overloaded, then the maxi-
mum CPU usage for Vi,j could be increased if such spare
capacity exists on Pi . Alternately we could try to bring up
one or more VMs for Ak elsewhere to share the load, i.e.,
increase the capacity for the application rather than for the
VM through the promotion of a ghost VM. Since the to-
tal capacity of the platform will not change, increasing the
capacity for one application may require decreasing the ca-
pacity of others, so that the constraint (1) remains satisfied.

Let c′(Ak) be the new capacity of application Ak after
resource reallocation. The goal of our algorithm is to find
capacities for all active VMs such that none will be over-
loaded.
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3.1.2 Projected Capacity and Utilization

In the following we express how the change of capacity
affects the load distribution, and in turn affects the utiliza-
tion of VMs. Let u′(Ak) be the projected average server
utilization of application Ak after reallocation, then

u
′(Ak) =

u(Ak) × c(Ak)

c′(Ak)
(6)

Intuitively, if we choose a proper c′(Ak), we are able to
keep the projected average utilization u′(Ak) under the high-

watermark. However, switch load balancing may not be per-
fect and individual VMs for the application may still be
overloaded.

Let u′

r(Vi,j) be the projected relative utilization of Vi,j af-
ter reallocation. Our goal is to keep the utilization of every
Vi,j under HW . We assume that the change of utilization
is in proportion to the change of capacity. For example,
suppose we have two VMs V1,2 and V3,4 with the same ca-
pacity, but for some reasons, their utilization is not the same
(ur(V1,2) = 80% and ur(V3,4) = 60%). If we bring up two
more VMs (double the total capacity), we assume that the
projected utilization will drop in proportion to the current
utilization (u′

r(V1,2) = 40% and u′

r(V3,4) = 30%). That is,

u
′

r(Vi,j) =
ur(Vi,j) × c(Ak)

c′(Ak)
, ∀ app(Vi,j) = Ak (7)

To bring utilization below HW, we need u′

r(Vi,j) < HW

i.e., from Equation (7),

c
′(Ak) >

ur(Vi,j) × c(Ak)

HW
, ∀ app(Vi,j) = Ak (8)

So, we need at least this amount of capacity to guarantee
that Vi,j will not be overloaded. If we calculate c′(Ak) for all
Vi,j running application Ak then get the maximum value. It
is the value that keeps the utilization of all its VMs in bound.

We define ∆c(Ak) = c′(Ak)−c(Ak) as the change of capac-
ity. Note that for some applications, ∆c might be negative
which indicates a decreasing demand. This indicates that
the current capacity is such that the maximum utilization
of any VM running this application is below HW. We use
LW to decide we can reduce the capacity of an application
as follows.

By Equation (7) and (8), we define c′(Ak), the minimum
capacity of application Ak, which guarantee Ak will not be
overloaded. Similarly, we define c′′(Ak) as the maximum
capacity of application Ak, guaranteeing that it will not be
underloaded.

u
′′

r (Vi,j) =
ur(Vi,j) × c(Ak)

c′′(Ak)
> LW, ∀ app(Vi,j) = Ak (9)

and

c
′′(Ak) <

ur(Vi,j) × c(Ak)

LW
, ∀ app(Vi,j) = Ak (10)

Again, because load balancing may not be perfect, we
choose the minimum value as the final c′′(Ak) for applica-
tion Ak which keeps all of its VMs from being underloaded.
for any application Ak, if c(Ak) > c′′(Ak), we can safely
decrease its capacity.

Thus, our resource reallocation algorithm is transformed
to a problem of satisfying all positive ∆c(Ak) = c′(Ak) −

c(Ak) by using negative ∆c(Ak) = c′′(Ak)−c(Ak) or residual
PM capacities.

3.2 Resource Reallocation Algorithm
Given these specifications, the resource reallocation algo-

rithm is periodically executed within a data center using
data gathered about the current status of PMs, VMs and
applications. The multi-stage algorithm iterates over each
of these entities. A diagram showing the transition between
states for an application within a data center is given in
Figure 2.

The diagram illustrates a number of distinguishing aspects
of our approach. First, each active VM executing the ap-
plication is represented as a different state. Once at least
one instance of an application has been activated then one
or more ghost VMs may be in existence between each of the
active VM states.

Second, the activation of the first active VM within a data
center is under the control of a global decision manager,
which determines the placement of applications amongst a
set of geographically dispersed data centers along with the
assignment of user requests to specific data centers. While
not all applications are active at each data center, we do as-
sume that suspended instances of an application exist in all
data centers. If not, then the initial activation of an appli-
cation requires that a VM be created and the application to
be started, which takes much longer than resumption. Once
one instance of an application has been activated at a data
center then management of that application is controlled by
a local decision manager, which performs the algorithm de-
scribed in this work. Details of the global resource manager
and how it interacts with the local decision manager are
current work, but not discussed in this paper. The focus of
this paper is how the local decision maker manages available
resources within a single data center.

Third, once an VM is active for an application within a
data center, the operations of the local decision manager
can be divided into three stages: decreasing the capacity
for those applications with too much, increasing the capac-
ity for those applications with too little, and managing the
availability of ghost VMs so they will be available to the ap-
plications that are most likely to see an increase in demand.
More details on each of these stages is described below.

The first stage of the algorithm seeks to remove extra
capacity from underloaded applications with operations D1,
D2 and D3 shown in Figure 2. If the utilized capacity of
any application drops below the LW threshold then a VM
with a relatively low capacity compared to the application is
demoted to a ghost VM as shown with operation D1. If its
capacity is relatively higher then its capacity simply reduced
as shown with operation D2. The algorithm will not demote
the last VM for an application in order to ensure there is
some capacity in the data center for the application. Only in
case that the global decision manager decides to de-activate
the application at this data center is operation D3 invoked,
which causes the last active VM to be suspended.

Now that any extra capacity for underloaded applications
has been reclaimed, the next stage of the algorithm seeks to
reallocate residual capacity if applications are overloaded.
This increase in application capacity is accomplished via one
of three operations. If available capacity exists on one of the
physical machines currently running an active VM of the ap-
plication then the capacity of that VM is increased as shown
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0 Active VMs 1 Active VM 2 Active VMs 3 Active VMs1 Active VM 2 Active VMs
+ Ghost VM(s) + Ghost VM(s)

I1 I1 I1 I1 I1
I2 I2

I3 I3 I3

M1 M1

D1D1 M2M2
D2 D2 D2 D2 D2

D1D3

Local Decision ManagerGlobal Decision Manager

M3M3

Decrease Appl. Cap.

D1: Demote VM to Ghost
D2: Remove VM Capacity
D3: Suspend Active VM

Increase Appl. Cap.

I1: Add VM Capacity
I2: Promote Ghost VM
I3: Resume VM

Manage Ghost VMs

M1: Resume VM to Ghost
M2: Suspend Ghost VM
M3: Update # Ghost VMs

I2

Figure 2: Application State Transition Diagram

with operation I1. If increasing the capacity of an active VM
does not meet the application’s demands and a ghost VM is
available then the ghost VM is promoted as indicated with
operation I2. Finally, if a ghost VM is not available then a
suspended VM for the application must be resumed directly
to the active state via operation I3. This is an undesirable
situation from the standpoint of agility as resumption of an
active VM takes much longer than promotion from a ghost
VM. This stage of the algorithm continues to iterate until
all overloaded applications are allocated sufficient capacity
or there exists no more available capacity.

The final stage of the algorithm detects and handles man-
agement of ghost VMs. This function is implemented through
a ghost manager, which runs periodically to reallocate ghosts
among applications, and is also invoked explicitly any time
the ghost allocation changes through ghost promotion or sus-
pension. We assume that the amount of additional capacity
that an application might need quickly is proportional to
its current load, thus the ghost manager allocates the avail-
able number of ghosts among applications in proportion to
their observed load. However, this correlation may not al-
ways exist as a heavily loaded application may exhibit rel-
atively constant demand while a lightly loaded application
may have much potential for a sharp increase in demand.
We leave more elaborate ghost management algorithms for
future work.

When a ghost VM for an application is allocated, the
ghost manager is likely to create a new ghost instance by re-
suming a suspended VM as shown with operation M1. Simi-
larly if an application currently has a ghost VM determined
to be no longer needed, operation M2 suspends the ghost
VM. Finally, operation M3 in Figure 2 shows that once at
least one ghost VM exists for an application, the number
of ghost VMs can be updated as application conditions and
available capacity exist. Because ghost VMs are specific to
an application, it is possible for a ghost VM to be switched
from one application to another, but only after stopping the
current application on the VM then starting the new ap-
plication. As we found in [10] the time to create/resume a
VM, start an application and join an application cluster can
be on the order of minutes so it is important to keep ghost
VMs available.

4. IMPLEMENTATION
We implemented our approach in a testbed that contains

two data centers, representing the two major types of virtu-

alization technology. One data center uses VMWare Server,
which operates VMs on top of a regular host operating sys-
tem and relies on the host OS for the VM scheduling (thus
giving us little control over resource sharing within the same
physical machine). The other data center utilizes VMWare
ESX Server, which uses its own VM monitor in place of the
host OS and allows precise allocation of various resource to
individual VMs on a physical machine. Employing these
distinct virtualization technologies allows us to demonstrate
the flexibility of our approach and the resource allocation
algorithm at its heart.

Each data center uses the same architecture shown in Fig-
ure 3. As shown, the Resource Manager has three com-
ponents: Resource Collector, Resource Reallocator and the
Ghost Manager. The Resource Collector communicates with
agents on each of the PMs to gather average physical CPU
utilization due to each VM. In the setup we used for our ex-
periments, the agent on each PM makes periodic instanta-
neous utilization measurements (every 2sec using the UNIX
top command for VMWare Server and every 1sec using an
equivalent command for ESX) and keeps the moving average
of the last three of these measurements. The Resource Col-
lector obtains the current values of these averages from each
agent every 10sec and uses them as the utilization metric
in the algorithm. The Resource Collector also implements
the portion of our approach dealing with removal of excess
capacity shown in operations D1-D3 in Figure 2.
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Figure 3: Architecture of Local Resource Manager.
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The Resource Reallocator performs the resource realloca-
tion portion of our algorithm (operations I1-I3 in Figure 2)
in reevaluating whether overloaded applications are detected
based on the collected data. It is currently configured to ex-
ecute every 10sec. It modifies the capacity of existing VMs
and promotes ghost VMs. The Ghost Manager runs every
120sec monitoring the set of ghost VMs in the system and
resuming new ghost VMs if an application is more likely to
need additional capacity, and suspending existing ghost VMs
if an application is less likely to need additional capacity as
shown in operations M1-M3 of Figure 2.

Our approach was deployed using fixed size memory allo-
cations for VMs on each platform. As mentioned, the dis-
tinction in the deployment between the two platforms is how
the assigned CPU capacity for each VM is mapped to the
features of the platform. In the case of VMWare ESX,
a Min CPU and Max CPU value can be set for each VM
defining hard limits on the range of CPU usage by the VM.
In our initial testing we have chosen to set each of these
values to the CPU capacity assigned by the Resource Real-
locator, i.e., Min CPU = Max CPU = c(V ). This ensures
that the VM receives a hard slice for its capacity. Alter-
nately, the soft slice behavior could be mimicked by setting
the Max CPU value greater than the assigned VM capac-
ity if additional capacity exists on the PM. Ghost VMs are
assigned a small fixed slice. Other virtualization products,
such as Xen and Linux Vserver, support capacity caps or
shares. An implementation of our approach could easily use
these features.

Before moving on to our study of the approach we note
that it could easily be deployed on a different, yet impor-
tant, model for a data center. Some data centers employ a
one-application-per-machine model meaning that only one
active application server is allowed to execute on a physi-
cal machine at a time. This approach, often used to sat-
isfy customers’ desire for absolute performance and security
isolation from other applications, results in poor agility as
increased load requires starting a new machine or having a
“hot spare” available. An alternate approach available with
our algorithm is to deploy only one active VM per physical
server, but use additional memory (rather than an entirely
new machine) to run one or more ghost VMs of other appli-
cations. Thus if the load of one application declines, one of
its active VMs can be demoted while a ghost VM of another
application can be promoted.

5. STUDY
Our approach has been successfully deployed in two data

centers—one using VMWare Server v1.0.1 for virtualization
and the other using VMWare ESX Server v3.5.0. Each data
center uses WebSphere V6 as the application server soft-
ware with a back-end database server running Oracle. Each
application server runs within its own VM.

The VMWare Server data center consists of three physical
machines each hosting up to three virtual machines. Each
physical machine has two CPU cores and 2GB of RAM.
Each virtual machine is configured with one virtual core and
512MB of memory. A Cisco Content Switch 11501 is used
on the front end.

The ESX Server data center consists of three physical ma-
chines each hosting up to four virtual machines. Each phys-
ical machine has four cores and 4GB of RAM. Each virtual
machine is configured with one virtual core and 1GB of mem-

ory. A Nortel Alteon 2208 application switch is used on the
front end.

Within each data center, each VM is assigned one virtual
CPU core. According to previous work [6], this option has
good performance and utilization of the system. Each appli-
cation within each data center is deployed with at least one
active and one ghost VM. Further details about experiments
are presented along with results in the following section.

The primary testing tool we use is TPC-W [12], a well-
known “bookstore” workload for multi-tiered applications.
We use the “browsing” request mix of TPC-W for testing.
Requests are generated by Emulated Browsers (EBs). To
increase the generated workload, two changes were made to
the standard TPC-W configuration: the mean think time
was reduced tenfold from the default of 7s to 700ms; and
the TPC-W client software was modified to confine a client
to a specific range of users for a test. This change allows
testing from multiple client machines under the control of a
testing harness that we created.

Initial tests were performed to measure the agility of our
approach. For these tests we measured the time for the al-
gorithm to detect that an increased workload requires addi-
tional active VMs and the time for a promoted VM to begin
handling requests after switch reconfiguration. Similarly, we
measured the time to detect and demote an active VM when
the application workload is decreased.

We next examined how the faster resource reallocation of
our approach translates into an end-to-end platform agility.
To this end multiple applications with different load scenar-
ios were run causing all aspects of the algorithm to be em-
ployed in not only promoting ghost VMs to active, but also
for the ghost manager to recognize and resume suspended
VMs to the ghost state. These tests confirmed the correct
performance of our approach, and showed significant per-
formance benefits over a legacy system that can respond to
load changes only by resuming or suspending VMs.

We compared performance of our platform using ghost
VMs with the legacy approach using four performance met-
rics available from the TPC-W clients. We determine the re-

quest error rate and the number of successful requests during
the 10-minute interval in which each TPC-W client executes.
Overloaded application servers result in increased request er-
rors and fewer client requests that are handled. We also used
TPC-W to determine the slow response rate, which is when
the response time for successful client requests is greater
than a threshold. Finally, we used TPC-W to measure the
median response time for all successful requests.

Finally, we examined the ability of our approach to dy-
namically reassign resources among competing applications
within a data center in response to changing demand. Specif-
ically, we contrasted resource allocation and the resulting
performance of three approaches:

1. Variants of the algorithm—we use our algorithm to
manage resources with different parameter settings for
the HW and LW thresholds.

2. Fixed—a fixed number of VMs were allocated to each
application at the beginning of a test and this num-
ber was not changed during the test. Two fixed cases
were used, one in which the number of VMs was in-
tentionally under-provisioned for at least some portion
of the test and one in which the number of VMs was
intentionally over-provisioned.
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3. Manual—predetermined promotion and demotion changes
are manually scripted for the test based on a priori
knowledge of workload changes. This test is intro-
duced to understand expected best case behavior, al-
though there is some tradeoff as to whether maximize
performance or minimize the number of VMs in use.

We compared these test approaches using the TPC-W
client summary performance metrics described above as well
as measuring the overload rate at each VM. This rate is the
percentage of time that the CPU utilization of the VMs for
an application are greater than 80%, which is used for con-
sistency across all approaches.

6. RESULTS
We ran a number of experiments to test the correctness

and performance of our approach under different load con-
ditions. Tests were performed for both platforms, although
results are only shown for both platforms where appropri-
ate. The first set of tests measure the agility of our plat-
form in responding to rapid increases or decreases in load
by promoting and demoting ghost VMs. The next set of
tests demonstrates all aspects of our algorithm and com-
pares performance of our platform with that provided by
legacy systems. We then compare performance of our ap-
proach with other approaches for different load growth rates.
We go on to show results for a multi-application workload
that we constructed. We conclude our presentation of re-
sults with a time-varying workload of three applications for
each platform.

6.1 Ghost Promotion and Demotion
Two critical measures in resource reallocation are the time

needed to detect when a load increase has occurred and then
time to activate additional resources. Figure 4 shows a sce-
nario where a TPC-W application is running against our
VMWare Server platform causing a 40% CPU utilization
for the VM serving this application. At time t = 180 sec-
onds in the scenario, the client load is sharply increased
causing the CPU utilization to similarly rise. Using a HW
threshold of 70%, the algorithm soon detects that additional
capacity is needed for this application and at time t = 193
seconds makes a call causing the switch to promote a ghost
VM for the application. At time t = 198 seconds the newly
activated VM begins handling requests as evidenced by the
drop in CPU utilization for the first VM shown in Figure 4.

We performed four tests and observed a median detection
time of 13 (range 11-15) seconds and median switch recon-
figuration time of 5 (3-5) seconds for a total of 18 (14-20)
seconds to detect and act upon a sharp increase in load. This
result demonstrates good agility by our approach in rapidly
responding to significantly increased resource demands of
an application. Detection time could be improved by reduc-
ing the interval between load monitoring, which is currently
done every 10 seconds with the average computed over the
last three measurements. In contrast, creating additional
capacity by migrating a VM, which was smaller than our
VM, to an available machine took almost 20 seconds after
detection [14], thus our approach reduced this delay by a
factor of four.

While the response time is not as critical, we ran similar
tests for a sharp reduction in the load for an application. We
started with two active VMs for an application and dropped
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the load so only one active VM is needed. In these tests we
found the average detection time for demotion of a VM is
31 seconds with a total time of 35 seconds. These numbers
make sense as we observe that the algorithm first tries to
reduce the capacity of a VM before it eventually decides to
demote the VM to a ghost.

6.2 Platform Agility
In our next set of tests we deployed three applications (all

separate copies of TPC-W) on each of our platforms. Two of
the applications, App1 and App2, are initially configured to
have one active, one ghost and one suspended VM. The other
application, App3, initially has one active and two ghost
VMs. The initial load for each application is 10 emulated
browsers on our ESX platform where each EB corresponds
to the activity of one user in TPC-W.

During all tests, the load of two applications App1 and
App3 is kept constant. However two separate tests are run
where the load pattern of App2 is varied as shown in Fig-
ure 5. In the first test, a fast load growth to 85 EBs occurs
for App2. In a separate test, a slow-growing load pattern is
used that gradually increases the client load to 60 EBs.
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Agility Tests

Figure 6 shows a time-series graph of the CPU load as well
as the capacity for each of the three VMs for App2 during
the lifetime of the test for the fast-growing load pattern.
Note that VM1 is initially active and has a 100% utilization
that is allowed while VM2 is a ghost VM and as a nominal
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Table 1: Performance Comparison of Ghost VM vs. Legacy Approach on ESX Platform
Approach/ # Errors % Slow Requests Median Req. # Successful
Growth Rate (%) >100ms >500ms >1000ms Time (ms) Requests
Ghost/Fast 23 (0.0) 18.9 2.6 1.6 46 84089
Legacy/Fast 128 (0.2) 36.6 5.7 2.1 69 61556
Ghost/Slow 14 (0.0) 15.8 3.4 2.1 38 43819
Legacy/Slow 24 (0.1) 14.2 3.4 2.2 37 35608

Table 2: Performance Comparison of Ghost VM vs. Legacy Approach on VMWare Server Platform
Approach/ # Errors % Slow Requests Median Req. # Successful
Growth Rate (%) >100ms >500ms >1000ms Time (ms) Requests
Ghost/Fast 386 (0.6) 67.9 12.9 2.7 165 65692
Legacy/Fast 2235 (3.9) 68.0 18.2 5.0 182 56747
Ghost/Slow 0 (0.0) 44.8 4.1 1.4 88 40281
Legacy/Slow 0 (0.0) 42.0 5.2 1.4 78 39694

slice of 12%2 As shown at time 70s, the resource reallocator
detects and promotes ghost VM2 for App2 to be active. In
addition, a message is sent to the ghost manager indicating
that no more ghost VMs exist for this application. Normally
the ghost manager executes every 120s, but in this case the
ghost manager causes the suspended VM3 for App2 to be
resumed to the ghost VM state at time 116s. Finally, the
resource reallocator determines that additional capacity is
needed and promotes VM3 to active at time 132s. Due to the
sharp increase in load for App2, the newly activated VM3
will not be fully resumed when it is transitioned to the active
VM state, but at least it has already begun resumption.
Alternately, we could wait until it is fully resumed before
activation, but our approach allows the new VM to be used
as soon as it is ready. Similar functioning for the fast load
growth is shown in Figure 7 for the VMWare Server cluster,
although the timing of actions is a bit different from Figure 6
as the physical servers have different capabilities in the two
clusters.

We performed separate tests using the slow-growing load
pattern, although a time-series graph of actions is not shown.
In that test the ghost manager ran after a 120s interval and
resumed another ghost VM for App2 because it had much
more demand than the other applications. Thus App2 had
two ghost VMs and when the load kept increasing, both of
them were promoted to active.

To compare with a legacy system that does not utilize
ghosts, we disabled the ghost manager portion of our plat-
form so that the promotion and demotion of ghost VMs was
not possible. Instead the platform could only resume or sus-
pend VMs in and out of the active VM state. This approach
mimics the behavior of a legacy system where resource real-
location can only be done with resumption and suspension of
active VMs. We re-ran our fast- and slow-growing load test
where initial ghost VMs in our platform are replaced with
suspended VMs. Thus the initial state of VMs for App2
consists of one active VM and two suspended VMs. We re-
tested each of the load growth patterns for App2 with this
legacy platform and resource reallocation causing resump-
tion of suspended VMs in the face of increased load. Table 1
shows a summary comparison of the TPC-W performance

2All VMs are configured to run on one CPU core, and our
utilization numbers all refer to the utilization of a single
core. For example, the ghost’s 12% slice means it overall
consumes at most 3% of our 4-core physical server.

metrics for each of the four testing scenarios, for the ESX
cluster, and Table 2 shows the same results for the VMWare
Server cluster.
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Both tables show similar performance results across the
virtualization technologies. In the fast growth case, our ap-
proach significantly outperforms the legacy system in all
metrics we considered: the error rate, response time, and
the number of completed requests. The higher agility of our
approach allows the system to reassign resources among ap-
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plications quickly to keep pace with the demand patterns.
The legacy system experienced periods of degradation due
to slow resource reassignment.

In the slow growth scenario, both ghosts and legacy plat-
form were agile enough to cope with the growing demand.
In fact, the legacy systems had somewhat better median re-
sponse time, which we explain by the ghost overhead. Still,
in the ESX case, the legacy system processed fewer total re-
quests than our system. Because TPC-W clients wait for a
current response before submitting the next request, this in-
dicates that the legacy system experienced occasional slow-
down periods.

6.3 Dynamic Resource Allocation
This section compares the resource allocation and result-

ing performance of our approach with that of the fixed and
manual resource allocation as described earlier. We first ex-
amine the scenario where the load for an application exhibits
linear growth followed by linear decline back to the original
level. This workload was first proposed in [3], to study the
behavior of a system under a flash crowd of varying severity.
We then consider a more dynamic scenario where multiple
applications experience varying levels of demand.

6.3.1 Steady Load Growth/Decline

Similar to [3], we performed an experiment to show how
our algorithm performs with different load growth rates.
The four workload patterns that we tested are shown in
Figure 8 where each pattern exhibits a four-fold increase in
load with different rates of increase.
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We tested these workloads with different HW and LW
thresholds of our algorithm as well as for fixed over- and
under-provisioning. We also tested with a “manual” ap-
proach where reallocation decisions were scripted based on
knowledge of the workload. During the tests we measured
the performance metrics described in Section 5.

Figure 9 shows representative results that we found for
our VMWare Server platform. The graph focuses on the
slow response rate metric measured by the TPC-W client
with the most shallow growth rate for five test approaches.
The two algorithm parameter sets are based on experience
for what parameters are a good fit for the data center.

The figure shows results for the percentage of responses
to the TPC-W that take more than one second. For each
approach this result is plotted against the mean number of
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VMs that were active over the course of the test. Thus the
“Fixed 2” approach is under-provisioned at two active VMs
for the application and yields the worst performance. At the
other extreme, the “Fixed 3” approach is over-provisioned
and provides the best performance. In between these ex-
tremes are the two instances of our algorithm along with the
manual approach. The results for these three approaches are
comparable, although the manual approach is not as aggres-
sive in activating a new VM as the algorithm. The result
is more slow responses compared with using fewer VM re-
sources.

This comparison shows our algorithm demonstrates com-
petitive performance with the result if manual intervention
was used for the known workload. The other performance
measures show similar orderings and tradeoffs between the
five approaches tested over the set of workloads.

We also performed tests on the ESX Server platform us-
ing the same load growth patterns shown in Figure 8. Again
focusing on the slow response rate performance, results are
shown in Figure 10 for the +10EBs/min growth rate. These
ESX Server results contain two important distinctions from
the previous VMWare Server results to account for the plat-
form and its more powerful servers. First, the slow response
threshold is 100ms rather than 1sec so it still represents on
the order of 10% of responses. Second, because a hard CPU
slice is used to enforce the desired capacity in the algorithm,
the mean number of active VMs is weighted by their capac-
ity. In looking at the results for this platform their tone is
the same as what we previously observed with the two ver-
sions of our algorithm providing competitive performance
with a manual intervention.

6.3.2 Multiple Applications Workload

We finally tested the algorithm with a workload of multi-
ple applications. For this test we used two separate TPC-W
applications (with separate databases) and a third applica-
tion running as a simple WebSphere test with no database
access. The initial configuration of this system is one active
VM for each application as well as additional ghost VMs for
the first two applications. The regular and periodic work-
load for each application over the course of our test is shown
in Figure 11.

The summary performance metric results for the first ap-
plication are shown in Figure 12 for our VMWare Server
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platform. Results similar in nature were found for the ESX
platform. The overall results are consistent with expecta-
tions with the under- and over-provisioned fixed cases defin-
ing the range of performance. The Fixed 2 approach is
clearly under-provisioned with a relatively high overload and
error rate. The better slow response rate for successful re-
sponses is deceptive because of the relatively high error rate.
The Manual approach provides the best performance across
the set of metrics with the HW=70,LW=35 algorithm pro-
viding competitive performance albeit with more resource
usage.

7. RELATED WORK
Dynamic placement and allocation of resources to applica-

tions has been examined in other work such as [7, 11]. Most
of these studies use simulation to evaluate their approaches.
We explore our algorithm using a real prototype in two dis-
tinct virtual environments. Andrzejak et al. [1] found up to
50% savings could be found by dynamically redistributing
resources among applications in utility computing. Virtual
machines were investigated to adjust resource shares across
tiers in a multi-tier platform [9].

Xen [4] and VMWare [8] have implemented “live” migra-
tion of VMs. They use a “pre-copy” mechanism that shows
short downtime during migration. Although the downtime
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of migration is short (less than one second), the service
degradation time is quite long and memory-size dependent.
According to [4] and [8], the “pre-copy” period could last
from 10 seconds to over one minute. Migration of a 256MB
VM may consume 25-30% of the CPU and 20% of network
bandwidth on a gigabit link. It could be more and take
longer if we migrate a larger VM.

VM migration has been used to solve the problem of hot
spots in virtual machine environments [13]. This work re-
ports resolving single server hot spots in 20 seconds with
migration, although there may be additional time for com-
plete migration of the VM. Also the source machine will
not be relieved of the overload due to the operation of the
source VM until the migration is complete. In our work we
use ghost VMs that are “hot spares” already participating
members of an application cluster that can quickly provide
additional capacity for an application.

8. SUMMARY AND FUTUREWORK
In this work we have developed, implemented and tested

an algorithm the management of resources in a virtualized
data center. This algorithm makes use of ghost VMs, which
participate in application clusters, but are not activated un-
til needed by an application experiencing a significant load
increase. Using this approach, our algorithm exhibits good
agility—being able to detect the need for and promote a
ghost VM to be handling requests in 18 seconds. In com-
parison with legacy systems needing to resume VMs in the
face of sharply increased demand, our approach exhibits
much better performance across a set of metrics. The algo-
rithm has been deployed on multiple virtualization platforms
providing different features. We found that the algorithm
demonstrates competitive performance when compared with
scripted resource changes based on a known workload. It
also works well when tested with multiple applications ex-
hibiting periodic workload changes.

Moving forward, we plan to continue work on deploying
the algorithm across different platforms and more fully test-
ing all aspects of the algorithm. We plan to investigate
additional considerations such as network utilization in our
capacity determination as well as better understanding the
relationship between the watermark thresholds we use and
user-perceived measures.

An important aspect of our larger project is to understand
how to manage geographically distributed data centers. An
interesting problem is how the local resource manager that
we have implemented should interact with a global resource
manager to provide agility both within and across data cen-
ters.
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