
Storage Performance Analyzer (SPA)
Version: 1.0

Software Documentation

Qais Noorshams, noorshams@kit.edu
Dominik Bruhn, Axel Busch, Samuel Kounev, Ralf Reussner

Karlsruhe Institute of Technology (KIT), Germany

Documentation Build Time: Monday 17th March, 2014 at 15:19

ASP

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Contents

1 Introduction 3
1.1 About . 3
1.2 Requirements . 3
1.3 Download . 3

2 Architecture 4

3 System Under Test Setup 7
3.1 Authentication and Login . 7
3.2 Benchmark and Monitor Installation . 8

3.2.1 Flexible File System Benchmark . 8
3.2.2 Filebench . 9
3.2.3 Blktrace . 9

4 Installation and Compilation 11

5 Configuration 12
5.1 Eclipse Setup . 12
5.2 Configuration File Creation . 13
5.3 Referencing Configuration Fragments . 13
5.4 Runnable Configuration Files . 13
5.5 Benchmark Configurations . 14

6 Running the Benchmark 16
6.1 Additional Output Files . 16
6.2 Examples . 16

7 R Libraries 18
7.1 Introduction . 18
7.2 Interface . 18
7.3 Examples . 19

8 Minimal Running Example 21
8.1 System Under Test Setup . 21
8.2 Installation and Compilation . 21
8.3 Configuration . 26
8.4 Running the Benchmark . 26
8.5 R Libraries . 32

9 Questions & Answers 34

Bibliography 35

2

1. Introduction

1.1 About

This document will explain how the Storage Performance Analyzer (SPA) can be used for
benchmarking. This guide starts with a high-level introduction of the architecture. Then, it
includes the steps that are needed to set up the system under test as well as a step-by-step
guide how to compile the tool, configure the benchmark that should be run, the actual
benchmark, and the data retrieval using the R libraries. This document concludes with a
minimal running example with screenshots and a Q&A section.

The web page of SPA is available at http://sdqweb.ipd.kit.edu/wiki/SPA. Publications
describing the tool is available at [NBKR13, NBR+14].

1.2 Requirements

Controller Machine:

• Platform independent (Windows, Unix and Mac operating systems tested)

• Java 6 or later, Apache Ant for compilation

• R version 3 or later (r-project.org)

System Under Test (SUT):

• POSIX compatible operating system (tested on Linux)

• SSH access from the controller machine

1.3 Download

Platform-independent source code as well as prepared drops (i.e., already generated model
code) for common operating systems both including examples can be downloaded from the
project web page http://sdqweb.ipd.kit.edu/wiki/SPA.

3

http://sdqweb.ipd.kit.edu/wiki/SPA
http://sdqweb.ipd.kit.edu/wiki/SPA

2. Architecture

Analysis Library

Benchmark Harness

Benchmark
Controller

Benchmark
Driver

DataStore
Interface

Persistence
Component

Regression
Modeling

Regression
Optimization

Regression
Techniques

Benchmarking
Component

Performance Modeling
Component

SQLite

Monitoring
Driver

R Libraries

Running on Target(s)

Optional

Benchmark
Benchmark

Monitor

Remote
Execution

Figure 2.1: High-level Overview and Components of SPA

Figure 2.1 gives an high-level overview of SPA. The tool basically consists of a Benchmark
Harness and an Analysis Library. The Benchmark Harness, which runs on a master
machine, controls the parallel execution of benchmarks running on one or more remote
targets (e.g., virtual machines). Furthermore, the benchmarking targets can be monitored

4

2. Architecture

using several self-composed or operating system monitors, e.g., blktrace, where its Monitor
Driver already exists. The Analysis Library can be used to retrieve the measurements and
use modeling functions to analyze the data and create regression models.

Main Class

Benchmark Filebench (simplified)Benchmark FFSB (simplified)

BenchmarkController

run(ExperimentSetup)

prepareExperiment(IVSofBenchmark, IVSofSUT)
DV: startExperiment()
finishExperiment()

«abstract»

BenchmarkDriver
open(SystemUnderTest)
executeCommand()
saveToFile()
deleteFile()
close()

«interface»

RemoteExecution

SSHRemoteExecution

open()
startSetup(ExperimentSetup)
storeResults(...)
finishSetup()
close()

«interface»

DataStore

SQLiteDataStore

BenchmarkDriver
ofFFSB

prepareExperiment(IVSofFFSB, IVSofSUT)
DV : startExperiment()
finishExperiment()

BenchmarkDriver
ofFilebench

prepareExperiment(IVSofFB, IVSofSUT)
DV : startExperiment()
finishExperiment()

1..*

1

1

«abstract»

IndependentVariables
ofBenchmark

requestSize : Integer
readProportion : Integer
accessPattern : Pattern
(...)

IndependentVariables
ofFFSB

name: String

DependentVariables

fileSystem : String[1..*]
IOScheduler : String[1..*]

IndependentVariables
ofSUT

«return»

«use» «use»«use» «use»

IV[] : explore(IVS)

«interface»

ExplorationStrategy1

users : Integer[1..*]
operations : Operation[1..*]
(...)

IndependentVariableSpace
ofFilebench

«return»

Figure 2.2: Most Important Classes of the Benchmark Harness

The most important classes of the Benchmark Harness are shown in Figure 2.2. The
Benchmark Controller is the main and core class. Also shown are how two specific
benchmarks are integrated in the tool using a Benchmark Driver and the respective
configuration or Independent Variables.

A typical benchmarking sequence with two targets (represented by the Benchmark Drivers)
is shown in Figure 2.3. The Benchmark Controller sets up the datastore and for every
benchmark configuration element as explored by the Exploration Strategy the measurements
are started. The benchmark (or experiment) is prepared, started, and then finished. The
results are stored to the datastore. The coordination is multi-threaded for a parallel
execution of the benchmark and asynchronous data persistence.

5

2. Architecture

foreach
configuration
element

parallel

parallel

parallel

:Benchmark
Controller

:Benchmark
Driver

:Benchmark
Driver

:SQLite
DataStore

startSetup()

finishSetup()

prepare
Experiment()

prepare
Experiment()

start
Experiment()

start
Experiment()

finish
Experiment()

finish
Experiment()

storeResults()

Figure 2.3: Typical Benchmarking Sequence

6

3. System Under Test Setup

Some manual steps are needed once on every system under test to set it up for use together
with the storage benchmark harness. The tool expects some preconditions to be true. The
following preconditions must be checked and met on all systems under test.

3.1 Authentication and Login

The Storage Benchmark Harness must be able to connect to the machine and log in using
ssh. For this reason, a user which must have a shell and therefore be able to login must
exist.

The authentication of the user is done using ssh keys. This method is a alternative to
ordinary passwords. It uses a public/private key pair where the private key is only held by
the client and the public key is stored on all servers. Every client possessing the private
key can connect to every server where the public key is stored.

To generated a new key pair, the ssh-keygen application can be used. This application is
included in the default OpenSSH1 distribution package. During the creation of the key,
no password may be specified. The Storage Benchmark Harness relies on a key without a
password because it has no abilities to ask for a password during benchmarking. If the
user already has a public/private key pair, it can choose to either reuse this key for the
benchmarking or generate a second pair. The full path of the key should be noted. The
default path for the first key is typically ${HOME}/.ssh/id_rsa but another path can be
specified upon key creation.

After a new key has been created or an existing key has been selected for reuse, the key must
be copied to all servers which will be involved in the benchmarking. The can be done using
the ssh-copyid command. A typical call is ssh-copyid -i ${HOME}/.ssh/id_rsa_bench

username@hostname. An alternative is to copy the file manually if ssh-copyis is not
available per default (like on Mac OS for example): scp ${HOME}/.ssh/id_rsa_bench.pub

username@hostname:${HOME}/.ssh/authorized_keys. During this copying the user has
to specify the password which is set for the user on the remote host. This command must
be repeated for all hosts which will be involved in the benchmarking.

To test whether the key generation has succeeded, the user can simply try to connect to
the remote host by using ssh username@hostname -i ${HOME}/.ssh/id_rsa_bench. If
the connection succeeds without entering a password, the key was setup successfully.

1http://openssh.org/

7

http://openssh.org/

3. System Under Test Setup

For further documentation on the public/private keys see the man-pages of ssh, ssh-keygen
and ssh-copyid.

3.2 Benchmark and Monitor Installation

The benchmark must be installed on every system under test. Additionally its executable
must be in a directory which is included in the users PATH variable. On a typical Linux
installation, the ${HOME}/bin directory is already included in the path. If it is not, this
can be achieved for one user by creating (or adjusting) the file .bash_profile with the
following lines:

$ PATH=$PATH:${HOME}/bin

$ export PATH

If this has to be changed system wide (except root), those lines can be appended to the
file /etc/profile. The benchmark binaries can then be symlinked in the ${HOME}/bin

directory for easier maintenance.

The monitoring tool Blktrace can be used and needs to be installed using the Linux tool
Aptitude.

3.2.1 Flexible File System Benchmark

For the FFSB Benchmark, the Storage Benchmark Harness needs an extended version.
This version was forked from the original source and is available online2. To install FFSB
and make it accessible for the Storage Benchmark Harness, the user can use the following
procedure after having logged in on the system under test:

$ cd ${HOME}

$ svn co https :// github.com/FFSB -Prime/ffsb

$ # alternatively using git:

$ # git clone https :// github.com/FFSB -Prime/ffsb

$ cd ffsb/trunk

$./ configure

$ make

$ ln -s ${HOME}/ffsb/trunk/ffsb ${HOME}/bin/ffsb

The FFSB Benchmark driver must also modify files which are only writable by the superuser.
To achieve this, it uses the sudo command. Because the Storage Benchmark Harness can
not input passwords, the commands which need to be executed using sudo must not ask for
a password. Currently the only tool which the storage benchmark harness must execute
using sudo is the tee command. In specific, the command is used to set or change the
I/O scheduler as specified in the experiment configuration. To make the execution of this
command password-less, edit the sudoers file using sudo visudo and append the following
line:

ffsbTest ALL=NOPASSWD :/usr/bin/tee

Change ffsbTest to the appropriate user.

As for all storage benchmarks, the FFSB benchmarks needs a target directory where
the actual benchmarking should happen on the machine. Per default FFSB used the
/tmp/ffsbtarget directory on the system under test as target directory. This directory
was choosen because /tmp is writable by all users. In this way a symlink can be used to
select the actual target for ffsb. For example, if the /mnt/huge/target directory should
be used, the following command creates the right symlink:

2https://github.com/FFSB-Prime/ffsb

8

https://github.com/FFSB-Prime/ffsb

3. System Under Test Setup

$ ln -s /mnt/huge/target /tmp/ffsbtarget

If for some reasons the directory which FFSB uses as target should be set directly, this can
be done by using the ffsbtargetdir environment variable.

The installation of the benchmark, the modification of the sudoers file and the symlinking
of the target directory must be repeated for all systems under test where a ffsb benchmark
experiments should be executed.

3.2.2 Filebench

A bigfixed version of Filebench is available online3 and can be checked out using git. The
user can take the following command to download the source code from the git-repository
and install the benchmark:

$ cd ${HOME}

$ git clone https :// github.com/Filebench -Revise/Filebench -

Revise.git filebench

$ cd filebench

$./ configure

$ make

$ ln -s ${HOME}/ filebench ${HOME}/bin/filebench

As described in the FFSB Section the Filebench needs a directory to store its filesets.
Filebench’s default fileset location is set to the /tmp/filebenchtarget directory on the
system under test. Similar to FFSB a symlink can be used to point to a different location
(for example to /mnt/huge/target):

$ ln -s /mnt/huge/target /tmp/filebenchtarget

If for some reasons the directory which Filebench uses as target should be set individually,
this can be done by using the filebenchtargetdir environment variable. Since filebench
is restarted in case of an error, the following root rights are necessary, echo to obtain the
process ID and kill to stop the process:

user ALL=NOPASSWD :/bin/echo

user ALL=NOPASSWD :/bin/kill

3.2.3 Blktrace

The Blktrace monitoring tool is usually part of the sysstat package and can be installed
using the bash command:

$ apt -get update && apt -get install sysstat

$ # sudo apt -get update && sudo apt -get install sysstat

The installation of the sysstat package requires root access. On some distributions,
Blktrace has its own package, in that case replace sysstat with blktrace in the command.

Per default Blktrace records its results to the /tmp/blktracetarget directory on the
system under test. As before the location can be changed using a symlink:

$ ln -s /mnt/huge/target /tmp/blktracetarget

Alternatively it can be set by the help of the environment variable blktracetargetdir.

Blktrace only runs with root rights. To post-process the monitoring files without root
rights, the owner of the files created by Blktrace need to be changed to a normal user.

3https://github.com/Filebench-Revise

9

https://github.com/Filebench-Revise

3. System Under Test Setup

This is achieved using the changeOwner.sh script that modifies the owner of the files to
the owner of the respective parent folder. This avoids requiring root right for the chown

command. The changeOwner.sh script needs to be placed correctly and the execution
attribute has to be set:

$ /usr/local/bin/changeOwner.sh

$ chmod u+x /usr/local/bin/changeOwner.sh

Storage Benchmark Harness needs further root rights to allow a correct processing of all
recording and analyzing steps. Thus, the sudoers file has to be extended by the following
lines:

user ALL=NOPASSWD :/usr/sbin/blktrace

user ALL=NOPASSWD :/usr/local/bin/changeOwner.sh

user ALL=NOPASSWD :/bin/echo

user ALL=NOPASSWD :/bin/kill

Change user to the appropriate user. It is strongly recommended to use sudo visudo to
modify the sudoers file.

10

4. Installation and Compilation

The Storage Benchmark Harness must be installed only on the measurement machine. It
needs an installed Java 6 JRE for running and a Java 6 SDK for compilation. Additionally,
Apache Ant1 must be installed as build tool.

The source of the tool consists of two projects: The EMF2 model (StorageBenchmarkHar-
nessModel) and the actual tool (StorageBenchmarkHarness). When first using the tool, the
two projects must be imported into an Eclipse with EMF Tools installed, e.g., using Eclipse
Modeling Tools3. The code of the StorageBenchmarkHarnessModel needs to be generated
by using SBHModel.genmodel in the model folder. Simply open the file inside Eclipse and
right-click on the SBHModel package and choose Generate All. The source can then be
compiled by switching into the StorageBenchmarkHarness folder and executing ant, e.g.,
using the shell/terminal. As all libraries are included in the projects, the compilation
should work without further interaction. After this, the run binary in the folder should
work and display a help screen when executed using the shell4. Alternatively, the main

method of BenchmarkController can be run inside Eclipse and the help message is shown
on the console. Parameters can then be passed over the run configuration.

1http://ant.apache.org/
2Eclipse Modeling Framework
3http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/junosr1
4Tested on UNIX-based systems.

11

http://ant.apache.org/
http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/junosr1

5. Configuration

After installing the tool, the next sections explain its configuration. For the configuration
of the tool, multiple pieces of information have to be specified:

• System under test: The connection information for each system under test must
be configured. This includes the hostname, a user which can be used for logging and
and a ssh-key which can be used for authentication.

• Experiments: The experiments which should be run on the hosts must be configured.
This includes defining the independent variables by specifying independent variable
spaces.

• Experiment series: The experiment series make the connection between a system
under test and an independent variable spaces. It therefore defines which experiments
should be executed on a system under test.

• Experiment setup: The experiment setup contains multiple experiment series. In
this way it contains the specification which experiments should be run on which hosts
(In contrast to the experiment series which specifies which experiment should be run
on one host).

These information can be either stored in a single configuration file or distributed over
multiple files for simpler reuse. The Storage Benchmark Harness uses the Eclipse EMF
Framework for the configuration file generation, editing and parsing. The configuration
files can be either edited by hand or using the Eclipse EMF Tools.

5.1 Eclipse Setup

To use the EMF Tools, first Eclipse1 has to be set up. The EMF Tools have to be installed
together with eclipse either by download a package which already includes the EMF or by
later installing them.

The two projects which form the Storage Benchmark Harness can be imported into eclipse
as they are eclipse projects. This can be done by right-clicking in the Package Explorer,
selecting Import, Existing Projects into Workspace. In the dialog the import can be finished
by selecting the parent directory (the directory containing the StorageBenchmarkHarness

and StorageBenchmarkHarnessModel directories). After the import as well as the code
generation described in Section 4, the eclipse errors should go away after some seconds.

1http://eclipse.org

12

http://eclipse.org

5. Configuration

5.2 Configuration File Creation

To create a new configuration file using the EMF Tools, launch an eclipse instance in your
eclipse or, more conveniently, install the plugins of the EMF model into your host eclipse. To
do the latter, do the following (see http://help.eclipse.org/juno/index.jsp?topic=

%2Forg.eclipse.pde.doc.user%2Ftasks%2Fui_export_install_into_host.htm):

1. Open the export wizard, either Open the plugin export wizard File > Export... >
Plug-in Development > Deployable plug-ins and fragments

2. Select the plug-ins to export and install

3. Select the last option on the Destination tab Install into host. Repository. Then
choose a directory to create the repository in

4. Hit Finish. The export operation will run followed by the installation operation.

5. If the operations completed successfully, you will be prompted to restart. Choose to
restart now

6. Your plug-ins will be installed and running after the restart. You can see what has
been installed using the Installation Details button on the About Dialog (available
by going to Help > About Eclipse SDK)

You will now be able to create instances of the configuration model using the wizard. Use
File > New > Other... > Example EMF Model Creation Wizards > Configuration Model.
Choose destination and set Model Object to Configuration.

As an alternative, the following steps are possible as well in theory :

1. Open the EMF Model in the StorageBenchmarkHarnessModel/model/SBHModel-

.ecore file using the ECore Model Editor.
2. Right click on the Configuration EClass in the SBHModel/Configuration package.
3. Select Create Dynamic Instance.
4. Choose the filename and path for the configuration file and click on Finish.
5. Open the newly created configuration file using the Reflective ECore Model Editor.

Due to a bug in EMF, the file get opened by the wrong editor by default.

5.3 Referencing Configuration Fragments

If the configuration is split in multiple configuration files, one configuration file must
reference instances from another configuration file. To include the instances from other
configuration files in the currently opened file, select Reflective Editor from the main menu
of eclipse and then use the Load Resource functionality.

5.4 Runnable Configuration Files

The configuration model is shown in Figure 5.1. Configuration files which will be used
for the Storage Benchmark Harness must include a Experiment Setup child. This child
contains all the information which specifies multiple benchmark runs on multiple systems
under test. The actual specification can either be placed in the same configuration file or
be included from other files.

The Experiment Setup has the following configuration options:

• Identifier : A string which can be contain any text. This text is saved together with
the results and can be very helpful in identifying the configuration.

13

http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.pde.doc.user%2Ftasks%2Fui_export_install_into_host.htm
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.pde.doc.user%2Ftasks%2Fui_export_install_into_host.htm

5. Configuration

• Repeat Count : A number which specifies how ofter each experiment should be
repeated. Only positive numbers are allowed.

The only children which a Experiment Setup can contain are Experiment Series. A single
experiment series specifies which experiments should be run a host. Therefore an experiment
series is needed for every host which is involved in the benchmarking. Aside from the
Identifier which is only used in the configuration file itself, the Experiment Series contains
the following properties. All of them are references and can therefor point to structures
from other files. The instances must already exist to be selected.

• System Under Test : This property links to a fragment containing all necessary
information for connecting to a system under test. A new instance can be created
as a child of a System Under Test Repository. This repository can be added to
any Configuration instance, either the current configuration file or another file. The
properties of the System Under Test are self-explanatory except for the Key File.
This string must reference to the public key which was generated during the ssh
private/public key generated explained above (see section 3.1).

• Independent Variable Space of Sut : The fragment to which this property points to
contains values for all variables which are not specific for a benchmark but instead
needed for every system under test. This currently includes the file system and the
scheduler. Instances of this fragment can be created in the Independent Variable
Space Repository. This repository again can be added to any Configuration instance.

• Independent Variable Space of Benchmark : This can point to a variable space for a
specific benchmark. For example the Independent Variable Space of FFSB can be
used if a FFSB Benchmark should be run on the host. This instance can also be
added to the Independent Variable Space Repository (see above). Each variable space
contains variables specific for a single benchmark.

• Independent Variable Space of Monitor : This optionally points to a variable space for
a specific monitor tool. For example the Independent Variable Space of Blktrace can
be used if the Blktrace monitoring tool should be used to monitor the corresponding
benchmark run. Again the instance can be added to the Independent Variable Space
Repository.

5.5 Benchmark Configurations

The configuration of a benchmark is defined in the respective IndependentVariableSpace-
ofBenchmark instances. For full details, please refer to the help files of the benchmarks. It
is important to note that the IndependentVariableSpaceofBenchmark instances do only
allow to configure a subset of all possible configuration possibilities since the benchmarks
themselves do not necessarily support all configurations they actually allow. The configura-
tions are therefore limited to either the most interesting or the best tested ones. However,
there is no inherent limitation such that the configurations and the BenchmarkDrivers can
be extended for other parameters.

For creating new configurations, please study the examples provided with the tool and
compare your configurations with the actual benchmarks using their raw file output. You
can also use the Validate option of the Eclipse tree editor to identify configuration errors.

Hint: While the configuration units of Filebench can be passed, the units of FFSB configura-
tions have been fixed for the sake of simplicity. They are bytes for (read|write)BlockSize,
kilobytes for fileSize, and megabytes for fileSetSize. The FFSB BlockSize (request
size) can be either specified for both read and write separately, or for both combined using
the parameters without ’read’ or ’write’ pre-/postfix.

14

5. Configuration

Benchmark Filebench (simplified)

Benchmark
FFSB
(simplified)

read
append
write
(...)

«enumeration»

Operation

sequential
random

«enumeration»

Pattern

Configuration

ExperimentSetup

id : String
repeatCount : Integer

SystemUnderTest
Repository

IndependentVariableSpace
Repository

id : String
ip : String
port : Integer
user : String
RSAkey : String

SystemUnderTest ExperimentSeries

id : String

0..1

0..10..1

1..*

id : String

«abstract»

IndependentVariableSpace

0..* 0..*

«abstract»

IndependentVariableSpace
ofBenchmark

fileSystem : String[1..*]
IOScheduler : String[1..*]

IndependentVariableSpace
ofSUT

requestSize : Integer[1..*]
readProportion : Integer[1..*]
accessPattern : Pattern[1..*]
(...)

IndependentVariableSpace
ofFFSB

users : Integer[1..*]
operations : Operation[1..*]
(...)

IndependentVariableSpace
ofFilebench

1

1 1
«abstract»

IndependentVariableSpace
ofMonitor

0...*

Figure 5.1: Configuration Model

15

6. Running the Benchmark

After the configuration process has been completed and the configuration file is finished,
the benchmark can be started. This is done using the run command in the StorageBench-

markHarness directory. This command should be executed in a terminal window as the
application outputs all relevant information on the standard out. The run command needs
the following parameters:

• -c or -conf: An absolute path to the configuration file which should be run. This
configuration must contain a Experiment Setup as explained above.

• -d or -database: An absolute path to the database file which should be used to save
the results. If the database does not exist, an empty database is created.

For additional parameters and their meaning see the output of the help screen or the source
code.

6.1 Additional Output Files

The Storage Benchmark Harness automatically parses and transforms the output of the
benchmarks into the database. If for debugging purposes or because additional processing
should be done later one the raw output of the benchmarks should be saved, the -r or
-rawfilesavedir parameter for the run command can be used. This parameter should
contain a directory in which the raw files will be saved during the benchmarking. The user
must pay attention to the additional space which is necessary to store these files.

6.2 Examples

An example of a full command to run an experiment setup would look similar to this:

filebenchtargetdir =/mnt/noorsh \

./run -c ./ configs/BenchmarkConfiguration.xmi \

-d ./ results/database.sqlite \

-r ./ results_raw/ \

| tee -a ./logs/spa.log

The results are stored in an SQLite database. Many operating system provide native
command line access, for example on Mac OS, the statement to connect to the database
would look similar to this:

$ sqlite3 ./ results/database.sqlite

16

6. Running the Benchmark

To show the available tables simply use the following command (more help is available at
http://www.sqlite.org/sqlite.html):

sqlite > .tables;

An even more convenient access is provided by the R libraries.

17

http://www.sqlite.org/sqlite.html

7. R Libraries

7.1 Introduction

For the analysis of measurement results, a set of tailored libraries for the widely accepted
statistics tool R12 have been developed. The starting point is the file SPA.r that loads all
other libraries and a few examples automatically. These files build upon other standard
libraries that can be installed automatically in a batch by using installPackages.r

(simply load it using source("filename")).

7.2 Interface

The following parts contain the main functions and are loaded automatically in SPA.r3.
For more information, the functions are also commented directly in code.

• DataStoreInterface.r: Loads the measurement data from the database.

– getAllFFSBVars(db, metric=NULL, type=NULL)

– getAllFilebenchVars(db, metric=NULL, type=NULL)

Get the measurement data from the database located at db (path). Option-
ally, filter for certain metrics or result types. This can be specified using the
SPAMETRICCONSTANTS and SPATYPECONSTANTS constant containers, respectively.

• RegressionOptimization.r: Optimizes for given measurement data, in- and depen-
dent variables the configuration for the regression techniques.

– optimizeTechniques(method, formula, data, ranges=NA, nSplits, nEx-

plorations, trace=0, fold=NA, nIterations=15)

Optimizes the method (“rpart”, “earth”, “,m5”, or “cubist”) according to a for-

mula using the given data. Optionally, the ranges of the method can be specified.
Parameters of the optimization algorithm have the prefix “n”, for details refer
to [NBKR13]. The algorithm is deterministic if a fold for the cross-validation
(objective function) is passed. Verbose output for trace = 1 or 2.

1http://www.r-project.org/
2http://www.rstudio.com/
3Hint: Both the GUI and command line version of R allow auto completion with single/double TAB key.

18

http://www.r-project.org/
http://www.rstudio.com/

7. R Libraries

• RegressionModeling.r: Creates the regression models either with a given configu-
ration or in batch for comparing the models.

– fitCertainModel(formula, data, method, parameter)

Use the parameters obtained with optimizeTechniques() or specify others to
create a model of the form given in formula with the data and the specific
method.

– fitModels<-function(formula, data, methods=list())

Alternatively, create a set of models of the form given in formula with the data

with different methods and parameters to compare them. Optionally, a list of
methods can be passed to create more models.

7.3 Examples

> # you can use setwd(path) to switch the working directory

> # Copy -paste of these lines will not work because of special

symbols in the following such as quotes and tilde

> source (" installPackages.r")

> source ("SPA.r")

> # The following example measurements are loaded automatically:

> filebenchexample = getAllFilebenchVars ("data/test/sqlite/

filebenchtest.sqlite ");

> ffsbexample = getAllFFSBVars ("data/test/sqlite/

ffsbtest.sqlite", type=SPATYPECONSTANTS$mean);

>

> # example data provided by R (output abridged)

> trees

Girth Height Volume

1: 8.3 70 10.3

2: 8.6 65 10.3

(...)

30: 18.0 80 51.0

31: 20.6 87 77.0

>

> # model with method EARTH

> model = fitCertainModel(Volume∼Girth+Height , trees , "earth",

parameter=data.table(" nprune "=3, "nk"=3,

"degree "=1, "thresh "=0))

> summary(model , digits = 2, style = "pmax") # output abridged

Call: (...)

y =

30

+ 6.6 * pmax(0, Girth - 14)

- 3.5 * pmax(0, 14 - Girth)

Selected 3 of 3 terms , and 1 of 2 predictors

Importance: Girth , Height -unused

Number of terms at each degree of interaction: 1 2 (...)

GCV 14 RSS 313 GRSq 0.95 RSq 0.96

> plotmo(model$finalModel)

grid: Girth Height

12.9 76

>

> # another method: RPART

> model = fitCertainModel(Volume∼Girth+Height , trees , "rpart",

parameter=data.table("cp"=0.01 , "minsplit "=5))

> plotCART(model$finalModel)

>

> # optimize the parameters

19

7. R Libraries

> Eopt = optimizeTechniques(formula=Volume∼Girth+Height ,

data=trees , method ="rpart",nIterations =3, nExplorations =2,

nSplits=3, trace =2)

> modelOPT = fitCertainModel(Volume∼Girth+Height , trees ,

"rpart", parameter=Eopt)

> plotCART(modelOPT$finalModel)

>

> # Create a set of models to compare the techniques

> models = fitModels(Volume∼Girth+Height , trees)

(output abridged)

Creating Fold

(...)

Training M5.

Calculating resamples.

> summary(models$compare) # (output abridged)

(...)

MAPE

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

lm 1.310 4.915 9.378 12.690 14.240 38.04 0

lm_2param_inter 2.651 5.794 6.215 7.408 9.744 13.75 0

(...)

m5 1.037 5.093 8.526 12.150 14.170 35.43 0

20

8. Minimal Running Example

In this example, User noorsh runs FFSB on machine IOMeasurements01 using RSA key
id_rsa_IOMeasurements01. The controller machine is Mac OS (shown briefly is the
execution of the controller on a Debian Linux system), the measurement target is Debian
Linux.

8.1 System Under Test Setup

As described in Section 3 and illustrated in Figure 8.1, ensure the user can connect to the
system using RSA key without password prompt. And, as a minimal configuration, ensure
FFSB is installed on the SUT and the binaries are in the user path, which can be checked
using which ffsb. Root rights are only needed if the device scheduler should be modified.

Figure 8.1: Connection to the SUT

8.2 Installation and Compilation

Download Eclipse Modeling Tools and import the SPA projects, cf. Figure 8.2.

After the import, you might get compilation errors and need to generate the EMF
model code as shown in Figure 8.3 using StorageBenchmarkHarnessModel/model/S-

BHModel.genmodel -> package context menu -> Generate All (skip this step if the

21

8. Minimal Running Example

Figure 8.2: Import projects into Eclipse Modeling Tools

model code was already generated). Three new projects will be generated and all errors
will disappear after a second if the project is rebuilt. In case the errors won’t disappear,
check the built path of the project StorageBenchmarkHarnessModel (project context

menu -> Properties -> Java Build Path).

To easily manage the configuration files, install all plugins into the host as described in
Section 5.2 and shown in Figure 8.4.

IMPORTANT: If the projects are installed into the host, Eclipse may delete the
build.xml file in the StorageBenchmarkHarnessModel project. Simply save it and re-
import the file if a manual rebuild is necessary.

You will now be able to open SPA configurations, e.g., located in StorageBenchmarkHar-

ness/configs/examples, in the tree-based editor as shown in Figure 8.5.

You can execute the configurations using Eclipse run configuration or headless on the
command line. For the former, open the BenchmarkController class in the package
edu.kit.sdq.storagebenchmarkharness and click the run icon in order to execute the
main method, cf. Figure 8.6. For the latter, navigate to the StorageBenchmarkHarness

project and execute ant if the project was not yet built automatically by Eclipse. The
project can be run using ./run, cf. Figure 8.7. Either the Eclipse console or the command
line will print the help.

IMPORTANT: If the projects were installed into the host, Eclipse may have deleted the
build.xml file in the StorageBenchmarkHarnessModel project. Simply re-import the file
if the project should be rebuilt manually.

NOTE: The code generation with Eclipse does only have to be done once. If this is
done, the projects StorageBenchmarkHarness and StorageBenchmarkHarnessModel can
be copied elsewhere and built and run headlessly, cf. Figure 8.8.

22

8. Minimal Running Example

Figure 8.3: Generate EMF model code using a genmodel

Figure 8.4: Install plugin projects into the host

23

8. Minimal Running Example

Figure 8.5: Example configuration in the tree-based editor

Figure 8.6: Run SPA in Eclipse

24

8. Minimal Running Example

Figure 8.7: Run SPA in the terminal

Figure 8.8: Build and run SPA remotely

25

8. Minimal Running Example

8.3 Configuration

SPA configurations can be created using the tree-based editor of Eclipse. Eclipse can
also check if a configuration is correct using the validate in the context menu. In the
example, modify the System Under Test configuration of StorageBenchmarkHarness/

configs/examples/exampleFFSBon1Host.xmi using the properties view. If the properties
view is not shown by default, right-click on a given configuration element and choose Show

Properties View. Change the SUT configuration according to your setup. In the example,
the configuration looks as shown in Figure 8.9 (note that the key file is the private key).
You can check the configuration using the root element Configuration -> right-click

-> Validate, which should give you no error.

Figure 8.9: SUT configuration in the example

8.4 Running the Benchmark

As described above, the benchmark can be compiled and executed using Eclipse or the
command line. Using the Eclipse run configuration, you set the program arguments using
the Arguments tab and set the environment variables in the Environment tab. Using
the command line, you can set environment variables preceding ./run and program
arguments after. Both methods are the same, so in the examples we will only show the
usage in the command line. To see what the example configuration would benchmark,
on the command line use ./run -c configs/examples/exampleFFSBon1Host.xmi -v -o

exampleFFSBon1Host.html. Open the newly created file exampleFFSBon1Host.html to
see the table contains 1 line and 1 column SUT_example meaning that 1 experiment will
be executed on the host SUT_example.

26

8. Minimal Running Example

To run the configuration, use ffsbtargetdir=/mnt/noorsh/ffsb/ ./run -c configs/

examples/exampleFFSBon1Host.xmi -d exampleFFSBon1Host.sqlite -r raw|tee ex-

ampleFFSBon1Host.log to benchmark at the location /mnt/noorsh/ffsb/ of the SUT
using the configuration exampleFFSBon1Host.xmi and save the results in the database
exampleFFSBon1Host.sqlite as well as the raw files in the folder raw. Additionally, save
the run output into exampleFFSBon1Host.log.

IMPORTANT: Make sure the scheduler of the target device is the same as specified in the
configuration file in the Independent Variable Space of SUT, which is NOOP in the exam-
ple, cf. Figure 8.9. The scheduler can be checked using cat /sys/block/[DEVICE]/queue/

scheduler.

The log of the benchmark in the raw folder will look like this (abridged):

FFSB version 6.0-RC2∼fork started

benchmark time = 60

ThreadGroup 0

================

num_threads = 10

read_random = on

read_size = 1048576 (1MB)

read_blocksize = 4096 (4KB)

read_skip = off

read_skipsize = 0 (0B)

write_random = on

write_size = 1048576 (1MB)

fsync_file = 0

write_blocksize = 4096 (4KB)

wait time = 0

op weights

read = 100 (100.00%)

readall = 0 (0.00%)

write = 0 (0.00%)

create = 0 (0.00%)

append = 0 (0.00%)

delete = 0 (0.00%)

metaop = 0 (0.00%)

createdir = 0 (0.00%)

stat = 0 (0.00%)

writeall = 0 (0.00%)

writeall_fsync = 0 (0.00%)

open_close = 0 (0.00%)

write_fsync = 0 (0.00%)

create_fsync = 0 (0.00%)

append_fsync = 0 (0.00%)

FileSystem /mnt/noorsh/ffsb /983 bd7d3 -a8a1 -4122 -95e4-f90c0ad81d5a

==========

num_dirs = 100

starting files = 64

min file size = 16777216 (16MB)

max file size = 16777216 (16MB)

directio = on

alignedio = on

bufferedio = off

aging is off

current utilization = 15.95%

27

8. Minimal Running Example

checking existing fs: /mnt/noorsh/ffsb /983 bd7d3 -a8a1 -4122 -95e4-f90c0ad81d5a

fs setup took 0 secs

Syncing ()...0 sec

Starting Actual Benchmark At: Mon Oct 28 14:46:13 2013

Syncing ()...0 sec

FFSB benchmark finished at: Mon Oct 28 14:47:15 2013

Results:

Benchmark took 61.55 sec

Total Results

===============

Op Name Transactions Trans/sec % Trans % Op

Weight Throughput

======= ============ ========= =======

=========== ==========

read : 99072 1609.66 100.000%

100.000% 6.29MB/sec

-

1609.66 Transactions per Second

Throughput Results

===================

Read Throughput: 6.29MB/sec

System Call Latency statistics in millisecs

=====

Min Avg Max Total Calls

======== ======== ========

============

[open] 0.004000 0.015760 0.052000

387

-

[read] 0.163000 6.148361 228.093000

99072

-

[lseek] 0.000000 0.001050 0.049000

99072

-

[close] 0.002000 0.006049 0.014000

387

-

Discrete overall System Call Latency statistics in millisecs

=====

Overall Calls: 198918

=====

Values[ms]:

====

[open] Total calls: 387

0.012000

0.020000

(...)

(Single Value Output)

(...)

====

[stat] Total calls: 0

28

8. Minimal Running Example

0.2% User Time

2.5% System Time

2.7% CPU Utilization

The log output of SPA will look like this (abridged), interesting are mostly the first and
the last few lines:

14:47:13.178 [main] DEBUG e.k.s.s.d.s.SQLiteDataStore - Opening

Database ’exampleFFSBon1Host.sqlite ’

14:47:13.208 [SQLiteQueu] DEBUG e.k.s.s.d.s.SBHSQLiteQueue - Starting

executing Job SQLiteDataStore$1@6f878144

14:47:13.211 [SQLiteQueu] DEBUG e.k.s.s.d.s.SBHSQLiteQueue - Finished

executing Job SQLiteDataStore$1@6f878144

14:47:13.225 [main] DEBUG e.k.s.s.BenchmarkController - Reading

Configuration from configs/examples/exampleFFSBon1Host.xmi

14:47:13.759 [main] DEBUG e.k.s.s.BenchmarkController - Validating

Objects:

14:47:13.775 [main] DEBUG e.k.s.s.BenchmarkController - Validating

edu.kit.sdq.storagebenchmarkharness.SBHModel.Configuration.

Configuration@508aeb74

(...)

(Validating Objects)

(...)

14:47:14.865 [main] DEBUG e.k.s.s.BenchmarkController - Setup is

edu.kit.sdq.storagebenchmarkharness.SBHModel.Configuration.

ExperimentSetup@6e82254d (identifier: Example_FFSB_on_one_host ,

repeatCount: 1, repeatWarmup: false)

14:47:14.865 [main] DEBUG e.k.s.s.BenchmarkController - Found

series edu.kit.sdq.storagebenchmarkharness.SBHModel.Configuration.

ExperimentSeries@225f1ae9 (identifier: FFSB_run)

14:47:14.866 [main] DEBUG e.k.s.s.BenchmarkController - No

connection found for SUT SUT_example , creating one

14:47:14.868 [main] DEBUG e.k.s.s.SSHRemoteConnection - Creating

remote connection to edu.kit.sdq.storagebenchmarkharness.SBHModel.

Configuration.SystemUnderTest@3f3a0212 (identifier: SUT_example , ip:

141.3.52.138 , port: 22, user: noorsh , keyFile: /Users/qaisnoorshams /.

ssh/id_rsa_IOMeasurements01)

14:47:14.869 [main] DEBUG e.k.s.s.BenchmarkController - No

connection set found for monitoring the SUT SUT_example , creating one

14:47:14.869 [main] DEBUG e.k.s.s.BenchmarkController - Adding

Experiments

14:47:14.875 [main] DEBUG e.k.s.s.BenchmarkDriver -

RawFileSaveDir is raw

14:47:14.908 [main] DEBUG e.k.s.s.b.f.FFSBenchmarkDriver - TargetDir

is /mnt/noorsh/ffsb/

14:47:14.908 [main] DEBUG e.k.s.s.ExperimentSeriesHelper - Expanding

series edu.kit.sdq.storagebenchmarkharness.SBHModel.Configuration.

ExperimentSeries@225f1ae9 (identifier: FFSB_run)

14:47:14.908 [main] DEBUG e.k.s.s.ExperimentSeriesHelper - Creating

SUTVariables

14:47:14.910 [main] DEBUG e.k.s.s.ExperimentSeriesHelper - Creating

BenchmarkVariables

14:47:14.912 [main] DEBUG e.k.s.s.BenchmarkController - Found 1

Experiments in this series

14:47:14.914 [main] DEBUG e.k.s.s.d.s.SQLiteDataStore - Setting up

Database

14:47:14.914 [SQLiteQueu] DEBUG e.k.s.s.d.s.SBHSQLiteQueue - Starting

executing Job SQLiteDataStore$2@1343a083

14:47:14.928 [SQLiteQueu] DEBUG e.k.s.s.d.s.SQLiteHelper - Create SQL

ALTER TABLE ffsbIndependentVars ADD COLUMN fileSystem VARCHAR DEFAULT

NULL;

(...)

(SQL Statements)

(...)

29

8. Minimal Running Example

14:47:14.993 [SQLiteQueu] DEBUG e.k.s.s.d.s.SBHSQLiteQueue - Finished

executing Job SQLiteDataStore$2@1343a083

14:47:14.994 [main] DEBUG e.k.s.s.BenchmarkController - Connecting

to all SUTs:

14:47:14.999 [main] DEBUG e.k.s.s.SSHRemoteConnection - Adding

publickey /Users/qaisnoorshams /.ssh/id_rsa_IOMeasurements01

14:47:15.011 [main] DEBUG e.k.s.s.SSHRemoteConnection - Connecting

to 141.3.52.138:22

14:47:17.288 [SQLiteQueu] DEBUG e.k.s.s.d.s.SBHSQLiteQueue - Starting

executing Job SQLiteDataStore$3@d2f41a5

14:47:17.290 [SQLiteQueu] DEBUG e.k.s.s.d.s.SBHSQLiteQueue - Finished

executing Job SQLiteDataStore$3@d2f41a5

14:47:17.290 [main] DEBUG e.k.s.s.BenchmarkController - Create

connecting for monitoring

14:47:17.291 [main] DEBUG e.k.s.s.BenchmarkController - Creating

and starting Threads

14:47:17.293 [main] DEBUG e.k.s.s.BenchmarkController - Waiting

for Threads to finish

14:47:17.294 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkController -

Configuration: edu.kit.sdq.storagebenchmarkharness.SBHModel.

IndependentVariablesOfSut@21455cf0 (fileSystem: ext4 , scheduler: NOOP)/

edu.kit.sdq.storagebenchmarkharness.SBHModel.

IndependentVariablesOfFFSB@50d8a1a0 (readPercentage: 100, blockSize:

null , writeBlockSize: 4096, readBlockSize: 4096, filesetSize: 1024,

sequentialAccess: null , sequentialRead: false , sequentialWrite: false ,

writeFsync: false , threadCount: 10, runTime: 60, warmUpTime: 30,

fileSize: 16384, opsPerFile: 256, directIO: true , opsPerFileRead: null ,

opsPerFileWrite: null , opDelay: 0)

14:47:17.294 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkController - Waiting

for barrier for preparation

14:47:17.294 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkController - Repeat 1/1

14:47:17.294 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkController - Preparing

experiment

14:47:17.304 [H-SUT_exam] DEBUG e.k.s.s.SSHRemoteConnection - Command is

bash -l -c ’mkdir /mnt/noorsh/ffsb /983 bd7d3 -a8a1 -4122 -95e4 -

f90c0ad81d5a ’

14:47:17.507 [H-SUT_exam] DEBUG e.k.s.s.b.f.FFSBenchmarkDriver - FFSB

Configfile is /tmp/d3526247 -d501 -4501 -90da -4 b07cc4d3f07.warmup.ffsb and

/tmp/d3526247 -d501 -4501 -90da -4 b07cc4d3f07.bench.ffsb

14:47:17.509 [H-SUT_exam] DEBUG e.k.s.s.SSHRemoteConnection - Command is

bash -l -c ’tee /tmp/d3526247 -d501 -4501 -90da -4 b07cc4d3f07.warmup.ffsb ’

14:47:17.713 [H-SUT_exam] DEBUG e.k.s.s.SSHRemoteConnection - Command is

bash -l -c ’tee /tmp/d3526247 -d501 -4501 -90da -4 b07cc4d3f07.bench.ffsb ’

14:47:17.921 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkDriver - Setting

scheduler to NOOP

14:47:17.921 [H-SUT_exam] DEBUG e.k.s.s.SSHRemoteConnection - Command is

bash -l -c ’readlink -f ‘df -T -P /mnt/noorsh/ffsb /983 bd7d3 -a8a1

-4122 -95e4-f90c0ad81d5a | awk ’\’’NR >1 {printf $1}’\’’‘’

14:47:18.140 [H-SUT_exam] DEBUG e.k.s.s.SSHRemoteConnection - Command is

bash -l -c ’cat /sys/class/block/xvdb/queue/scheduler ’

14:47:18.355 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkDriver - Available

schedulers are [[noop], anticipatory , deadline , cfq ,

]

14:47:18.355 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkDriver - Scheduler

noop is already active , doing nothing

14:47:18.356 [H-SUT_exam] DEBUG e.k.s.s.SSHRemoteConnection - Command is

bash -l -c ’df -T -P /mnt/noorsh/ffsb /983 bd7d3 -a8a1 -4122 -95e4-

f90c0ad81d5a | awk ’\’’NR >1 {printf $2}’\’’’

14:47:18.573 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkDriver - Current

Filesystem ext4 , expected ext4

14:47:18.573 [H-SUT_exam] DEBUG e.k.s.s.b.f.FFSBenchmarkDriver - FFSB

Warmup

14:47:18.574 [H-SUT_exam] DEBUG e.k.s.s.SSHRemoteConnection - Command is

bash -l -c ’ffsb /tmp/d3526247 -d501 -4501 -90da -4 b07cc4d3f07.warmup.ffsb

30

8. Minimal Running Example

’

14:47:54.429 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkController - Waiting

for start monitoring

14:47:54.429 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkController - Waiting

for all monitors to be started

14:47:54.429 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkController - Starting

Benchmarking

14:47:54.429 [H-SUT_exam] DEBUG e.k.s.s.b.f.FFSBenchmarkDriver - Executing

FFSB for #1

14:47:54.430 [H-SUT_exam] DEBUG e.k.s.s.SSHRemoteConnection - Command is

bash -l -c ’ffsb /tmp/d3526247 -d501 -4501 -90da -4 b07cc4d3f07.bench.ffsb ’

14:48:56.122 [H-SUT_exam] DEBUG e.k.s.s.b.f.FFSBenchmarkDriver - Found Main

Heading

14:48:56.123 [H-SUT_exam] DEBUG e.k.s.s.b.f.FFSBenchmarkDriver - Found

Heading open

14:48:56.131 [H-SUT_exam] DEBUG e.k.s.s.b.f.FFSBenchmarkDriver - Found

Heading read

14:48:57.281 [H-SUT_exam] DEBUG e.k.s.s.b.f.FFSBenchmarkDriver - Found

Heading write

14:48:57.282 [H-SUT_exam] DEBUG e.k.s.s.b.f.FFSBenchmarkDriver - Found

Heading create

14:48:57.282 [H-SUT_exam] DEBUG e.k.s.s.b.f.FFSBenchmarkDriver - Found

Heading lseek

14:48:57.994 [H-SUT_exam] DEBUG e.k.s.s.b.f.FFSBenchmarkDriver - Found

Heading unlink

14:48:57.994 [H-SUT_exam] DEBUG e.k.s.s.b.f.FFSBenchmarkDriver - Found

Heading close

14:48:57.997 [H-SUT_exam] DEBUG e.k.s.s.b.f.FFSBenchmarkDriver - Found

Heading stat

14:48:58.017 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkController - Waiting

for finishing of benchmarking

14:48:58.017 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkController - Stopping

monitors ...

14:48:58.017 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkController - Finished

Monitoring

14:48:58.017 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkController - Waiting to

store results

14:48:58.017 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkController - Result -

Storing -Phase: 1 Results in database

14:48:58.018 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkController - Results

stored

14:48:58.018 [SQLiteQueu] DEBUG e.k.s.s.d.s.SBHSQLiteQueue - Starting

executing Job SQLiteDataStore$4@56ee20fe

14:48:58.018 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkController - Finishing

Experiment

14:48:58.018 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkController - Waiting

for finish

14:48:58.018 [H-SUT_exam] DEBUG e.k.s.s.BenchmarkController - Finishing

Experiment

14:48:58.018 [SQLiteQueu] DEBUG e.k.s.s.d.s.SQLiteDataStore - Starting

saving 99075 results for host SUT_example , expNo 0, repeatNo 1

14:48:58.018 [H-SUT_exam] DEBUG e.k.s.s.SSHRemoteConnection - Command is

bash -l -c ’rm /tmp/d3526247 -d501 -4501 -90da -4 b07cc4d3f07.bench.ffsb ’

14:48:58.220 [H-SUT_exam] DEBUG e.k.s.s.SSHRemoteConnection - Command is

bash -l -c ’rm /tmp/d3526247 -d501 -4501 -90da -4 b07cc4d3f07.warmup.ffsb ’

14:48:58.421 [H-SUT_exam] DEBUG e.k.s.s.SSHRemoteConnection - Command is

bash -l -c ’rm -r /mnt/noorsh/ffsb /983 bd7d3 -a8a1 -4122 -95e4 -

f90c0ad81d5a ’

14:48:58.822 [main] DEBUG e.k.s.s.BenchmarkController - All

Threads for expNo 0 finished

14:48:58.822 [main] DEBUG e.k.s.s.BenchmarkController - Finishing

Cofiguration Run

14:48:59.050 [SQLiteQueu] DEBUG e.k.s.s.d.s.SQLiteDataStore - Finished

saving 99075 results for host SUT_example , expNo 0, repeatNo 1

31

8. Minimal Running Example

14:48:59.050 [SQLiteQueu] DEBUG e.k.s.s.d.s.SBHSQLiteQueue - Finished

executing Job SQLiteDataStore$4@56ee20fe

14:48:59.050 [SQLiteQueu] DEBUG e.k.s.s.d.s.SBHSQLiteQueue - Starting

executing Job SQLiteDataStore$5@32b3a5a0

14:48:59.051 [main] DEBUG e.k.s.s.BenchmarkController - Closing

all connections

14:48:59.051 [SQLiteQueu] DEBUG e.k.s.s.d.s.SBHSQLiteQueue - Finished

executing Job SQLiteDataStore$5@32b3a5a0

14:48:59.053 [main] DEBUG e.k.s.s.BenchmarkController - Closing

all remaining connections

14:48:59.054 [main] DEBUG e.k.s.s.BenchmarkController - Shutting

down the threadpool

14:48:59.054 [main] DEBUG e.k.s.s.BenchmarkController - Closing

the datastore

8.5 R Libraries

After all the required R packages are installed, cf. Section 7.1, the experiment results can
be analyzed in R by loading the libraries and using the corresponding interface method
(output abridged):

i43pc92:StorageBenchmarkHarness qaisnoorshams$ r

WARNING: ignoring environment value of R_HOME

R version 3.0.1 (2013 -05 -16) -- "Good Sport"

(...)

> getwd()

[1] "/Users/qaisnoorshams/Desktop/EclipseModelingTools/workspace/

StorageBenchmarkHarness"

> source ("../ RScripts/SPA.r")

data.table 1.8.10 For help type: help("data.table")

(...)

Registering doMC parallel backend

> dat = getAllFFSBVars (" exampleFFSBon1Host.sqlite",type=

SPATYPECONSTANTS$mean)

> dat

runId crIdentifier crTime repeatNo expNo

1: 1 Example_FFSB_on_one_host 2013 -10 -28 13:47:17 1 0

2: 1 Example_FFSB_on_one_host 2013 -10 -28 13:47:17 1 0

hostId expUid fileSystem scheduler

1: SUT_example 2843dc71 -fa5f -4098-b3ac -7 b03129c58c6 ext4 NOOP

2: SUT_example 2843dc71 -fa5f -4098-b3ac -7 b03129c58c6 ext4 NOOP

readPercentage writeBlockSize readBlockSize filesetSize sequentialRead

1: 100 4096 4096 1024 0

2: 100 4096 4096 1024 0

sequentialWrite writeFsync threadCount runTime warmUpTime fileSize

1: 0 0 10 60 30 16384

2: 0 0 10 60 30 16384

opsPerFile directIO opDelay dvId benchPrefix valueId operation

opMetric

1: 256 1 0 1 ffsb 1 read

throughput

2: 256 1 0 1 ffsb 2 read

responseTime

opValue opType

1: 6.290000 mean

2: 6.148361 mean

>

>

> dat[,list(opMetric ,opValue)]

opMetric opValue

1: throughput 6.290000

2: responseTime 6.148361

32

8. Minimal Running Example

>

> datSingle = getAllFFSBVars (" exampleFFSBon1Host.sqlite",type=

SPATYPECONSTANTS$singleValue)

> summary(datSingle[opMetric==’responseTime ’,opValue])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.163 0.705 3.873 6.148 8.101 228.100

>

The last commands show the results in brief, cf. benchmark log output above. One caveat is
that the units are not transferred automatically and need to be considered while analyzing
the results.

A minimal example for the SPA modeling functions is shown in Section 7.3.

33

9. Questions & Answers

Q1 — Why are forks of the benchmarks used instead of the official versions?

A — Both used benchmarks include bugfixes and FFSB also includes the extensions
to capture single request measurements instead of just mean values. This allows,
e.g., to also analyze the distribution of the measurements.

Q2 — Why does Filebench get restarted multiple times during the benchmark execution?

A — On several machines, Filebench seems to run unstably or freeze during the
execution. The Benchmark Driver of Filebench is able to recognize a failed execution
and restarts the benchmark automatically. This is why the execution of Filebench
requires some root rights. This might result in a longer benchmarking period, but
no manual interaction is required.

Q3 — What is the minimal setup to test the tool?

A — You need i) a password-less connection to the system you want to benchmark
(using RSA) and ii) one benchmark installed (the executable needs to reside in the
user path), cf. Section 3. Root rights are not required for FFSB (only if the I/O
scheduler of the system needs to be changed). A minimal configuration contains
an Experiment Setup with one Experiment Series specifying i) a System Under
Test (SUT), ii) an Independent Variable Space of the SUT, and iii) an Independent
Variable Space of the Benchmark, cf. Figure 5.1. A minimal running example is
shown in Section 8.

Q4 — Why is/are the device/s on the System Under Test getting full?

A — Additionally to the log files, temporary files are stored in /tmp. If the
experiments are interrupted due to errors, the files might not get cleaned up
properly. Check the measurement and monitoring targets as well as /tmp for
temporary files in case of interrupted runs.

34

Bibliography

[NBKR13] Q. Noorshams, D. Bruhn, S. Kounev, and R. Reussner, “Predictive Performance
Modeling of Virtualized Storage Systems using Optimized Statistical Regression
Techniques,” in Proceedings of the 4th ACM/SPEC International Conference
on Performance Engineering (ICPE’13), Prague, Czech Republic, April 21–24.
New York, NY, USA: ACM, 2013.

[NBR+14] Q. Noorshams, A. Busch, A. Rentschler, D. Bruhn, S. Kounev, P. Tůma,
and R. Reussner, “Automated Modeling of I/O Performance and Interference
Effects in Virtualized Storage Systems,” in 34th IEEE International Conference
on Distributed Computing Systems Workshops (ICDCS 2014 Workshops). 4th
International Workshop on Data Center Performance, DCPerf ’14, 2014.

35

	Contents
	1 Introduction
	1.1 About
	1.2 Requirements
	1.3 Download

	2 Architecture
	3 System Under Test Setup
	3.1 Authentication and Login
	3.2 Benchmark and Monitor Installation
	3.2.1 Flexible File System Benchmark
	3.2.2 Filebench
	3.2.3 Blktrace

	4 Installation and Compilation
	5 Configuration
	5.1 Eclipse Setup
	5.2 Configuration File Creation
	5.3 Referencing Configuration Fragments
	5.4 Runnable Configuration Files
	5.5 Benchmark Configurations

	6 Running the Benchmark
	6.1 Additional Output Files
	6.2 Examples

	7 R Libraries
	7.1 Introduction
	7.2 Interface
	7.3 Examples

	8 Minimal Running Example
	8.1 System Under Test Setup
	8.2 Installation and Compilation
	8.3 Configuration
	8.4 Running the Benchmark
	8.5 R Libraries

	9 Questions & Answers
	Bibliography

