
Alleviating Virtualization
Bottlenecks

Nadav Amit

Alleviating Virtualization
Bottlenecks

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Nadav Amit

Submitted to the Senate

of the Technion — Israel Institute of Technology

Tamuz 5774 Haifa July 2014

This research was carried out under the supervision of Prof. Assaf Schuster and Prof. Dan

Tsafrir, in the Faculty of Computer Science.

Some results in this thesis have been published as articles by the author and research

collaborators in conferences and journals during the course of the author’s doctoral

research period, the most up-to-date versions of which being:

Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster. vIOMMU: efficient IOMMU
emulation. In USENIX Annual Technical Conference (ATC), 2011.

Nadav Amit, Dan Tsafrir, and Assaf Schuster. VSWAPPER: A memory swapper for
virtualized environments. In ACM Architectural Support for Programming Languages &
Operating Systems (ASPLOS), pages 349–366, 2014.

Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Assaf Schuster,
and Dan Tsafrir. ELI: Bare-metal performance for I/O virtualization. In ACM Architectural
Support for Programming Languages & Operating Systems (ASPLOS), pages 411–422, 2012.
First two authors equally contributed.

Acknowledgements

I thank my advisors, Assaf Schuster and Dan Tsafrir, for their academic supervision

and inspiration. Through your guidance I learned how to separate the wheat from the

chaff in academic research. Your contribution to this work is invaluable. It has been a

privilege to work with you.

I am grateful to Muli Ben-Yehuda for bringing interesting problems to study and

guiding me in my first academic steps. I thank my co-authors Nadav Har’el, Abel

Gordon and Alex Landau for their important role in the research, and thank Ilya

Kravetz for his technical support. I also thank Michael Factor and Carl Waldspurger

for reviewing the studies and delivering valuable feedback.

During my studies, I got support from my colleagues: Mickey Gabel, Orna Agmon

Ben-Yehuda, Omer Peleg, Ilya Lesokhin, Moshe Malka, Eitan Rosenfeld, Eran Gilad,

Gala Yadgar, Adi Omari Igor Smolyar and Michael Vasiliev. Your support and feedbacks

were useful throughout my studies.

Last but not least, I thank my parents Noah and Tamar Amit, and especially my

spouse Mika Moran. Your patience, understanding and support enabled me to conduct

this research.

The generous financial support of the Hasso Plattner Institue, IBM cooperation and

the Technion if gratefully acknowledged.

Contents

List of Figures

List of Tables

Abstract 1

Abbreviations and Notations 3

1 Introduction 7

1.1 Overheads . 8

1.1.1 Architecture Perspective . 8

1.1.2 High-Level Perspective . 9

1.2 Achieving Transparency . 10

1.2.1 Cooperative Transparency . 10

1.2.2 Non-Cooperative Transparency 11

1.3 Research Goal . 14

2 vIOMMU 17

2.1 Abstract . 17

2.2 Introduction . 17

2.2.1 Motivation . 18

2.2.2 Contributions and Preview of Results 19

2.3 Samecore IOMMU Emulation . 21

2.4 IOMMU Mapping Strategies . 23

2.4.1 Approximate Shared Mappings 23

2.4.2 Asynchronous Invalidations . 24

2.4.3 Deferred Invalidation . 24

2.4.4 Optimistic Teardown . 25

2.5 Sidecore IOMMU Emulation . 26

2.5.1 Risk and Protection Types . 27

2.5.2 Quantifying Risk . 28

2.6 Performance Evaluation . 30

2.6.1 Methodology . 30

2.6.2 Overhead of (Un)mapping . 33

2.6.3 Benchmark Results . 33

2.6.4 Sidecore Scalability and Power-Efficiency 36

2.7 Related Work . 38

2.8 Conclusions . 39

3 ELI 41

3.1 Abstract . 41

3.2 Introduction . 41

3.3 Motivation and Related Work . 44

3.3.1 Generic Interrupt Handling Approaches 44

3.3.2 Virtualization-Specific Approaches 45

3.4 x86 Interrupt Handling . 46

3.4.1 Interrupts in Bare-Metal Environments 46

3.4.2 Interrupts in Virtual Environments 47

3.4.3 Interrupts from Assigned Devices 48

3.5 ELI: Design and Implementation . 49

3.5.1 Exitless Interrupt Delivery . 49

3.5.2 Placing the Shadow IDT . 51

3.5.3 Configuring Guest and Host Vectors 52

3.5.4 Exitless Interrupt Completion . 52

3.5.5 Multiprocessor Environments . 53

3.6 Evaluation . 53

3.6.1 Methodology and Experimental Setup 53

3.6.2 Throughput . 55

3.6.3 Execution Breakdown . 57

3.6.4 Impact of Interrupt Rate . 58

3.6.5 Latency . 60

3.7 Security and Isolation . 61

3.7.1 Threat Model . 61

3.7.2 Protection . 62

3.8 Architectural Support . 63

3.9 Applicability and Future Work . 63

3.10 Conclusions . 64

4 VSWAPPER 65

4.1 Abstract . 65

4.2 Introduction . 66

4.3 Motivation . 68

4.3.1 The Benefit of Ballooning . 68

4.3.2 Ballooning is Not a Complete Solution 69

4.3.3 Ballooning Takes Time . 71

4.3.4 The Case for Unmodified Guests 73

4.4 Baseline Swapping . 74

4.4.1 Demonstration . 78

4.5 Design and Implementation . 79

4.5.1 The Swap Mapper . 80

4.5.2 The False Reads Preventer . 83

4.6 Evaluation . 85

4.6.1 Controlled Memory Assignment 85

4.6.2 Dynamic Memory Assignment 88

4.6.3 Overheads and Limitations . 89

4.6.4 Non-Linux Guests and Hosts . 90

4.7 Related Work . 91

4.8 Future Work . 92

4.9 Conclusions . 93

4.10 Availability . 93

5 Conclusion and open questions 95

Hebrew Abstract i

List of Figures

1.1 Cooperative transparency methods . 10

1.2 Non-cooperative transparency methods 12

2.1 IOMMU emulation architecture (samecore). 22

2.2 Breakdown of (un)mapping a single page with vIOMMU 32

2.3 Netperf throughput with vIOMMU . 33

2.4 vIOMMU Latency . 34

2.5 MySQL throughput with vIOMMU . 35

2.6 Apache throughput with vIOMMU . 35

2.7 Power-saving and CPU affinity effect on vIOMMU 38

3.1 Exits during interrupt handling . 42

3.2 ELI interrupt delivery flow . 50

3.3 ELI’s improvement . 55

(a) Netperf . 55

(b) Apache . 55

(c) Memcached . 55

3.4 ELI’s improvement for various page sizes 56

(a) Netperf . 56

(b) Apache . 56

(c) Memcached . 56

3.5 Netperf workloads with various computation-I/O ratios 59

(a) ELI’s throughput improvement . 59

(b) Baseline interrupt rate . 59

3.6 ELI’s improvement with various interrupt coalescing intervals 60

4.1 Address translation of VM memory accesses 69

4.2 The memory ballooning mechanism . 70

4.3 Memory overcommitment effect on sequential file read 70

4.4 Dynamic map-reduce workload performance using VSwapper 72

4.5 Over-ballooning with pbzip2 . 74

4.6 Silent swap writes . 74

4.7 Stale swap reads . 75

4.8 False swap reads . 76

4.9 Effect of swapping on recurring guest file read 78

4.10 Effect of false reads . 80

4.11 Pbzip performance with VSwapper . 85

4.12 Kernbench performance with VSwapper 86

4.13 Eclipse performance with VSwapper . 87

4.14 Phased execution of MapReduce with VSwapper 88

4.15 Guest page-cache size . 90

List of Tables

2.1 Preview of vIOMMU results . 21

2.2 Evaluated emulated IOMMU configurations 30

2.3 Two VCPUs TCP throughput with sidecore 36

3.1 Execution breakdown with and without ELI 57

3.2 Latency measured with and without ELI 61

4.1 Lines of code of VSwapper . 84

4.2 VMware Workstation runtime when memory is overcommitted 91

Abstract

Hardware virtualization has long been studied, but has only recently become popular,

after being introduced to commodity servers. Despite the ongoing research and the

developing hardware support, virtual machines incur degraded performance in a wide

variety of cases, especially when an unmodified virtual machine operating system is

used. One of the major causes of this degraded performance is the lack of physical

hardware transparency in virtual machines, since the hypervisor—their controlling

software-layer—usually exposes hardware abstractions instead of the physical hardware.

While such abstractions are often required to multiplex hardware in virtualization

environments, they introduce inefficiencies.

In our work we investigate a wide variety of scenarios in which the lack of transparency

incurs substantial performance overheads: I/O memory management unit (IOMMU)

emulation, interrupts multiplexing by the hypervisor and memory over-provisioning.

For each of these scenarios we suggest novel methods to increase transparency without

the virtual machine’s cooperation, and thereby improve performance without modifying

its operating system and without access to its source code. Accordingly, the methods we

propose apply to proprietary operating systems as well and ease the porting of virtual

machines from one hypervisor to another.

First, we show that virtual machine performance with IOMMU emulation, which

enhances security, can improve by up to 200% using a novel sidecore emulation approach—

performing device emulation by another core instead of the hypervisor. Second, we

present a secure and efficient method for selective delivery of interrupts to virtual

machines, improving performance by up to 60% for I/O intensive workloads. Last, we

introduce VSWAPPER, an efficient uncooperative swapping extension that enhances

VM performance when memory is overcommitted by up to an order of magnitude.

1

2

Abbreviations and Notations

AB : ApacheBench

ABI : Application Binary Interface

ACPI : Advanced Configuration and Power Interface

AMD : Advanced Micro Devices

APIC : Advanced Programmable Interrupt Controller

BAR : Base Address Registers

BIOS : Basic Input/Output System

COW : Copy on Write

CPU : Central Processing Unit

DMA : Direct Memory Access

DRAM : Dynamic Random-Access Memory

DV FS : Dynamic Voltage and Frequency Scaling

ELI : ExitLess Interrupts

EOI : End of Interrupt

EPT : Extended Page Tables

FIFO : First-In First-Out

FPGA : Field-Programmable Gate Array

IDT : Interrupt Descriptor Table

IDTR : Interrupt Descriptor Table Register

I/O : Input/Output

IOMMU : I/O Memory Management Unit

IOTLB : I/O Translation Lookaside Buffer

IOV A : I/O Virtual Address

IPI : Inter-Processor Interrupt

IRQ : Interrupt Request

GbE : Gigabit Ethernet

GFN : Guest Frame Number

GP : General Purpose (exception)

GPA : Guest Physical Address

GV A : Guest Virtual Address

JVM : Java Virtual Machine

HBA : Host Bus Adapter

3

HPA : Host Physical Address

HV A : Host Virtual Address

HTTP : Hypertext Transfer Protocol

IaaS : Infrastructure as a Service

IOMMU : I/O Memory Management Unit

IOTLB : I/O Translation Lookaside Buffer

KVM : Kernel-based Virtual Machine

LAPIC : Local Advanced Programmable Interrupt Controller

LFU : Least Frequently Used

LHP : Lock Holder Preemption

LRU : Least Recently Used

MMIO : Memory Mapped Input/Output

MMU : Memory Management Unit

MPI : Message Passing Interface

MSR : Model Specific Register

MTU : Maximum Transmission Unit

NAPI : New API

NIC : Network Interface Controller

NMI : Non-Maskable-Interrupts

NP : Not Present (exception)

NPB : NAS Parallel Benchmark

NPT : Nested Page Tables

NUMA : Non-Uniform Memory Access

OLTP : Online Transaction Processing

OOM : Out of Memory

OS : Operating System

PCPU : Physical Central Processing Unit

PCI : Peripheral Component Interconnect

PCIe : Peripheral Component Interconnect Express

PFN : Physical Frame Number

PIO : Programmed Input/Output

PT : Page Table

PTE : Page Table Entry

SCSI : Small Computer System Interface

SLA : Service Level Agreement

SPT : Shadow Page Tables

SQL : Structured Query Language

SR− IOV : Single Root I/O Virtualization

RAM : Random Access Memory

RDMA : Remote Direct Memory Access

TCP : Transmission Control Protocol

4

TLB : Translation Lookaside Buffer

UCR : Unconditional Recoverable

UDP : User Datagram Protocol

V CPU : Virtual Central Processing Unit

VM : Virtual Machine

VMM : Virtual Machine Monitor

V T : Virtualization Technology

V T − d : Virtualization Technology for Directed I/O

5

6

Chapter 1

Introduction

Virtualization is quickly becoming an important technology across the entire IT environ-

ment, achieving better utilization of computer systems by executing multiple encapsu-

lated virtual machines (VMs) on a single physical machine [GHW06, SLQP07, UNR+05].

Until a few years ago, virtualization in commodity systems could only be performed

using software techniques, mainly binary translation. While software virtualization

improved over time, it frequently performed poorly, achieving 20% of native system

throughput [RG05]. The introduction of hardware-assisted virtualization to the x86

architecture changed this situation, as even its first generation, prior to various software

and hardware optimizations delivered performance that is on par with state-of-the-

art software based virtualization [AA06]. Ever since, hardware-assisted virtualization

has improved considerably, reducing common virtualization latencies by 80% and

outperforming software based virtualization [AMRS11].

Nevertheless, in spite of improvements in CPU architecture and virtualization soft-

ware techniques, virtualization overhead is still high under various workloads [AA06,

ABYTS11, VMw10a]. One of the main reasons for this overhead is the lack of trans-

parency, as the VM often does not access the physical hardware, but an abstraction of

it, resulting in suboptimal use of the hardware [PS75]. Virtualization overhead is often

reduced by porting the VM OS so it will cooperate with the hypervisor, the software

layer that executes and monitors the VM. However, such an approach has several

drawbacks: every OS used for the VM needs to be ported and, for proprietary OSes

complete porting is often impossible [Hab08]. Arguably, as different virtual machine

managers require different porting, such an approach also limits the portability of VMs

between different hypervisors.

Thus, in our work, we use a non-cooperative approach, which does not require any

VM modifications to improve the performance of various workloads: CPU intensive,

memory intensive and I/O intensive. We do so by developing novel virtualization

techniques, and applying the existing methods in new ways.

7

1.1 Virtualization Overheads

The performance of many workloads degrades substantially when they are executed

under an unmodified VM OS [AA06, ABYTS11, VMw10a]. While degradation is

expected, as VM monitoring by the hypervisor incurs additional overhead, its magnitude

might come as a surprise. For instance, experiments conducted using the modern KVM

and Xen hypervisors showed that an I/O intensive workload running a VM reached

only one-third of the native throughput [YBYW08] and kernel compilation, which was

executed 50% of the time, was 50 times slower [Fri08].

These results may be appear even more cumbersome and raise the question— Why

does an unmodified operating system (OS) that runs in a virtual machine (VM) often

perform substantially worse than an OS that runs on bare-metal? This question can be

answered from two perspectives—architecture and high-level.

1.1.1 Architecture Perspective

Here we describe the reasons for the degraded performance in virtualization by reviewing

how hardware-assisted virtualization is performed, and the overheads associated with it.

Hardware-assisted virtualization follows in essence the trap-and-emulate model [PG74].

Accordingly, a software layer called the hypervisor or virtual machine monitor (VMM),

which runs in the privileged host mode, configures and launches VMs that are exe-

cuted in guest mode. In this mode, once the CPU encounters a sensitive event, it

forces an exit back to host mode, in which the hypervisor handles the event and re-

sumes guest execution. These exits and entries are the primary cause of virtualization

overhead [AA06, BYDD+10, LBYG11, RS07].

The overheads associated with the exits and entries are often substantial as many

sensitive events must be trapped to encapsulate a VM correctly. The encapsulation is

required to prevent it from accessing certain hardware resources and to multiplex hard-

ware among the different VMs and the hypervisor. New hardware enables the hypervisor

to offload some of the hardware multiplexing, and accordingly to reduce the number of

trapped events [PCI], yet such offloading may introduce other overheads [WZW+11].

Additional overheads may occur in virtualization environments when the system

is over-provisioned. One of the most appealing uses of virtualization is consolidation—

executing multiple VMs on a single physical machine, which can produce cost sav-

ings [MP07]. The physical machine resources—CPUs, memory and I/O devices—are

split between the VMs. For efficient utilization, the hardware resources are usually

allocated dynamically. More often than not, this allocation is suboptimal and results in

overheads due to inferior CPU scheduling [SK11], physical memory allocation [VMw10a]

and I/O scheduling [OCR08].

8

1.1.2 High-Level Perspective

The architecture perspective may not fully explain the performance degradation. As

an OS also allocates resources to processes and effectively multiplexes the hardware

between them, one may wonder why these tasks are much harder for a hypervisor and

may degrade performance severely.

Actually, while the interaction between the hypervisor and the VM may appear to be

similar to the interaction between the OS and processes, they are differ fundamentally.

Unlike a process, the VM does not interact with the hypervisor explicitly through

well-defined APIs. In fact, the VM is unaware of the hypervisor’s existence and of any

hardware multiplexing that might take place.

Thus, the hypervisor experiences a semantic gap, as it has little knowledge about the

high-level behavior and architecture of the VM [CN01]. Consequently, it may inefficiently

execute VM operations, such as sending a network packet [MCZ06, GND+07], or may

inaccurately allocate resources to the VM, for instance by allocating too little physical

memory.

The VM also experiences a lack of transparency due to hardware abstractions. In

virtualization, while the VM expects to access the physical hardware, it often accesses an

abstraction of it instead. This abstraction is required to allow the VM to execute oblivious

to any hardware multiplexing. These abstractions introduce inefficiencies due to the

lack of transparency in lower layers—the hypervisor and the physical hardware [PS75].

Inefficiencies may be caused when the VM is unaware that a hardware resource, such as

physical memory, has been exhausted, or that a certain operation, such as an emulated

device register read, is much more expensive than in bare-metal.

The semantic gap and the lack of transparency are most commonly addressed by

paravirtualization, in which the VM is modified to use a software interface that is different

than that of the underlying physical hardware, and in fact uses it to communicate with the

hypervisor [BDF+03]. Yet, paravirtualization and similar approaches [LUC+05, LD11]

require modification of the VM OS or access to its source code. Another common

approach is to allow the VM to access the hardware directly, yet this approach is not

applicable for all hardware devices [YBYW08]. Paravirtualization is further discussed

in Section 1.2.1.

Several studies have suggested methods for improving resource allocation and schedul-

ing by bridging the semantic gap without modifying the VM OS and without access to

its source code. One method is to monitor the sensitive events trapped by the hypervisor

and the VM state during exits [DKC+02, JADAD06b, SBM09]. Another method is to

monitor hardware performance counters [JADAD06b, JADAD08, SGD05, BXL10].

In our work, we focus on the complementary challenge—addressing the lack of

transparency in VMs for various workloads: I/O intensive, CPU intensive and memory

intensive. We now review the existing techniques for achieving transparency.

9

1.2 Achieving Transparency in VM

Several efforts have been made to achieve high hardware transparency in VMs. The

proposed methods can be divided into two categories: cooperative methods, which require

some level of cooperation of the VM or access to its source code; and non-cooperative

methods applicable to every VM, without the need for its cooperation.

1.2.1 Cooperative Transparency

Virtual	
 Machine	

Hypervisor	

Hardware	

Paravirtual
Virtual	
 Machine	

Hypervisor	

Hardware	

Guest

Host

Virtual	
 Machine	

In-­‐place	
 VMM	

Hypervisor	

Hardware	

(a)	
 (c)	
 (b)	

Figure 1.1: Cooperative transparency methods compared to (a) full-virtualization with-
out cooperation; (b) paravirtualization using a ported VM OS; and (c) pre-virtualization,
in which an in-place VMM is set in the guest context, when source code is available.

Transparency can be quite easily achieved through cooperation, as the VM is aware

it runs in a virtualized environment and behaves accordingly. Cooperative virtualization

is very appealing, as it can easily bridge the semantic gap between the hypervisor and

the VM, and achieve higher transparency (see Section 1.1.2).

As the requirements for cooperative virtualization methods cannot always be fulfilled,

our work focuses on non-cooperative transparency. Nonetheless, we acknowledge the

advantages of cooperative virtualization, and consider the performance cooperative VMs

achieve to be the attainable optimum. Following, we describe two common methods of

non-cooperative transparency, their advantages and their drawbacks.

Paravirtualization Paravirtualization is a common technique used for delivering

high performance in virtualized environments by restoring transparency through explicit

cooperation between the VM and the hypervisor [Rus08]. To cooperate, the OS running

in the VM communicates with the hypervisor using hypercalls, calls to the hypervisor for

particular service requests, and asynchronous communication channels such as circular

buffers [LA09].

10

This mechanism is illustrated in Figure 1.1(b), where the paravirtual VM uses explicit

communication channels to efficiently communicate with the hypervisor. Paravirtualiza-

tion can be seen in contrast to the basic non-cooperative virtualization illustrated in

Figure 1.1(a), where the guest does communicate with the hypervisor .

While paravirtualization has been demonstrated to improve virtualization perfor-

mance, it has several major drawbacks. Most of the drawbacks stem from the lack of an

agreed standard for paravirtualization, which requires an OS running in the VM to be

ported according to the specific hypervisor’s para-API. Consequently, cloud environment

clients often suffer from the “vendor lock-in” problem—increased complexity and cost

of migrating the VM from one cloud provider to another [BB11]. In addition, not

only is it challenging to develop support for paravirtualization in proprietary guest

OSes [Hab08], but paravirtual ports of open-source OSes might also be incomplete or not

fully supported by the hypervisor vendors. Even when paravirtualization is supported,

administrators occasionally fail to install the paravirtualization drivers successfully.

Other limitations of paravirtualization are caused by the unwillingness of OS devel-

opers to include hooks for paravirtualization in sensitive OS subsystems, for instance

the memory management subsystem or the process scheduler. Hypervisor vendors have

developed paravirtualization techniques that overcome the lack of hooks, yet those

are imperfect— paravirtual memory balloons, for example, can be used for memory

overcommitment, yet can cause VM processes to be killed by the VM out-of-memory

killer.

Pre-virtualization. LeVasseur et al.[LUC+05] presented a method for modifying the

guest code using compiler based rewriting techniques to migrate an operating system

code base to become a paravirtualized guest. An in-place VMM that efficiently handles

accesses to the hardware is set in the guest context. This method is illustrated in

Figure 1.1(c). The in-place VMM is aware of the hypervisor and communicates with it

explicitly, just like a paravirtual guest.

While pre-virtualization can loosen the strong VM and hypervisor ties that par-

avirtualization introduces, it still requires access to the source code of the VM OS.

Consequently, this method is inapplicable to proprietary OSes.

1.2.2 Non-Cooperative Transparency

In this section we summarize the main methods that hypervisors can use to achieve

transparency while remaining oblivious to the guest.

Guest patching. Patching the guest can makes it possible for the hypervisor to

modify the VM code to use the hardware more efficiently and be aware of resource

constraints. A major advantage of this method is that it is applicable to proprietary

OSes—patching can be done at the instruction level. The hypervisor can deduce, upon

11

Virtual	

Machine	

Hypervisor	

Hardware	

(d)	

In-­‐place	

VMM	

(a)	

Virtual	

Machine	

Hypervisor	

Hardware	

Virtual	

Machine	

Hypervisor	

Hardware	

Virtual	

Machine	

Hypervisor	

Hardware	

(c)	
 (b)	

Guest

Host

M
U
X	

Figure 1.2: Non-cooperative transparency methods: (a) guest patching—in-place VMM
is patched into the guest; (b) direct hardware access—the VM accesses the hardware
directly without the hypervisor intervention; (c) selective switching between virtual-
ization mechanisms—the hypervisor configures dynamically whether the hardware is
used directly by the VM or emulated by the hypervisor; (d) emulation variation—the
hardware emulation overrides the virtual device protocol while maintaining correctness.

an exit triggered by a sensitive instruction, that this instruction can be performed more

efficiently by another piece of code. The hypervisor can then patch the VM, replacing

its code with one which runs better in virtualized environment. Patching can also

be performed by implanting routines in the guest context, and calling them from the

patched code. Guest patching was used for efficient emulation of the Task Priority

Register (TPR) in the KVM hypervisor [Lig]. In another work, Betak et al. [BDA]

suggested using the guest patching method for memory mapped I/O (MMIO) access by

patching the page-fault exception handler. In fact, as illustrated in Figure 1.2(b), the

hypervisor sets an in-place VMM in the guest context.

Patching the guest appears to be a very attractive method, as it does not require the

VM to collaborate knowingly. Direct hardware access, however, is currently applicable

only at the instruction level, without access to the VM’s OS source code. This is due to

the challenge presented by deducing the semantics of big code segments and patching

them accordingly. Moreover, verification of the patched guest code, i.e., ensuring that

patching the VM does not introduce new bugs, is also challenging because the patched

code can cause exceptions that otherwise would not occur, possibly “surprising” the

exception handlers and causing the VM to crash.

Direct hardware access. Allowing the VM to directly access the hardware can

eliminate most of the lost transparency of the virtualization and deliver high perfor-

mance [YBYW08]. This method has been supported by the recent introduction of

12

self-virtualizing I/O devices that allow a single physical device to be assigned to mul-

tiple VMs. Multiplexing of these devices is achieved in hardware without requiring

the hypervisor to intervene in each I/O transaction. Guest isolation is maintained as

self-virtualizing I/O devices expose multiple virtual functions, which can be assigned to

different VMs, and a privileged physical function for the use of the hypervisor.

However, direct device assignment has several major drawbacks. First, memory

cannot be overcommited, since direct memory accesses (DMA) transactions can be

performed at any time from any address of the guest physical memory [ABYTS11].

Consequently, if the memory is unavailable (i.e., swapped out), the DMA transaction,

which is non-restartable, will fail.

Second, interrupts are still delivered to the hypervisor which redirects them to the VM.

This indirect routing is still required as the current x86 virtualization architecture does

not allow selective interrupts to be forwarded to the guest. Consequently, hypervisors

configure the CPU to trigger an exit on all interrupts and forward the VM interrupts

selectively. This indirection induces overhead that can cause the CPU load to be twice

that of bare-metal [DYR08].

Last, only certain I/O devices—mainly NICs and HBAs—can currently be mul-

tiplexed. Ongoing efforts to enable the multiplexing of additional devices, such as

I/O memory management units (IOMMU), are still incomplete and require frequent

hypervisor intervention [AMD09]. In addition, some resources can only be partitioned

in certain granularity: for instance memory can only be partitioned in page granularity

only [Int10].

Selectively switching between virtualization mechanisms. In certain cases,

the hypervisor can use either hardware-assisted or software mechanisms for hardware

virtualization. While hardware-assisted mechanisms usually perform better software

based virtualization mechanisms outperform them in certain cases.

One such case is the code execution itself. While hardware-assisted virtualization is

usually faster than binary translation, binary translation executes faster sequences of

sensitive instructions that need to be emulated. The VMware hypervisor leverages this

fact to improve the performance by dynamically switching between the two mechanisms,

which increases the speed of kernel compilation by 12% [AMRS11].

Another case is the VM physical memory indirection, from guest physical address-

space (GPA) to the host physical address-space (HPA). This indirection can be performed

by either software, manipulating the guest shadow page-tables (SPT) used for the actual

physical address resolution, or by hardware that architecturally maps the GPA to HPA

using nested page tables (NPT). While using NPT usually leads to better performance

than using SPT, SPT outperforms NPT when swapping is infrequent. Consequently,

selective switching between SPT and NPT was shown to improve performance by up to

34% [WZW+11].

13

Varying external events. While varying external events may seem to contradict

our goal of higher hardware transparency, it can be used to achieve it and improve

performance.

One common technique is to vary the interrupt coalescing settings of the VM.

Interrupt coalescing is a common technique in which interrupts are held back in order

to reduce their number and their load. While processes are oblivious of interrupts

coalescing, the VM OS configures the virtual I/O device and does not its interrupt

coalescing settings to be overriden. Nonetheless, the configuration of interrupt coalescing

by the VM may be suboptimal as the cost of interrupt delivery to the VM is greater: the

injection itself imposes an additional overhead. Overriding the guest configuration and

setting a dynamic degree of interrupt coalescing has been proven to improve performance

notably [AGM11]. Using this method, the VMware hypervisor coalesces virtual SCSI

hardware controller interrupts, improving VMs performance by up to 18%.

Semantic awareness. For the hypervisor to take proper actions, it should be aware

of the VM’s semantics. However, in many cases, the hypervisor lacks critical knowledge,

and therefore makes suboptimal decisions. For instance, if the hypervisor is unaware

that a certain virtual CPU (VCPU) holds a kernel lock, it may preempt that VCPU,

thereby causing other VCPUs of the VM to stall. This scenario, known as the “lock

holder preemption” problem, can degrade performance considerably if it is not detected

by the hypervisor [Fri08].

To avoid such scenarios, hypervisors should have semantics awareness of the VM’s

actions [NHB08]. The “lock holder preemption” problem, for example, can be mitigated

by preferring to preempt VCPUs when they run in user space, as OSes release kernel

locks before leaving the kernel. The hypervisor can deduce whether the VCPU runs

in kernel space or user space according to the VCPU architectural state, which is

OS-agnostic and available to the hypervisor.

However, deducing the VM semantic from the VCPU architectural state is not

always a simple task. In some cases, paravirtualization techniques require internal

knowledge of OS data structures [ADAD01], and thereby are tightly coupled with a

certain VM OS.

Arguably, bridging the semantic gap with the help of hardware performance monitors

and by tracing intercepted events has already gone a long way. Using this knowledge,

hypervisors can improve VM performance considerably, for instance by well-informed

physical resource provisioning [LH10, JADAD06b, KLJ+11].

1.3 Research Goal

Our research goal is to improve the transparency in common virtualization environments

and to bridge the semantic gap even further, without the need for VM cooperation.

14

While common wisdom and published results suggest that cooperative VMs would

significantly outperform non-cooperative VMs [BDF+03, MCZ06], we believe it does

not have to be this way. We suggest that by applying and extending the methods

presented in Section 1.2.2, we can achieve performance similar to that of cooperative

guests. Doing so would make it possible to execute unmodified OSes in guests, improving

the performance of proprietary OSes, easing the deployment of virtualization systems

for cloud computing platforms, and enabling transparent migration of VMs between

different hypervisors.

In our work we address three of the most urgent issues that virtualization presents.

In Chapter 2 we focus on the emulation problem, and specifically on IOMMU emulation.

In most OSes today no paravirtual driver exists for paravirtual IOMMU. We show

how emulation using a sidecore can eliminate exits and greatly improve performance.

In chapter 3 we study the negative impact of current interrupt handling schemes

on the throughput of directly assigned I/O devices. We present novel techniques

for eliminating the exits incurred by interrupts, thus allowing VMs to achieve bare-

metal performance for I/O intensive workloads. Finally, in Chapter 4 we look into

uncooperative memory overcommitment, investigate the sources of overheads caused by

uncooperative swapping, and propose techniques to address these overheads. We show

that our enhanced uncooperative swapping mechanism for memory overcommitment

can often attain performance similar to that of a paravirtual memory balloon and can

be used to improve the performance of memory balloons even further.

15

16

Chapter 2

vIOMMU: Efficient IOMMU

Emulation

2.1 Abstract

1

Direct device assignment, where a guest virtual machine directly interacts with an

I/O device without host intervention, is appealing, because it allows an unmodified

(non-hypervisor-aware) guest to achieve near-native performance. But device assignment

for unmodified guests suffers from two serious deficiencies: (1) it requires pinning all of

the guest’s pages, thereby disallowing memory overcommitment, and (2) it exposes the

guest’s memory to buggy device drivers.

We solve these problems by designing, implementing, and exposing an emulated

IOMMU (vIOMMU) to the unmodified guest. We employ two novel optimizations to

make vIOMMU perform well: (1) waiting a few milliseconds before tearing down an

IOMMU mapping in the hope it will be immediately reused (“optimistic teardown”),

and (2) running the vIOMMU on a sidecore, and thereby enabling for the first time

the use of a sidecore by unmodified guests. Both optimizations are highly effective in

isolation. The former allows bare-metal to achieve 100% of a 10Gbps line rate. The

combination of the two allows an unmodified guest to do the same.

2.2 Introduction

I/O activity is a dominant factor in the performance of virtualized environments [MST+05,

SVL01], motivating direct device assignment whereby a guest virtual machine (VM)

sees a real device and interacts with it directly. As direct access does away with the

software intermediary that other I/O virtualization approaches require, it can provide

much better performance than the alternative I/O virtualization approaches. This

1 Joint work with Muli Ben-Yehuda (IBM), Dan Tsafrir (CS, Technion), Assaf Schuster (CS,
Technion). A paper regarding this part of the work was presented in USENIX ATC 2011.

17

increased performance comes at a cost of complicating virtualization use-cases where the

hypervisor interposes on guest I/O, such as live migration [KS08, ZCD08]. Nonetheless,

the importance of increased I/O performance cannot be overstated, as it makes virtual-

ization applicable to common I/O-intensive workloads that would otherwise experience

unacceptable performance degradation [Liu10, LHAP06, RS07, WSC+07, YBYW08].

2.2.1 Motivation

Despite its advantages, direct device assignment suffers from at least three serious

deficiencies that limit its applicability. First, it requires the entire memory of the

unmodified guest to be pinned to the host physical memory. This is so because

I/O devices typically access the memory by triggering DMA (direct memory access)

transactions, and those can potentially target any location of the physical memory;

importantly, unlike regular memory accesses, computer systems are technically unable

to gracefully tolerate DMA page misses, reacting to them by either ignoring the

problem, by restarting the offending domain, or by panicking. The hypervisor cannot

tell which pages are designated by the unmodified guest for DMA transactions, and

so, to avoid such unwarranted behavior, it must pin all the guest’s pages to physical

memory. This necessity negates a primary reason for using virtualization—server

consolidation—because it hinders the ability of the hypervisor to perform memory

overcommitment, whereas memory is the main limiting factor for server consolidation

[Wal02, GLV+10, WTLS+09a]

The second deficiency of direct device assignment is that the unmodified guest is

unable to utilize the IOMMU (I/O memory management unit) so as to protect itself

against bugs in the corresponding drivers. It is well-known that device drivers constitute

the most dominant source of OS (operating system) bugs [BBC+06, HBG+07, LUSG04,

SBL05, WRW+08]. Notably, the devices’ ability to do DMA to arbitrary physical

memory locations is a main reason why such bugs are detrimental. IOMMUs were

introduced by all major chip manufacturers to solve exactly this problem. They allow

the OS to restrict DMA transactions to specific memory locations by having devices

work with IOVAs (I/O virtual addresses) instead of physical addresses, such that every

IOVA is validated by the IOMMU hardware circuitry upon each DMA transaction

and is then redirected to a physical address according to the IOMMU mappings. The

hypervisor cannot allow guests to program the IOMMU directly (otherwise every guest

would be able to access the entire physical memory), and so all the related work that

provided ways for guests to enjoy the IOMMU functionality [BYMX+06, BYXO+07,

LUSG04, SLQP07, WRC08, YBYW10] involved paravirtualization. Namely, the guest’s

OS was modified to explicitly inform the hypervisor regarding the DMA mappings it

requires. Clearly, such an approach is inapplicable to unmodified (fully virtualized)

guests.

A third deficiency of direct device assignment is that, in general, it prevents the

18

unmodified guest from taking advantage of the IOMMU remapping capabilities, which

are useful in contexts other than just defending against faulty device drivers. One

such context is legacy devices that do not support memory addresses wider than

32bit, an issue that can be easily resolved by programming the IOMMU to map the

relevant 32bit-addresses to higher memory locations [Int11]. Another such context

is “nested virtualization”, which allows one hypervisor to run other hypervisors as

guests [BYDD+10] and, hence, mandates granting a nested hypervisor the ability

to program the IOMMU to protect its guests from one another (when those utilize

directly-assigned devices).

2.2.2 Contributions and Preview of Results

IOMMU Emulation The root cause of all of the above limitations is the fact that

current hypervisors do not provide unmodified guests with an emulated IOMMU. Our

initial contribution is therefore to implement and evaluate such an emulation, for

the first time. We do so within KVM on Intel x86, following the proposal made by

Intel [AJM+06]. We denote the emulation layer “vIOMMU”. And we note in passing

that we are aware of a similar effort that is currently being done for AMD processors

[Mun10].

By emulating the IOMMU, our patched hypervisor intercepts, monitors, and acts

upon DMA remapping operations. Knowing which of the unmodified guest’s memory

pages serve as DMA targets allows it to: (1) pin/unpin the corresponding host physical

pages, and only these pages, thereby enabling memory overcommitment; (2) program

the physical IOMMU to enable device access to the said physical pages, and only to

these pages, thereby enabling the guest to protect its memory image against faulty

drivers; and (3) redirect DMA transactions through the physical IOMMU according the

unmodified guest’s wishes, thereby retrieving the indirection level needed to support

legacy 32bit devices, certain user-mode DMA usage models, and nested virtualization.

(See Section 2.3 for details.)

Utilizing the IOMMU without relaxing somewhat the protection it offers is costly,

even for a bare metal (unvirtualized) OS. Our experiments using Netperf [Jon95] show

that bare metal Linux 2.6.35 achieves only 43% of the line-rate of a 10Gbps NIC when

the IOMMU is used with strict protection; the corresponding unmodified guest achieves

less than one fourth of that with the vIOMMU.

Optimistic Teardown The default mode of Linux, however, relaxes IOMMU protec-

tion. It does so by batching the invalidation of stale IOTLB entries and by collectively

purging them from the IOTLB every 10ms (IOTLB is the I/O translation look-aside

buffer within the IOMMU). The protection is relaxed, because, during this short interval,

a faulty device might successfully perform a DMA transaction through a stale entry.

Nonetheless, for bare metal, the resulting improvement is dramatic, transforming the

19

aforesaid 43% throughput to 91% and arguably justifying the risk. Alas, the corre-

sponding unmodified guest does not experience such an improvement, as its throughput

remains more or less the same when the protection is relaxed.

To improve the performance of the vIOMMU, our second contribution is investigating

a set of optimizations that exercise the protection/performance tradeoff in various ways

(see Section 2.4 for details). We find that the “optimistic teardown” optimization is the

most effective.

While the default mode of Linux removes stale IOTLB entries en masse at 10ms

intervals, it nevertheless tears down individual invalidated IOVA translations with no

delay, immediately removing them from the IOMMU page table. The rationale of

optimistic teardown rests on the following observation. If a stale translation exists

for a short while in the IOTLB anyway, we might as well keep it alive (for the same

period of time) within the OS mapping data structure, optimistically expecting that

it will get reused (remapped) during that short time interval. As significant temporal

reuse of IOVA mappings has been reported [ABYY10, WRC08], one can be hopeful

that the newly proposed optimization would work. Importantly, for each reused trans-

lation, optimistic teardown would avoid the overhead of (1) tearing the translation

down from the IOMMU page table, (2) invalidating it in the IOTLB, (3) immediately

reconstructing it, and (4) reinserting it back to the IOTLB; all of which are costly

operations, as each IOTLB modification involves updating uncacheable memory and

teardown/reconstruction involves nontrivial logic and several memory accesses.

Optimistic teardown is remarkably successful, pushing the throughput of bare metal

from 91% to 100% (and reducing its CPU consumption from 100% to 60%). The

improvement is more pronounced for an unmodified guest with vIOMMU: from 11%

throughput to 82%.

Sidecore Emulation To further improve the performance of the unmodified guest,

we implement the vIOMMU functionality on a auxiliary sidecore. Traditional “samecore”

emulation of hardware devices (where hypervisor invocations occur on the guest’s

core) has been extensively studied in the literature [SVL01, Bel05, KKL+07, BDF+03].

Likewise, offloading of computation to a sidecore for speeding up I/O in a paravirtualized

system has been explored as well [GKR+07, KRSG07, LA09]. But in this paper, for the

first time, we present “sidecore emulation”, which combines the best of both approaches.

Specifically, sidecore emulation maintains the exact same hardware interface between

the guest and the sidecore as exists in a non-virtualized setting between a bare metal

OS and the real hardware device. Consequently, sidecore emulation is able to offload

the computation while requiring no guest modifications. (See details in Section 2.5.)

By running the vIOMMU on a sidecore, we triple the throughput of the strict

unmodified guest, quintuple its throughput if its protection is relaxed, and achieve 100%

of the line-rate if employing optimistic teardown. The results mentioned so far are

summarized in Table 2.1.

20

setting strict relaxed optimistic
(default) teardown

samecore 10% 11% 82%
sidecore 30% 49% 100%

bare metal 43% 91% 100%

Table 2.1: Summary of preview of results (percent of line-rate throughput on 10GbE).

Roadmap We describe: our “samecore” vIOMMU design (§2.3); the set of opti-

mizations we explore and the associated performance/protection tradeoffs (§2.4); our

“sidecore” vIOMMU design (§2.5); how to reason about risk and protection (§2.5.1);

evaluation of the performance of our proposals using micro and macro benchmarks

(§2.6); the related work (§2.7); and our conclusions (§2.8).

2.3 Samecore IOMMU Emulation

I/O device emulation for virtualized guests is usually implemented by trapping guest

accesses to device registers and emulating the appropriate behavior [SVL01, AA06,

Bel05]. Correspondingly, in this section, we present the rudiments of emulating an

IOMMU. We emulate Intel’s VT-d IOMMU [Int11] as it is commonly available and

as most x86 OSes and hypervisors have drivers for it. Conveniently, Intel’s VT-d

specification [Int11] proposes how to emulate an IOMMU. We largely follow their

suggestions.

The emulated guest BIOS uses its ACPI (Advanced Configuration and Power

Interface) tables to report to the guest that the (virtual) hardware includes Intel’s

IOMMU. Recognizing that the hardware supports an IOMMU, the guest will ensure

that any DMA buffer in use will first be mapped in the IOMMU for DMA [BYMX+06].

The emulated IOMMU registers reside in memory pages that the hypervisor marks

as “not present”, causing any guest access to them to trap to the hypervisor. The

hypervisor monitors the emulated registers and configures the platform’s physical

IOMMU accordingly. The hypervisor further monitors changes in related data structures

such as the IOMMU page tables in guest memory.

Figure 2.1 illustrates the flow of a single DMA transaction in an emulated environ-

ment: a guest I/O device calls the IOMMU mapping layer when it wishes to map an

I/O buffer (1); the layer accordingly allocates an IOVA region and, within the emulated

IOMMU, maps the corresponding page table entries (PTEs) to point to the GPA (Guest

Physical Address) given by the I/O device driver (2); the layer performs an explicit

mapping invalidation of these PTEs (3), thereby triggering a write access to a certain

IOMMU register, which traps to the hypervisor; the hypervisor then updates the status

of the emulated IOMMU registers (4), reads the IOVA-to-GPA mapping from the up-

dated emulated IOMMU PTEs (5), pins the relevant page to the host physical memory

(not shown), and generates physical IOMMU PTEs to perform IOVA-to-HPA (Host

21

IOMMU

I/O Device

Memory

I/O Device
Driver

IOMMU
Mapping

Layer

Guest
Domain

Emulation
Domain

(Same-Core)

System
Domain

IOMMU
Emulation

(2) Update
Mappings Emul.

PTE

Physical
PTE

(6) Update
Mappings

I/O
Buffer

(9) IOVA
Access

(7) IOTLB

Invalidation

Emul.
IOMMU
Regs.

(4) Maintain

(3) IOTLB
Invalidation

(1)
Map / Unmap

 I/O Buffer

(11)
Physical
Access

(8) Transaction
to IOVA

(10)
Translate

(5) R
ead

Figure 2.1: IOMMU emulation architecture (samecore).

22

Physical Address) mapping (6); when the physical hardware requires it, the hypervisor

also performs physical IOTLB invalidation (7); the guest is then resumed, and the I/O

device driver initiates the DMA transaction, delivering the IOVA as the destination

address to the device (8); the device performs memory access to the IOVA (9), which is

appropriately redirected by the physical IOMMU (10-11); the guest OS can then unmap

the IOVA, triggering a flow similar to the mapping flow except that the hypervisor

unmaps the I/O buffer and unpins its page-frames.

2.4 Optimizing IOMMU Mapping Strategies

Operating systems can employ multiple mapping strategies when establishing and

tearing down IOMMU mappings. Different mapping strategies tradeoff performance

vs. memory consumption vs. protection [BYXO+07, WRC08, YBYW10]. Taking Linux

as an example, the default mapping strategy of the Intel VT-d IOMMU driver is to

defer and batch IOTLB invalidations, thereby improving performance at the expense of

reduced protection from errant DMAs. Batching IOTLB invalidations helps performance

because IOTLB invalidations are expensive. Unlike an MMU TLB, which resides on a

CPU core, an IOMMU and its IOTLB usually reside away from the CPU on the PCIe

bus.

An alternative mapping strategy is the strict mapping strategy. In the strict strategy

Linux’s IOMMU mapping layer executes IOTLB invalidations as soon as device drivers

unmap their I/O buffers and waits for the invalidations to complete before continuing.

In this section we investigate the different tradeoffs possible on bare metal and in

a virtualized system employing an emulated IOMMU, where both the guest and the

host may employ different mapping strategies. We discuss different IOMMU mapping

performance optimizations and their effect on system safety, starting with the least

dangerous strategy and ending with the best performing—but also most dangerous—

strategy.

2.4.1 Approximate Shared Mappings

Establishing a new mapping in the IOMMU translation table and later tearing it

down are inherently costly operations. Shared mappings can alleviate some of the

costs [WRC08]. We can reuse a mapping when another valid mapping which points to

the same physical page frame already exists. Using the same mapping for two mapping

requests saves the time required for the setup and eventual teardown of a new mapping.

Willman, Rixner and Cox propose a precise lookup method for an existing mapping.

Their approach relies on an inverted data structure translating from physical address

to IOVA for all mapped pages [WRC08]. This approach is problematic with modern

IOMMUs that can map all of physical memory and employ a separate I/O virtual

address space for each protection context (usually for each I/O device). Maintaining a

23

direct-map data structure to enable precise lookups is impractical for such IOMMUs as

it would require too much memory. We expect that using a smaller but more complex

data structure, such as a red-black tree, will incur prohibitively high overhead [Pfa04].

To avoid the overhead associated with complex data-structures, we propose ap-

proximate shared mappings. Instead of maintaining a precise inverted data structure,

we perform reverse lookups using heuristics which may fail to find a translation from

physical address to IOVA, even though there exists a mapping of that physical address.

Our implementation of approximate shared mappings used a software LRU cache, which

requires temporal locality in I/O buffers allocation in order to perform well, in addition

to spatial locality of the I/O buffers. Many applications experience such temporal

locality [WRC08].

2.4.2 Asynchronous Invalidations

IOTLB invalidation is a lengthy process that on bare metal takes over 40% of overall

unmapping process. Asynchronous invalidation is an invalidation scheme targeted at

alleviating the cost of the lengthy IOTLB invalidation process by a minor relaxation

of protection. The default IOTLB invalidation scheme is synchronous: the OS writes

an invalidation request to the IOMMU’s invalidation register or (when the hardware

supports it) to an invalidation queue [Int11] and blocks the execution thread until the

IOMMU completes the invalidation. In asynchronous invalidation, the OS does not wait

for the invalidation to complete before continuing. Doing so on bare metal can save the

few hundred cycles it takes the IOMMU to write the invalidation completion message

back to memory after the invalidation is done.

Asynchronous invalidation enables multiple in-flight invalidations when the hardware

supports an invalidation queue. However, to maintain correctness, asynchronous invali-

dation must not permit an IOVA range which is being invalidated to be mapped again

to a different physical address until the invalidation process is completed. Unfortunately

there is no practical way to ensure with Linux that the page allocator will not reuse the

physical memory backing those IOVAs while the invalidation is outstanding [YBYW10].

On bare metal asynchronous invalidation relaxes protection only slightly, since the

IOMMU hardware performs the invalidation process in silicon, taking only hundreds of

cycles to complete. In our experiments with asynchronous invalidation, the invalidation

queue never held more than two pending invalidations at the same time.

2.4.3 Deferred Invalidation

Deferring IOTLB invalidations, as currently implemented by Linux, makes it possible

to aggregate IOTLB invalidations together and possibly coalesce multiple invalidation

requests so that they will be invalidated in a single request, if the hardware supports it.

Instead of the OS invalidating each translation entry as it is torn down, the OS collects

multiple invalidations in a queue, which it then flushes periodically. The current Linux

24

implementation coalesces up to 250 invalidations for periods of no longer than 10ms.

Holding back the invalidations makes the deferred method less secure than the

asynchronous method, where the “window of vulnerability” for an errant DMA is only

hundreds of cycles. But deferred invalidation reduces the number of software/hardware

interactions, since a whole batch of invalidations is executed at once. This savings is

more pronounced when the hardware is emulated by software, in which case deferred

invalidation can save multiple, expensive guest/host interactions.

2.4.4 Optimistic Teardown

Reusing IOVA translations is key to IOMMU performance [BYXO+07, WRC08, YBYW10,

ABYY10]. Reusing a translation avoids the overhead of (1) tearing a translation down

from the IOMMU page table, (2) invalidating it from the IOTLB, (3) immediately

reconstructing it in the page table, and (4) reinserting it back to the IOTLB; all of

which are costly operations, as each IOTLB modification involves updating uncacheable

memory and teardown/reconstruction involves nontrivial logic and several memory

accesses.

Even when approximate shared mapping is used, the opportunities to reuse IOVA

translations are limited. The default Linux deferred invalidation scheme removes stale

IOTLB entries en masse at 10ms intervals, but nevertheless tears down individual

unmapped IOVA translations with no delay, immediately removing them from the

IOMMU page tables.

The rationale of optimistic teardown rests on the following observation. If a stale

translation exists for a short while in the IOTLB anyway, we might as well keep it alive

(for the same period of time) within the IOMMU page table, optimistically expecting

that it will get reused (remapped) during that short time interval. As significant

temporal reuse of IOVA mappings has been reported [WRC08, ABYY10, YBYW10],

one can be hopeful that the newly proposed optimization would work.

We thus developed an optimistic teardown mapping strategy, which keeps mappings

around even after an unmapping request for them has been received. Unmapping

operations of I/O buffers are deferred and executed at a later, configurable time. If an

additional mapping request of the same physical memory page arrives to the IOMMU

mapping layer while a mapping already exists for that page, the old mapping is reused. If

an old mapping is not used within the pre-defined time limit, it is unmapped completely

and the corresponding IOMMU PTEs are invalidated, limiting the overall window

of vulnerability for an errant DMA to the pre-defined time limit. We determined

experimentally that on our system a modest limit of ten milliseconds is enough to

achieve a 92% hit rate.

We keep track of all cached mappings in the same software LRU cache, regardless

of how many times each mapping is shared. Mappings which are not currently in use

are also kept in a deferred-unmappings first-in first-out (FIFO) queue with a fixed size

25

limit. The queue size and the residency constraints are checked whenever the queue is

accessed, and also periodically. Invalidations are performed when mappings are removed

from the queue.

2.5 Sidecore IOMMU Emulation

Samecore emulation uses the classical approach of trapping device register access and

switching to the hypervisor for handling. We now present an alternative, novel approach

for device emulation which uses a second core to handle device register accesses, thus

avoiding expensive VM-exits. We call this sidecore emulation. While the discussion

below focuses on Intel’s VT-d, our approach is generic and can be applied to most other

IOMMUs and I/O devices.

Samecore hardware emulation suffers from an inherent limitation. Each read or

write access to the hardware registers requires a VM-transition to the hypervisor, which

then emulates the hardware behavior. VM-transitions are known to be expensive, partly

due to cache pollution [AA06, BYDD+10]. This serial workflow prevents the leveraging

of potentially available resources that could be used to improve performance [FSS03,

AFT+00].

Offloading computation to a sidecore for speeding up I/O for modified (paravirtual-

ized) guests has been explored by Gavrilovska et al. [GKR+07], Kumar et al. [KRSG07],

and Liu and Abali [LA09]. Sidecore emulation offloads device emulation to a sidecore.

In contrast with previous paravirtualized sidecore approaches, which require guest

modifications, sidecore emulation maintains the same hardware interface between the

guest and the sidecore as between a bare-metal OS and the real hardware device, and

thus requires no guest modifications. As we show in Section 2.6, sidecore emulation on

its own can achieve 69% of bare metal performance—for unmodified guests and without

any protection relaxation.

In general, hardware emulation by a sidecore follows the same principles as samecore

emulation. The guest programs the device; the hypervisor detects that the guest has

accessed the device, decodes the semantics of the access, and emulates the hardware

behavior. But sidecore emulation differs from samecore emulation in two fundamental

aspects. First, there are no expensive traps from the guest to the hypervisor when the

guest accesses device registers. Instead, the device register memory areas are shared

between the guest and the hypervisor, and the hypervisor polls the emulated control

registers for updates. Second, the guest code and the hypervisor code run on different

cores, leading to reduced cache pollution and improved utilization of each core’s exclusive

caches.

Efficient hardware emulation by a sidecore is dependent on the interface between

the I/O device and the guest OS, since the sidecore polls memory regions instead of

receiving notifications on discrete register access events. In general, efficient sidecore

emulation requires that the physical hardware have the following (commonly found)

26

properties.

Synchronous Register Write Protocol Sidecore emulation relies on a syn-

chronous protocol between the device driver and the device for a single register’s

updates, in the sense that the device driver expects for some indication from the hard-

ware before writing to a register a second time. Such a protocol ensures that the sidecore

has time to process the first write before a second write to the same register overwrites

the first write’s contents.

A Single Register Holds Only Read-Only or Write Fields Registers which

hold both read-only and write fields are challenging for a sidecore to handle, since

the sidecore has no efficient way of ensuring the guest device drier would not change

read-only fields.

Loose Response Time Requirements Sidecore emulation is likely to be slower

than physical hardware. If the device has strict specifications of the “wall time” device

operations take (e.g., “this operation completes within 3ns”) or the device driver makes

other strong timing assumptions which hold for real hardware but not for emulated

hardware, then the device driver might assume that the hardware is malfunctioning when

operations take longer than expected. This property must hold for device emulation in

general.

Explicit Update of Memory-Resident Data Structures Since the sidecore

cannot poll large memory regions efficiently, update to its memory-resident data struc-

tures should be explicit, by requiring the device-driver to perform a write-access to the

device control registers indicating exactly which data structure it updated.

An additional, optional property that can boost sidecore emulation performance is

a limited number of control registers. Since the sidecore needs to sample the control

registers of the emulated hardware, a large number of registers would result in long

latency between the time the guest sets the control register and the time the sidecore

detects the change. In addition, polling a large number of registers may result in cache

thrashing.

Intel’s IOMMU has all of the properties required for efficient sidecore emulation.

This is in contrast to AMD’s IOMMU, which cannot require the OS’s mapping layer

to explicitly update the IOMMU registers upon every change to the memory-resident

page tables. We note, however, that the emulated IOMMU and the platform’s physical

IOMMU are orthogonal, and Intel’s IOMMU can be emulated when only AMD’s IOMMU

is physically present or even when no physical IOMMU is present and bounce buffers

are used instead [BYMX+06].

2.5.1 Risk and Protection Types

The IOMMU was designed to protect those pages which do not hold I/O buffers from

errant DMA transactions. To achieve complete protection, the IOMMU mapping layer

must ensure a page is accessible for DMA transactions only if it holds an I/O buffer

27

that may be used for DMA transaction and only while a valid DMA transaction may

target this page [YBYW10].

However, IOMMU mapping layer optimizations may relax protection by completing

the synchronous unmap function call by the I/O device driver (logical unmapping)

before tearing down the mapping in the physical IOMMU page-tables and completing

the physical IOTLB invalidation (physical unmapping).

Deferring physical unmapping this way, as done by the deferred invalidation scheme,

the asynchronous invalidation scheme, and the optimistic teardown scheme, could

potentially compromise protection for any page which has been logically unmapped but

not yet physically unmapped. We differentiate, however, between inter-guest protection,

protection between different guest OS instances, and intra-guest protection, protection

within a particular guest OS [WRC08].

vIOMMU maintains full inter-guest protection—full isolation between VMs—in all

configurations. It maintains inter-guest protection by keeping pages pinned in physical

memory until they have been physically unmapped. vIOMMU pins a page in physical

memory before mapping it in the IOMMU page table, and only unpins it once the

IOMMU mapping of that page is torn down and the IOTLB invalidation is complete.

Consequently, any page that is used for a DMA transaction by a guest OS will not

be re-allocated to any other guest OS as long as it may be the target of a valid DMA

transaction by the first guest OS.

Full intra-guest protection—protecting a guest OS from itself—is arguably less

important than inter-guest protection in a virtualized setting. Intra-guest protection may

be relaxed by both the host’s and the guest’s mapping layer optimizations. Maintaining

complete intra-guest protection with optimal performance in an operating system such

as Linux without modifying all drivers remains an open challenge [YBYW10], since

Linux drivers assume that any page that has been logically unmapped is also physically

unmapped. Consequently, such pages are often re-used by the driver or the I/O stack

for other purposes as soon as they have been logically unmapped.

2.5.2 Quantifying Risk

We do not assess the risk posed by arbitrary malicious adversaries, since such adversaries

might sometimes be able exploit even very short vulnerability windows [THWDS08]. In

our discussion of protection and risk we focus instead on the “window of vulnerability”,

when an errant DMA may sneak in and read or write an exposed I/O buffer through

a stale mapping. A stale mapping is a mapping which exists after a page has been

logically unmapped but before it has been physically unmapped. A stale mapping occurs

when the device driver asks to unmap an IOVA translation and receives an affirmative

response, despite the actual teardown of the physical IOMMU PTE or physical IOTLB

invalidation having been deferred.

We quantify risk along two axes: the duration of vulnerability during which an I/O

28

buffer is open for reading or writing through a stale mapping, and the stale mapping

bound, which indicates the maximum number of stale mappings at any given point in

time.

We classify the mapping strategies mentioned above into four classes according to

their duration: no risk, nanosecond risk, microsecond risk, and millisecond risk.

No Risk The only times when there is no risk are when an OS on bare metal uses

the strict mapping strategy, or when both guest and host use the strict mapping strategy.

Since buffers are unmapped and their mappings invalidated without any delay, there

can be no stale mappings regardless of whether we run on bare metal, use samecore

emulation, or sidecore emulation. The use of approximate shared mappings does not

affect the risk.

Nanosecond Risk The time that elapses between the moment when the host

posts an invalidation request to the invalidation queue and the invalid translation is

actually flushed from the physical IOTLB can be measured in nanoseconds. Since the

flush happens in silicon, this duration is a physical property of the platform IOMMU,

and the risk only applies to bare metal with asynchronous invalidation. With samecore

or sidecore emulation, guest/host communication costs overshadow this duration. We

determined experimentally that on our system the stale mapping bound for nanosecond

risk is at most two mappings, and the duration of vulnerability is 128 cycles per entry

on average.

Microsecond Risk Microsecond risk only applies to sidecore emulation and comes

into play when the guest does not wait for the host to process an invalidation (i.e.,

when the guest uses asynchronous invalidation). Here, inter-core communication costs

determine the window of vulnerability, since the host must realize that the guest

posted an invalidation before it can handle it. In general, the stale mapping bound for

microsecond risk is the number of outstanding invalidation requests in the emulated

invalidation queue. In our experimental setup the queue was sized to hold at most 128

outstanding entries.

Millisecond Risk Millisecond risk applies when either the guest or the host uses

the deferred invalidation or optimistic teardown strategies. Regardless of whether the

guest or the host defers invalidations or keeps around cached mappings, the window of

vulnerability is likely to be in the order of milliseconds. Software configures the stale

mappings bounds by setting a quota on the number of cached mappings and a residency

time limit on each mapping.

Overall Risk When a guest OS uses an emulated IOMMU, the combination of

the guest’s and host’s mapping strategies determines the overall protection level. The

hypervisor cannot override the guest mapping strategy to provide greater protection,

since the hypervisor is unaware of any cached mappings or deferred invalidations in

the guest until the guest unmaps them and executes the invalidations. Therefore, the

hypervisor can either keep the guest’s level of protection by using a strict invalidation

scheme, or relax it for better performance.

29

guest/ guest/ guest/ native guest
native native native host max max duration

config. inv. reuse Linux inv. stale# stale# magnitude
strict strict none unpatched strict none none 0
shared strict shared patched strict none none 0
async async shared patched async 32 128+32 µsec
deferred deferred none unpatched deferred 32 250+32 ms
opt256 async shared+ patched deferred 256+ 256+ ms

tear 32 128+32 ms
opt4096 async shared+ patched deferred 4096+ 4096+ ms

tear 32 128+32 ms
off n/a n/a unpatched deferred all all ∞

Table 2.2: Evaluated configurations. The host column is meaningless when running the
native configuration. The maximal number of stale mappings for async and deferred
host is the size of the IOTLB, namely, 32.

2.6 Performance Evaluation

2.6.1 Methodology

Experimental Setup We implement the samecore and sidecore emulation of Intel

IOMMU, as well as the mapping layer optimizations presented above. We use the

KVM hypervisor [KKL+07] and Ubuntu 9.10 running Linux 2.6.35 for both host and

guest. Our experimental setup is comprised of an IBM System x3550 M2, which is a

dual-socket, four-cores per socket server equipped with Intel Xeon X5570 CPUs running

at 2.93GHz. The Chipset is Intel 5520, which supports VT-d. The system includes

16GB of memory and an Emulex OneConnect 10Gbps NIC. We use another identical

remote server (connected directly by 10Gbps optical fiber) as a workload generator

and a target for I/O transactions. In order to obtain consistent results and to avoid

reporting artifacts caused by nondeterministic events, all power optimizations are turned

off, namely, sleep states (C-states) and DVFS (dynamic voltage and frequency scaling).

To have comparable setups, guest-mode configurations execute with a single VCPU

(virtual CPU), and native-mode configurations likewise execute with a single core

enabled. In guest-mode setups, the VCPU and the sidecore are pinned to two different

cores on the same die, and 2GB of memory is allocated to the guest.

Microbenchmarks We use two well-known Netperf [Jon95] instances in order to

assess the overheads induced by vIOMMU in terms of throughput, CPU cycles, and

latency. The first instance—Netperf TCP stream—attempts to maximize the amount

of data sent over a single TCP connection, simulating an I/O-intensive workload.

The second instance–Netperf UDP RR (request-response)—models a latency-sensitive

workload by repeatedly sending a single byte and waiting for a matching single byte

response. Latency is calculated as the inverse of the number of transactions per second.

Macrobenchmarks We use two macrobenchmarks to asses the performance of

vIOMMU on real applications. The first is MySQL SysBench OLTP (version 0.4.12;

30

executed with MySQL database version 5.1.37), which was created for benchmarking

the MySQL database server by generating OLTP inspired workloads. To simulate

high-performance storage, the database is placed on a remote machine’s RAM-drive,

which is accessed through NFS and mounted in synchronous mode. The database

contains two million records, which collectively require about 1GB. We disable data

caching on the server by using the InnoDB engine and the O DIRECT flush method.

The second macrobenchmark we use is Apache Bench, evaluating the performance

of the Apache web server. Apache Bench is a workload generator that is distributed

with Apache to help assess the number of concurrent requests per second that the server

is capable of handling. The benchmark is executed with 25 concurrent requests. The

logging is disabled to avoid the overhead of writing to disk.

Configurations There are many possible combinations of emulation approaches,

which are comprised of the guest and host mapping layers and their reuse and invalidation

strategies. Each such combination is associated with different protection and performance

levels. We cannot evaluate all combinations. We instead choose to present several

meaningful ones in the hope that they provide reasonable coverage. The configurations

are listed in Table 2.2. Each line in the table pertains to two scenarios: a virtualized

setting, with a guest serviced by a host, and a “native” setting with only the bare

metal OS running. The latter scenario provides a baseline. It is addressed because

our optimizations apply to virtualized settings and bare metal settings alike. We next

describe the configurations one by one, from safest to riskiest.

The strict configuration involves no optimizations in guest, host, or native modes,

and hence it involves no risk; it is the least performant configuration. While strict is

not the default mode of Linux, it requires no OS modification, but rather setting an

already-existing configurable parameter. Hence it is marked as “unpatched”.

The shared configuration is nearly identical to strict except that it adds the approxi-

mate shared mapping optimization (Section 2.4.1); it is still risk-free, merely attempting

to avoid allocating more than one IOVA for a given physical location and preferring

instead to reuse. Notice that for the virtualized setting this optimization is meaningless

for the host, as the hypervisor cannot override the IOVA chosen by the guest. The OS

is patched because Linux does not natively support shared mappings.

The async configuration is similar to the shared configuration, yet in addition it

utilizes the asynchronous IOTLB invalidation optimization (Section 2.4.2). The latter

immediately invalidates unmapped translations, but does not wait for the IOTLB

invalidation to complete, reducing invalidation cost by the time it takes the IOMMU to

write its invalidation completion message back to memory. Realistically, the risk exists

only for the sidecore setting, which is dominated by inter-core communication cost that

is approximated by not more than a handful of µsecs. The theoretical maximal number

of stale entries is the size of the IOTLB (32) in the host and native settings; in this

guest’s case, this is supplemented by the default size of the invalidation queue (128).

The deferred configuration is the default configuration of Linux, whereby IOTLB

31

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

native

sam
ecore

sidecore

native

sam
ecore

sidecore

C
P

U
 c

y
c
le

s
 (

th
o
u
s
a
n
d
s
)

logic
invalidation

unmapmap

Figure 2.2: Average breakdown of (un)mapping a single page using the strict invalidation
scheme.

invalidations are aggregated and processed together every 10ms (Section 2.4.3). In the

guest’s case, stale entries might reside in the IOTLB (32) or in the deferred entries

queue (up to 250 by default). While the entries are in the guest’s queue, the host does

not know about them and hence cannot invalidate them. As both guest and host use a

10ms interval, the per-entry maximal vulnerability window is 20ms for the guest and

half that much for the host and bare metal.

The opt configuration (short for “optimistic”) deploys all optimizations save deferred

invalidation, which is substituted by optimistic teardown (Section 2.4.4). The maximal

number of stale entries we keep alive (for up to 10ms) is 256, similarly to the 250 of

deferred; in a more aggressive configuration we increase that number to 4096.

Finally, the off configuration does not employ an IOMMU in the native setting, and

does not employ a vIOMMU in the virtualized setting. (In the latter case the physical

IOMMU is nevertheless utilized by the host, because the device is still assigned to the

guest.) In this configuration, neither the guest nor the native bare metal enjoy any form

of protection, which is why we marked “all” the mappings as unsafe for their entire

lifetime (“∞”).

32

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

strict

shared

async

deferred

opt256

opt4096

off

(a)

normalized throughput

native
sidecore

samecore

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

strict

shared

async

deferred

opt256

opt4096

off

(b)

t/p ratio relative to native

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

strict

shared

async

deferred

opt256

opt4096

off

(c)

CPU [%]

Figure 2.3: Measuring throughput with Netperf TCP; the baseline for normalization is
the optimal throughput attainable by our 10Gbps NIC.

2.6.2 Overhead of (Un)mapping

The IOMMU layer provides exactly two primitives: map and unmap. Before we delve

into the benchmark results, we first profile the overhead induced by the vIOMMU

with respect to these two operations. Figure 2.2 presents the cycles breakdown of each

operation to IOTLB “invalidation”, which is the direct interactions of the OS with

the IOMMU, and to “logic”, which encapsulates the rest of the code that builds and

destroys the mappings within the I/O page tables.

Notice that guest invalidation overhead is induced even when performing the map

operation; this happens because the hypervisor turns on the “caching mode bit”, which,

by the IOMMU specification, means that the OS is mandated to first invalidate every

new mapping it creates (which allows the hypervisor to track this activity). Most

evident in the figure is the fact that the sidecore dramatically cuts down the price of

invalidation when compared to samecore, which is a direct result of eliminating the

associated VM exits and associated world switches. The other interesting observation is

that the rest of the (un)map logic can be accomplished faster by the vIOMMU. This

better-than-native performance is a product of the vIOMMU registers being cacheable,

as opposed to those of the physical IOMMU.

2.6.3 Benchmark Results

Figure 2.3(a) depicts the throughput of Netperf/TCP for each configuration, from safest

to riskiest, along the X axis. The values displayed are normalized by the maximal

throughput achieved by bare metal and off, which in this case is 100% of the attainable

bandwidth of the 10Gbps NIC. Figure 2.3(b) presents the very same data, but the

normalization is done against native on a per-configuration basis; accordingly, the native

curve coincides with the “1” grid line. Figure 2.3(c) presents the CPU consumed by

Netperf/TCP while doing the corresponding work; observe that the sidecore is associated

33

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

strict

shared

async

deferred

opt256

opt4096

off

(a)

normalized latency

native
sidecore

samecore

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

strict

shared

async

deferred

opt256

opt4096

off

(b)

latency relative to native

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

strict

shared

async

deferred

opt256

opt4096

off

(c)

CPU [%]

Figure 2.4: Measuring latency with the Netperf UDP request-response benchmark; the
baseline for normalization (latency of bare metal with no IOMMU) is 41 µsecs.

with two curves in this figure, the lower one corresponds to the useful work done by the

sidecore (aside from polling) and the upper one pertains to the main core.

The safe (shared) or nearly safe (async) configurations provide no benefit for the

samecore setting, but they can slightly improve the performance of sidecore and native

by 2–5 percentage points each. Deferred delivers a much more pronounced improvement,

especially in the native case, which manages to attain 91% of the line-rate. By consulting

Figure 2.3(c), we can see that native/deferred is not attaining 100%, because the CPU

is a bottleneck. Utilizing opt solves this problem, not only for the native setting, but

also for the sidecore; opt allows both to fully exploit the NIC. The sidecore/CPU curve

(bottom of Figure 2.3(c)) implies that the work required form the IOMMU software

layer is little when optimal teardown is employed, allowing the sidecore to catch up

with native performance and the samecore to reduce to gap to 0.82x the optimum.

Similarly to the above, Figure 2.4 depicts the latency as measured with Netperf/UDP-

RR and the associated CPU consumption. The results largely agree with what we have

seen for Netperf/TCP. Deferring the IOTLB invalidation allows the native setting to

achieve optimal latency, but only slightly improves the virtualized settings. However,

when optimistic teardown is employed, the latency of both sidecore and samecore drops

significantly (by about 60 percentage point in the latter case), and they manage attain

the optimum. Importantly, the optimum for the samecore and sidecore settings is not

the “1” that is shown in Figure 2.4(a); rather, it is the value that is associated with the

off configuration of the virtualized settings (guest with no IOMMU protection), which

is roughly 1.2 in this case.

Examining Figure 2.4(c), we unsurprisingly see that the CPU is not a bottleneck

for this benchmark. We further see that optimistic teardown is the most significant

optimization for this metric, allowing the virtualized settings to nearly reach the bare

metal optimum.

34

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

strict

shared

async

deferred

opt256

opt4096

off

(a)

normalized throughput

native
sidecore

samecore

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

strict

shared

async

deferred

opt256

opt4096

off

(b)

t/p ratio relative to native

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

strict

shared

async

deferred

opt256

opt4096

off

(c)

CPU [%]

Figure 2.5: Measuring MySQL throughput; the baseline for normalization is 243
transactions per second.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

strict

shared

async

deferred

opt256

opt4096

off

(a)

normalized throughput

native
sidecore

samecore

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

strict

shared

async

deferred

opt256

opt4096

off

(b)

t/p ratio relative to native

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

strict

shared

async

deferred

opt256

opt4096

off

(c)

CPU [%]

Figure 2.6: Measuring Apache throughput; the baseline for normalization is 6828
requests per second.

35

Throughput(Mbps) VCPUs load Sidecore load
samecore 1345 (+49%) 76%
sidecore 4312 (+54%) 83% 49% (+50%)

Table 2.3: Measuring the Netperf TCP throughput of 2-VCPUs with strict configuration
compared to a single VCPU.

Figures 2.5–2.6 present the results of the macrobenchmarks, showing trends that

are rather similar. Optimistic teardown is most meaningful to the samecore setting,

boosting its throughput by about 1.5x. For sidecore, however, the optimization has a

lesser effect. Specifically, opt4096 improves upon deferred by 1.07x in the case of MySQL,

and by 1.04x in the case of Apache. Before the optimistic teardown is applied, the

sidecore setting delivers 1.52x and 1.63x better throughput than samecore for MySQL

and Apache, respectively. But once it is applied, then these figures respectively drop to

1.12x and 1.10x. In other words, for the real applications that we have chosen, sidecore

is better than samecore by 50%–60% for safe configurations (as well as for deferred), but

when optimistic teardown is applied, this gap is reduced to around 10%. This should

come as no surprise as we have already established above that optimistic teardown

dramatically reduces the IOMMU overhead.

It is important to note, once again, that the optimum for sidecore and samecore is

the off configuration in the virtualized setting, namely 0.86 and 0.68 for MySQL and

Apache in Figures 2.5(a) and 2.6(a), respectively. Thus, it is not that the optimistic

teardown all of a sudden became less effective for the macrobenchmarks; rather, it

is that in comparison to the microbenchmarks the applications attain much higher

throughput to begin with, and so the optimization has less room to shine.

The bottom line is that combining sidecore and optimistic teardown brings both

MySQL and Apache throughputs to be only 3% less than their respective optima.

2.6.4 Sidecore Scalability and Power-Efficiency

Performance gain from the sidecore approach requires the emulating sidecore to be

co-scheduled with the VCPUs to achieve low-latency IOMMU emulation. Therefore, it

is highly important that the sidecore performs its tasks efficiently with high utilization.

One method for better utilizing the sidecore is to set one emulating sidecore to serve

multiple VCPUs or multiple guest CPUs. Table 2.3 presents the performance of a 2

VCPUs setup, using the strict configuration, relative to a single VCPU setup. As shown,

sidecore emulation scales up similarly to samecore emulation, and the performance of

both improves by approximately 50% in 2 VCPUs setup.

This method, however, may encounter additional latency in a system that consists

multiple sockets (dies), as the affinity of the sidecore thread has special importance in

such systems. If both the virtual guest and the sidecore are located on the same die, fast

cache-to-cache micro-architectural mechanisms can be used to propagate modifications

of the IOMMU data structures, and the interconnect imposes no additional latency. In

36

contrast, when the sidecore is located on a different die, the latency of accessing the

emulated IOMMU data structures is increased by interconnect imposed latency. The

Intel QuickPath Interconnect (QPI) protocol used on our system requires write-backs

of modified cache lines to main memory, which results in latency that can exceed

100ns—over four times the latency of accessing a modified cache line on the same

die [MHSM09].

Another method for better utilizing the sidecore is to use its spare cycles productively.

Even though the nature of the sidecore is that it is constantly working, a sidecore can

have spare cycles—those cycles in which it polled memory and realized it has no pending

emulation tasks. One way of improving the system’s overall efficiency is to use such

cycles for polling paravirtual devices in addition to emulated devices. Another way is to

allow the sidecore to enter a low-power sleep state when it is otherwise idle. We can make

sidecore IOMMU emulation more power-efficient by using the CPU’s monitor/mwait

capability, which enables the core to enter a low-power state until a monitored cache

range is modified [AK08].

However, current x86 architecture only enables monitoring of a single cache line,

and the Linux scheduler already uses the monitoring hardware for its internal purposes.

Moreover, the sidecore must monitor and respond to writes to multiple emulated registers

which do not reside in the same cache line.

We overcame these challenges by using the mapping hardware to monitor the

invalidation queue tail (IQT) register of the IOMMU invalidation queue while we

periodically monitored the remaining emulated IOMMU registers. (This is possible

because the IOMMU mapping layer performs most of its writes to a certain IQT register.)

We also relocated the memory range monitored by the scheduler (the need resched

variable) to a memory area which is reserved according to the IOMMU specifications

and resides in the same cache line as the IQT register.

Nonetheless, entering a low-power sleep state is suitable only in an extended quies-

cence period, in which no accesses to the IOMMU take place. This is because entering

and exiting low power state takes considerable time [TEF05]. Thus, sidecore emulation

is ideally suited for an asymmetric system [KTR+04]. Such systems, which include both

high power high performance cores and low power low performance cores, can schedule

the hardware emulation code to a core which will provide the desired performance/power

consumption tradeoff.

The impact of these two scaling related methods, using sidecore to serve a guest

whose VCPU is located on another package, and entering low power state instead of

polling, appear in Figure 2.7. According to our experiments, when the sidecore was set

on another package, the mapping and unmapping cost increased by 23%, resulting in

25% less TCP throughput than when the sidecore was located on the same package.

Entering low-power state increased the cycle cost of mapping and unmapping by 13%,

and optimally would decrease performance very little using good heuristics for detecting

idle periods. Regardless, in both cases, the cost of sidecore emulation is still considerably

37

 0

 1

 2

 3

 4

 5

 6

 7

 8

sam
epackage

m
w
ait (C

C
1)

another
package

sam
epackage

m
w
ait (C

C
1)

another
package

C
P

U
 c

y
c
le

s
 (

th
o
u
s
a
n
d
s
)

logic
invalidation

unmapmap

Figure 2.7: The effect of power-saving and CPU affinity on the mapping/unmapping
cost of a single page.

lower than that of samecore emulation.

2.7 Related Work

We survey related work along the following dimensions: I/O device emulation for virtual

machines, IOMMU mapping strategies for paravirtualized and unmodified guests, and

offloading computation to a sidecore.

All common hypervisors in use today on x86 systems emulate I/O devices. Sugerman,

Venkitachalam, and Lim discuss device emulation in the context of VMware’s hypervi-

sor [SVL01], Barham et al. discuss it in the context of the Xen hypervisor [BDF+03],

Kivity et al. discuss it in the context of the KVM hypervisor [KKL+07], and Bellard

discusses it in the context of QEMU [Bel05]. In all cases, device emulation suffered from

prohibitive performance [BYDD+10], which led to the development of paravirtualized

I/O [BDF+03, Rus08] and direct device assignment I/O [LUSG04, Liu10]. To our

knowledge, we are the first to demonstrate the feasibility of high-speed I/O device

emulation with performance approaching that of bare metal.

Maximizing OS protection from errant DMAs by minimizing the DMA vulnerability

duration is important, because devices might be buggy or exploited [BDK05, CG04,

LUSG04, Woj08]. Several IOMMU mapping strategies have been suggested for trading

off protection and performance [WRC08, YBYW10]. For unmodified guests, the only

38

usable mapping strategy prior to this work was the direct mapping strategy [WRC08],

which provides no protection to the guest OS. Once we expose an emulated IOMMU

to the guest OS, the guest OS may choose to use any mapping strategy it wishes to

protect itself from buggy or malicious devices.

Additional mapping strategies were possible for paravirtualized guests. The single-

use mapping and the shared mapping strategies provide full protection at sizable cost to

performance [WRC08]. The persistent mappings strategy provides better performance

at the expense of reduced protection. In the persistent mapping strategy mappings

persist forever. The on-demand mapping strategy [YBYW10] refines persistent mapping

by tearing down mappings once a set quota on the number of mappings was reached.

On-demand mapping, however, does not limit the duration of vulnerability. Optimistic

teardown provides performance that is equivalent to that of persistent and on-demand

mapping, but does so while limiting the duration of vulnerability to mere milliseconds.

Offloading computation to a dedicated core is a well-known approach for speeding

up computation [BBD+09, BPS+09, SSBBY10]. Offloading computation to a sidecore

in order to speed up I/O for paravirtualized guests was explored by Gavrilovska et

al. [GKR+07], Kumar et al. [KRSG07], and in the virtualization polling engine (VPE)

by Liu and Abali [LA09]. In order to achieve near native performance for 10GbE, VPE

required modifications of the guest OS and a set of paravirtualized drivers for each

emulated device. In contrast, our sidecore emulation approach requires no changes to

the guest OS.

Building in part upon vIOMMU, the SplitX project [LBYG11] takes the sidecore

approach one step further. SplitX aims to run each unmodified guest and the hypervisor

on a disjoint set of cores, dedicating a set of cores to each guest and offloading all

hypervisor functionality to a disjoint set of sidecores.

2.8 Conclusions

We presented vIOMMU, the first x86 IOMMU emulation for unmodified guests. By

exposing an IOMMU to the guest we enable the guest to protect itself from buggy device

drivers, while simultaneously making it possible for the hypervisor to overcommit memory.

vIOMMU employs two novel optimizations to perform well. The first, “optimistic

teardown”, entails simply waiting a few milliseconds before tearing down an IOMMU

mapping and demonstrates that a minuscule relaxation of protection can lead to

large performance benefits. The second, running IOMMU emulation on a sidecore,

demonstrates that given the right software/hardware interface and device emulation,

unmodified guests can perform just as well as paravirtualized guests.

The benefits of IOMMU emulation rely on the guest using the IOMMU. Introducing

software and hardware support for I/O page faults could relax this requirement and

enable seamless memory overcommitment even for non-cooperative guests. Likewise,

introducing software and hardware support for multiple levels of IOMMU page ta-

39

bles [BYDD+10] could in theory provide perfect protection without any decrease in

performance. In practice, multiple MMU levels cause more page-faults and higher TLB

miss-rates, resulting in lower performance for many workloads [WZW+11]. Similarly, a

single level of IOMMU emulation may perform better than multiple levels of IOMMU

page tables, depending on workload.

40

Chapter 3

ELI: Bare-Metal Performance for

I/O Virtualization

3.1 Abstract

1

Direct device assignment enhances the performance of guest virtual machines by

allowing them to communicate with I/O devices without host involvement. But even with

device assignment, guests are still unable to approach bare-metal performance, because

the host intercepts all interrupts, including those interrupts generated by assigned

devices to signal to guests the completion of their I/O requests. The host involvement

induces multiple unwarranted guest/host context switches, which significantly hamper

the performance of I/O intensive workloads. To solve this problem, we present ELI

(ExitLess Interrupts), a software-only approach for handling interrupts within guest

virtual machines directly and securely. By removing the host from the interrupt handling

path, ELI manages to improve the throughput and latency of unmodified, untrusted

guests by 1.3x–1.6x, allowing them to reach 97%–100% of bare-metal performance even

for the most demanding I/O-intensive workloads.

3.2 Introduction

I/O activity is a dominant factor in the performance of virtualized environments [MST+05,

SVL01, LHAP06, WSC+07], motivating direct device assignment where the host as-

signs physical I/O devices directly to guest virtual machines. Examples of such de-

vices include disk controllers, network cards, and GPUs. Direct device assignment

provides superior performance relative to alternative I/O virtualization approaches,

because it almost entirely removes the host from the guest’s I/O path. Without direct

1 Joint work with Abel Gordon (IBM), Nadav Ha’rel (IBM), Muli Ben-Yehuda (IBM & CS, Technion),
Alex Landau (IBM), Dan Tsafrir (CS, Technion), Assaf Schuster (CS, Technion). A paper regarding
this part of the work was presented in ASPLOS 2012.

41

guest/host context switch (exits and entries)
handling cost (handling physical interrupts and their completions)

bare-metal

baseline
guest

host

time

ELI
delivery

guest

host

ELI
delivery &
completion

guest

host

physical
interrupt

interrupt
completion

(a)

(b)

(c)

interrupt
injection

interrupt
completion

(d)

Figure 3.1: Exits during interrupt handling

device assignment, I/O-intensive workloads might suffer unacceptable performance

degradation [LUSG04, LHAP06, RS07, WSC+07, YBYW08]. Still, direct access does

not allow I/O-intensive workloads to approach bare-metal (non-virtual) performance

[BYDD+10, DYL+10, LBYG11, Liu10, WSC+07], limiting it to 60%–65% of the opti-

mum by our measurements. We find that nearly the entire performance difference is

induced by interrupts of assigned devices.

I/O devices generate interrupts to asynchronously communicate to the CPU the

completion of I/O operations. In virtualized settings, each device interrupt triggers a

costly exit [AA06, BYDD+10, LBYG11], causing the guest to be suspended and the

host to be resumed, regardless of whether or not the device is assigned. The host first

signals to the hardware the completion of the physical interrupt as mandated by the

x86 specification. It then injects a corresponding (virtual) interrupt to the guest and

resumes the guest’s execution. The guest in turn handles the virtual interrupt and,

like the host, signals completion, believing that it directly interacts with the hardware.

This action triggers yet another exit, prompting the host to emulate the completion of

the virtual interrupt and to resume the guest again. The chain of events for handling

interrupts is illustrated in Figure 3.1(a).

The guest/host context switches caused by interrupts induce a tolerable overhead

price for non-I/O-intensive workloads, a fact that allowed some previous virtualization

studies to claim they achieved bare-metal performance [BDF+03, LPD+11, LUSG04].

But our measurements indicate that this overhead quickly ceases to be tolerable,

adversely affecting guests that require throughput of as little as 50 Mbps. Notably,

many previous studies, including our work in Chapter 2, improved virtual I/O by

42

relaxing protection [KSRL10, LPD+11] or by modifying guests [BDF+03, LUSG04];

whereas in this work we focus on the most challenging virtualization scenario of guests

that are untrusted and unmodified.

Many previous studies identified interrupts as a major source of overhead [BYDD+10,

LSHK09, TEFK05], and many proposed techniques to reduce it, both in bare-metal

settings [DTR01, SOK01, Sal07, ZMv02] and in virtualized settings [AGM11, DYL+10,

LBYG11, Liu10, WSC+07]. In principle, it is possible to tune devices and their drivers

to generate fewer interrupts, thereby reducing the related overhead. But doing so in

practice is far from trivial [SQ08] and can adversely affect both latency and throughput.

We survey these approaches and contrast them with ours in Section 3.3.

Our approach rests on the observation that the high interrupt rates experienced

by a core running an I/O-intensive guest are mostly generated by devices assigned to

the guest. Indeed, we measure rates of over 150,000 physical interrupts per second,

even while employing standard techniques to reduce the number of interrupts, such as

interrupt coalescing [Sal07, ZMv02, AGM11] and hybrid polling [DTR01, SOK01]. As

noted, the resulting guest/host context switches are nearly exclusively responsible for

the inferior performance relative to bare metal. To eliminate these switches, we propose

ELI (ExitLess Interrupts), a software-only approach for handling physical interrupts

directly within the guest in a secure manner.

With ELI, physical interrupts are delivered directly to guests, allowing them to

process their devices’ interrupts without host involvement; ELI makes sure that each

guest forwards all other interrupts to the host. With x86 hardware, interrupts are

delivered using a software-controlled table of pointers to functions, such that the

hardware invokes the k-th function whenever an interrupt of type k fires. Instead of

utilizing the guest’s table, ELI maintains, manipulates, and protects a “shadow table”,

such that entries associated with assigned devices point to the guest’s code, whereas the

other entries are set to trigger an exit to the host. We describe x86 interrupt handling

relevant to ELI and ELI itself in Section 3.4 and Section 3.5, respectively. ELI leads

to a mostly exitless execution as depicted in Figure 3.1(c).

We experimentally evaluate ELI in Section 3.6 with micro and macro benchmarks.

Our baseline configuration employs standard techniques to reduce (coalesce) the number

of interrupts, demonstrating ELI’s benefit beyond the state-of-the-art. We show that

ELI improves the throughput and latency of guests by 1.3x–1.6x. Notably, whereas

I/O-intensive guests were so far limited to 60%–65% of bare-metal throughput, with ELI

they reach performance that is within 97%–100% of the optimum. Consequently, ELI

makes it possible to, e.g., consolidate traditional data-center workloads that nowadays

remain non-virtualized due to unacceptable performance loss.

In Section 3.7 we describe how ELI protects the aforementioned table, maintaining

security and isolation while still allowing guests to handle interrupts directly. In

Section 3.8 we discusses potential hardware support that would simplify ELI’s design

and implementation. Finally, in Section 3.9 we discuss the applicability of ELI and

43

our future work directions, and in Section 3.10 we conclude.

3.3 Motivation and Related Work

For the past several decades, interrupts have been the main method by which hardware

devices can send asynchronous events to the operating system [Cod62]. The main

advantage of using interrupts to receive notifications from devices over polling them is

that the processor is free to perform other tasks while waiting for an interrupt. This

advantage applies when interrupts happen relatively infrequently [RWR+00], as has

been the case until high performance storage and network adapters came into existence.

With these devices, the CPU can be overwhelmed with interrupts, leaving no time to

execute code other than the interrupt handler [MR97]. When the operating system

is run in a guest, interrupts have a higher cost since every interrupt causes multiple

exits [AA06, BYDD+10, LBYG11].

In the remainder of this section we introduce the existing approaches to reduce the

overheads induced by interrupts, and we highlight the novelty of ELI in comparison to

these approaches. We subdivide the approaches into two categories.

3.3.1 Generic Interrupt Handling Approaches

We now survey approaches that equally apply to bare metal and virtualized environments.

Polling disables interrupts entirely and polls the device for new events at regular

intervals. The benefit is that handling device events becomes synchronous, allowing

the operating system to decide when to poll and thus limit the number of handler

invocations. The drawbacks are added latency and wasted cycles when no events are

pending. If polling is done on a different core, latency is improved, yet a core is wasted.

Polling also consumes power since the processor cannot enter an idle state.

A hybrid approach for reducing interrupt-handling overhead is to dynamically switch

between using interrupts and polling [DTR01, MR97, IS99]. Linux uses this approach

by default through the NAPI mechanism [SOK01]. Switching between interrupts and

polling does not always work well in practice, partly due to the complexity of predicting

the number of interrupts a device will issue in the future.

Another approach is interrupt coalescing [ZMv02, Sal07, AGM11], in which the

OS programs the device to send one interrupt in a time interval or one interrupt per

several events, as opposed to one interrupt per event. As with the hybrid approaches,

coalescing delays interrupts and hence might suffer from the same shortcomings in terms

of latency. In addition, coalescing has other adverse effects and cannot be used as the

only interrupt mitigation technique. Zec et al. [ZMv02] show that coalescing can burst

TCP traffic that was not bursty beforehand. It also increases latency [LSHK09, ROS+11],

since the operating system can only handle the first packet of a series when the last

coalesced interrupt for the series arrived. Deciding on the right model and parameters

44

for coalescing is complex and depends on the workload, particularly when the workload

runs within a guest [DYL+10]. Getting it right for a wide variety of workloads is hard if

not impossible [AGM11, SQ08]. Unlike coalescing, ELI does not reduce the number of

interrupts; instead it streamlines the handling of interrupts targeted at virtual machines.

Coalescing and ELI are therefore complementary: coalescing reduces the number of

interrupts, and ELI reduces their price. Furthermore, with ELI, if a guest decides

to employ coalescing, it can directly control the interrupt rate and latency, leading

to predictable results. Without ELI, the interrupt rate and latency cannot be easily

manipulated by changing the coalescing parameters, since the host’s involvement in the

interrupt path adds variability and uncertainty.

All evaluations in Section 3.6 were performed with the default Linux configuration,

which combines the hybrid approach (via NAPI) and coalescing.

3.3.2 Virtualization-Specific Approaches

Using an emulated or paravirtual [BDF+03, Rus08] device provides much flexibility

on the host side, but its performance is much lower than that of device assignment,

not to mention bare metal. Liu [Liu10] shows that device assignment of SR-IOV

devices [DYR08] can achieve throughput close to bare metal at the cost of as much as

2x higher CPU utilization. He also demonstrates that interrupts have a great impact on

performance and are a major expense for both the transmit and receive paths. For this

reason, although applicable to the emulated and paravirtual case as well, ELI’s main

focus is on improving device assignment.

Interrupt overhead is amplified in virtualized environments. The Turtles project [BYDD+10]

shows interrupt handling to cause a 25% increase in CPU utilization for a single-level

virtual machine when compared with bare metal, and a 300% increase in CPU utilization

for a nested virtual machine.

Dong et al. [DYL+10] discuss a framework for implementing SR-IOV support in the

Xen hypervisor. Their results show that SR-IOV can achieve line rate with a 10Gbps

network card (NIC). However, the CPU utilization is at least 150% of bare metal. They

also show that guest LAPIC accesses for the purpose of completing an interrupt result

in a 43% overhead—overhead that ELI eliminates.

Like ELI, several studies attempted to reduce the aforementioned extra overhead

of interrupts in virtual environments. vIC [AGM11] discusses a method for interrupt

coalescing in virtual storage devices and shows an improvement of up to 5% in a macro

benchmark. Their method decides how much to coalesce based on the number of

“commands in flight”. Therefore, as the authors say, this approach cannot be used for

network devices due to the lack of information on commands (or packets) in flight.

Furthermore, no comparison is made with bare-metal performance.

In CDNA [WSC+07], the authors propose a method for concurrent and direct

network access for virtual machines. This method requires physical changes to NICs

45

akin to SR-IOV. With CDNA, the NIC and the hypervisor split the work of multiplexing

several guests’ network flows onto a single NIC. In the CDNA model the hypervisor is

still involved in the I/O path. While CDNA significantly increases throughput compared

to the standard paravirtual driver in Xen, it is still 2x–3x slower than bare metal.

SplitX [LBYG11] proposes hardware extensions for running virtual machines on

dedicated cores, with the hypervisor running in parallel on a different set of cores.

Interrupts arrive only at the hypervisor cores and are then sent to the appropriate

guests via an exitless inter-core communication mechanism. In contrast, with ELI the

hypervisor can share cores with its guests, and instead of injecting interrupts to guests,

programs the interrupts to arrive at them directly. Moreover, ELI does not require any

hardware modifications and runs on current hardware.

NoHype [KSRL10] argues that modern hypervisors are prone to attacks by their

guests. In the NoHype model, the hypervisor is a thin layer that starts, stops, and

performs other administrative actions on guests, but is not otherwise involved. Guests

use assigned devices and interrupts are delivered directly to guests. No details of the

implementation or performance results are provided. Instead, the authors focus on

describing the security and other benefits of the model.

In Following the White Rabbit [WR11], the authors show several interrupt-based

attacks on hypervisors, which can be addressed through the use of interrupt remap-

ping [AJM+06]. Interrupt remapping can stop the guest from sending arbitrary inter-

rupts to the host; it does not, as its name might imply, provide a mechanism for secure

and direct delivery of interrupts to the guest. Since ELI delivers interrupts directly

to guests, bypassing the host, the hypervisor is immune to certain interrupt-related

attacks.

3.4 x86 Interrupt Handling

ELI gives untrusted and unmodified guests direct access to the architectural interrupt

handling mechanisms in such a way that the host and other guests remain protected. To

put ELI’s design in context, we begin with a short overview of how interrupt handling

works on x86 today.

3.4.1 Interrupts in Bare-Metal Environments

x86 processors use interrupts and exceptions to notify system software about incoming

events. Interrupts are asynchronous events generated by external entities such as I/O

devices; exceptions are synchronous events—such as page faults—caused by the code

being executed. In both cases, the currently executing code is interrupted and execution

jumps to a pre-specified interrupt or exception handler.

x86 operating systems specify handlers for each interrupt and exception using an

architected in-memory table, the Interrupt Descriptor Table (IDT). This table contains

46

up to 256 entries, each entry containing a pointer to a handler. Each architecturally-

defined exception or interrupt have a numeric identifier—an exception number or

interrupt vector—which is used as an index to the table. The operating systems can

use one IDT for all of the cores or a separate IDT per core. The operating system

notifies the processor where each core’s IDT is located in memory by writing the IDT’s

virtual memory address into the Interrupt Descriptor Table Register (IDTR). Since the

IDTR holds the virtual (not physical) address of the IDT, the OS must always keep

the corresponding address mapped in the active set of page tables. In addition to the

table’s location in memory, the IDTR also holds the table’s size.

When an external I/O device raises an interrupt, the processor reads the current

value of the IDTR to find the IDT. Then, using the interrupt vector as an index to the

IDT, the CPU obtains the virtual address of the corresponding handler and invokes it.

Further interrupts may or may not be blocked while an interrupt handler runs.

System software needs to perform operations such as enabling and disabling inter-

rupts, signaling the completion of interrupt handlers, configuring the timer interrupt, and

sending inter-processor interrupts (IPIs). Software performs these operations through

the Local Advanced Programmable Interrupt Controller (LAPIC) interface. The LAPIC

has multiple registers used to configure, deliver, and signal completion of interrupts.

Signaling the completion of interrupts, which is of particular importance to ELI, is

done by writing to the end-of-interrupt (EOI) LAPIC register. The newest LAPIC

interface, x2APIC [Int08], exposes its registers using model specific registers (MSRs),

which are accessed through “read MSR” and “write MSR” instructions. Previous LAPIC

interfaces exposed the registers only in a pre-defined memory area which is accessed

through regular load and store instructions.

3.4.2 Interrupts in Virtual Environments

x86 hardware virtualization [UNR+05, AMD11] provides two modes of operation, guest

mode and host mode. The host, running in host mode, uses guest mode to create

new contexts for running guest virtual machines. Once the processor starts running

a guest, execution continues in guest mode until some sensitive event [PG74] forces

an exit back to host mode. The host handles any necessary events and then resumes

the execution of the guest, causing an entry into guest mode. These exits and entries

are the primary cause of virtualization overhead [AA06, BYDD+10, LBYG11, RS07].

The overhead is particularly pronounced in I/O intensive workloads [LBYG11, Liu10,

STJP08, RST+09]. It comes from the cycles spent by the processor switching between

contexts, the time spent in host mode to handle the exit, and the resulting cache

pollution [AA06, BYDD+10, GKR+07, LBYG11].

This work focuses on running unmodified and untrusted operating systems. On the

one hand, unmodified guests are not aware they run in a virtual machine, and they

expect to control the IDT exactly as they do on bare metal. On the other hand, the

47

host cannot easily give untrusted and unmodified guests control of each core’s IDT.

This is because having full control over the physical IDT implies total control of the

core. Therefore, x86 hardware virtualization extensions use a different IDT for each

mode. Guest mode execution on each core is controlled by the guest IDT and host mode

execution is controlled by the host IDT. An I/O device can raise a physical interrupt

when the CPU is executing either in host mode or in guest mode. If the interrupt arrives

while the CPU is in guest mode, the CPU forces an exit and delivers the interrupt to

the host through the host IDT.

Guests receive virtual interrupts, which are not necessarily related to physical

interrupts. The host may decide to inject the guest with a virtual interrupt because

the host received a corresponding physical interrupt, or the host may decide to inject

the guest with a virtual interrupt manufactured by the host. The host injects virtual

interrupts through the guest IDT. When the processor enters guest mode after an

injection, the guest receives and handles the virtual interrupt.

During interrupt handling, the guest will access its LAPIC. Just like the IDT, full

access to a core’s physical LAPIC implies total control of the core, so the host cannot

easily give untrusted guests access to the physical LAPIC. For guests using the first

LAPIC generation, the processor forces an exit when the guest accesses the LAPIC

memory area. For guests using x2APIC, the host traps LAPIC accesses through an MSR

bitmap. When running a guest, the host provides the CPU with a bitmap specifying

which benign MSRs the guest is allowed to access directly and which sensitive MSRs

must not be accessed by the guest directly. When the guest accesses sensitive MSRs,

execution exits back to the host. In general, x2APIC registers are considered sensitive

MSRs.

3.4.3 Interrupts from Assigned Devices

The key to virtualization performance is for the CPU to spend most of its time in guest

mode, running the guest, and not in the host, handling guest exits. I/O device emulation

and paravirtualized drivers [BDF+03, KKL+07, Rus08] incur significant overhead for

I/O intensive workloads running in guests [BYDD+10, Liu10]. The overhead is incurred

by the host’s involvement in its guests’ I/O paths for programmed I/O (PIO), memory-

mapped I/O (MMIO), direct memory access (DMA), and interrupts.

Direct device assignment is the best performing approach for I/O virtualization [DYL+10,

Liu10] because it removes some of the host’s involvement in the I/O path. With device

assignment, guests are granted direct access to assigned devices. Guest I/O operations

bypass the host and are communicated directly to devices. As noted, device DMA’s also

bypass the host; devices perform DMA accesses to and from guests; memory directly.

Interrupts generated by assigned devices, however, still require host intervention.

In theory, when the host assigns a device to a guest, it should also assign the

physical interrupts generated by the device to that guest. Unfortunately, current x86

48

virtualization only supports two modes: either all physical interrupts on a core are

delivered to the currently running guest, or no physical interrupts are delivered to the

currently running guest (i.e., all physical interrupts in guest mode cause an exit). An

untrusted guest may handle its own interrupts, but it must not be allowed to handle

the interrupts of the host and the other guests. Consequently, before ELI, the host had

no choice but to configure the processor to force an exit when any physical interrupt

arrives in guest mode. The host then inspected the incoming interrupt and decided

whether to handle it by itself or inject it to the associated guest.

Figure 3.1(a) describes the interrupt handling flow with baseline device assignment.

Each physical interrupt from the guest’s assigned device forces at least two exits from

guest to host: when the interrupt arrives (causing the host to gain control and to inject

the interrupt to the guest) and when the guest signals completion of the interrupt

handling (causing the host to gain control and to emulate the completion for the guest).

Additional exits might also occur while the guest handles an interrupt. As we exemplify

in Section 3.6, interrupt-related exits to host mode are the foremost contributors to

virtualization overhead for I/O intensive workloads.

3.5 ELI: Design and Implementation

ELI enables unmodified and untrusted guests to handle interrupts directly and securely.

ELI does not require any guest modifications, and thus should work with any operating

system. It does not rely on any device-specific features, and thus should work with any

assigned device. On the interrupt delivery path, ELI makes it possible for guests to

receive physical interrupts from their assigned devices directly while still forcing an exit

to the host for all other physical interrupts (Section 3.5.1). On the interrupt completion

path, ELI makes it possible for guests to signal interrupt completion without causing

any exits (Section 3.5.4). How to do both securely, without letting untrusted guests

compromise the security and isolation of the host and guests, is covered in Section 3.7.

3.5.1 Exitless Interrupt Delivery

ELI’s design was guided by the observation that nearly all physical interrupts arriving

at a given core are targeted at the guest running on that core. This is due to several

reasons. First, in high-performance deployments, guests usually have their own physical

CPU cores (or else they would waste too much time context switching); second, high-

performance deployments use device assignment with SR-IOV devices; and third,

interrupt rates are usually proportional to execution time. The longer each guest runs,

the more interrupts it receives from its assigned devices. Following this observation,

ELI makes use of available hardware support to deliver all physical interrupts on a

given core to the guest running on it, since most of them should be handled by that

guest anyway, and forces the (unmodified) guest to reflect back to the host all those

49

hypervisor

shadow
IDT

interrupt
handler

assigned
interrupt

physical
interrupt

non-assigned
interrupt
(exit)ELI

delivery

guest
IDT

VM

Figure 3.2: ELI interrupt delivery flow

interrupts which should be handled by the host.

The guest OS continues to prepare and maintain its own IDT. Instead of running the

guest with this IDT, ELI runs the guest in guest mode with a different IDT prepared by

the host. We call this second guest IDT the shadow IDT. Just like shadow page tables

can be used to virtualize the guest MMU [BDF+03, AA06], IDT shadowing can be used

to virtualize interrupt delivery. This mechanism, depicted in Figure 3.2, requires no

guest cooperation.

By shadowing the guest’s IDT, the host has explicit control over the interrupt

handlers invoked by the CPU on interrupt delivery. Each IDT entry has a present bit.

Before invoking an entry to deliver an interrupt, the processor checks if that entry is

present (has the present bit set). Interrupts delivered to not-present entries raise a

not-present (NP) exception. ELI configures the shadow IDT as follows: for exceptions

and physical interrupts belonging to devices assigned to the guest, the shadow IDT

entries are copied from the guest’s original IDT and marked as present. Every other

entry in the shadow IDT should be handled by the host and is therefore marked as

non-present to force a not-present exception when the processor tries to invoke the

handler. Additionally, the host configures the processor to force an exit from guest

mode to host mode whenever a not-present exception occurs.

Any physical interrupt reflected to the host appears in the host as a not-present

exception and must be converted back to the original interrupt vector. The host inspects

the cause for the not-present exception. If the exit was actually caused by a physical

interrupt, the host raises a software interrupt with the same vector as the physical

interrupt, which causes the processor to invoke the appropriate IDT entry, converting

the not-present exception into a physical interrupt. If the exit was not caused by a

50

physical interrupt, then it is a true guest not-present exception and should be handled

by the guest. In this case, the host injects the exception back into the guest. True guest

not-present exceptions are rare in normal execution.

The host also sometimes needs to inject into the guest virtual interrupts raised by

devices that are emulated by the host (e.g., the keyboard). These interrupt vectors

will have their entries in the shadow IDT marked not-present. To deliver such virtual

interrupts through the guest IDT handler, ELI enters a special injection mode by

configuring the processor to cause an exit on any physical interrupt and running the

guest with the original guest IDT. ELI then injects the virtual interrupt into the guest,

which handles the virtual interrupt as described in Section 3.4.2. After the guest signals

completion of the injected virtual interrupt, ELI leaves injection mode by reconfiguring

the processor to let the guest handle physical interrupts directly and resuming the

guest with the shadow IDT. As we later show in Section 3.6, the number of injected

virtual interrupts is orders of magnitude smaller than the number of physical interrupts

generated by the assigned device. Thus, the overhead caused by switching to injection

mode is negligible.

Instead of changing the IDT entries’ present bits to cause reflection into the host,

the host could also change the entries themselves to invoke shadow interrupt handlers

in guest mode. This alternative method can enable additional functionality, such as

delaying or batching physical interrupts, and is discussed in Section 3.9.

3.5.2 Placing the Shadow IDT

There are several requirements on where in guest memory to place the shadow IDT.

First, it should be hidden from the guest, i.e., placed in memory not normally accessed

by the guest. Second, it must be placed in a guest physical page which is always mapped

in the guest’s kernel address space. This is an x86 architectural requirement, since the

IDTR expects a virtual address. Third, since the guest is unmodified and untrusted,

the host cannot rely on any guest cooperation for placing the shadow IDT. ELI satisfies

all three requirements by placing the shadow IDT in an extra page of a device’s PCI

BAR (Base Address Register).

The PCI specification requires that PCI devices expose their registers to system

software as memory through the use of BAR registers. BARs specify the location and

sizes of device registers in physical memory. Linux and Windows drivers will map the

full size of their devices’ PCI BARs into the kernel’s address space, but they will only

access specific locations in the mapped BAR that are known to correspond to device

registers. Placing the shadow IDT in an additional memory page tacked onto the end

of a device’s BAR causes the guest to (1) map it into its address space, (2) keep it

mapped, and (3) not access it during normal operation. All of this happens as part of

normal guest operation and does not require any guest awareness or cooperation. To

detect runtime changes to the guest IDT, the host also write-protects the shadow IDT

51

page. Other security and isolation considerations are discussed in Section 3.7.

3.5.3 Configuring Guest and Host Vectors

Neither the host nor the guest have absolute control over precisely when an assigned

device interrupt fires. Since the host and the guest may run at different times on the

core receiving the interrupt, both must be ready to handle the same interrupt. (The

host handles the interrupt by injecting it into the guest.) Interrupt vectors also control

that interrupt’s relative priority compared with other interrupts. For both of these

reasons, ELI makes sure that for each device interrupt, the respective guest and host

interrupt handlers are assigned to the same vector.

Since the guest is not aware of the host and chooses arbitrary interrupt vectors for the

device’s interrupts, ELI makes sure the guest, the host, and the device all use the same

vectors. ELI does this by trapping the guest’s programming of the device to indicate

which vectors it wishes to use and then allocating the same vectors in the host. In the

case where these vectors were already used in the host for another device, ELI reassigns

that device’s interrupts to other (free) vectors. Finally, ELI programs the device with

the vectors the guest indicated. Hardware-based interrupt remapping [AJM+06] can

avoid the need to re-program the device vectors by remapping them in hardware instead,

but still requires the guest and the host to use the same vectors.

3.5.4 Exitless Interrupt Completion

As shown in Figure 3.1(b), ELI IDT shadowing delivers hardware interrupts to the guest

without host intervention. Signaling interrupt completion, however, still forces (at least)

one exit to host mode. This exit is caused by the guest signaling the completion of an

interrupt. As explained in Section 3.4.2, guests signal completion by writing to the EOI

LAPIC register. This register is exposed to the guest either as part of the LAPIC area

(older LAPIC interface) or as an x2APIC MSR (the new LAPIC interface). With the

old interface, nearly every LAPIC access causes an exit, whereas with the new interface,

the host can decide on a per-x2APIC-register basis which register accesses cause exits

and which do not.

Before ELI, the host configured the CPU’s MSR bitmap to force an exit when the

guest accessed the EOI MSR. ELI exposes the x2APIC EOI register directly to the guest

by configuring the MSR bitmap to not cause an exit when the guest writes to the EOI

register. No other x2APIC registers are passed directly to the guest; the security and

isolation considerations arising from direct guest access to the EOI MSR are discussed in

Section 3.7. Figure 3.1(c) illustrates that combining this interrupt completion technique

with ELI IDT shadowing allows the guest to handle physical interrupts without any

exits on the critical interrupt handling path.

Guests are not aware of the distinction between physical and virtual interrupts.

They signal the completion of all interrupts the same way, by writing the EOI register.

52

When the host injects a virtual interrupt, the corresponding completion should go to the

host for emulation and not to the physical EOI register. Thus, during injection mode

(described in Section 3.5.1), the host temporarily traps accesses to the EOI register.

Once the guest signals the completion of all pending virtual interrupts, the host leaves

injection mode.

Trapping EOI accesses in injection mode also enables ELI to correctly emulate x86

nested interrupts. A nested interrupt occurs when a second interrupt arrives while

the operating system is still handling a previous interrupt. This can only happen if

the operating system enabled interrupts before it finished handling the first interrupt.

Interrupt priority dictates that the second (nested) interrupt will only be delivered if

its priority is higher than that of the first interrupt. Some guest operating systems,

including Windows, make use of nested interrupts. ELI deals with nested interrupts by

checking whether the guest is in the middle of handling a physical interrupt. If it is,

ELI delays the injection of any virtual interrupt with a priority that is lower than the

priority of that physical interrupt.

3.5.5 Multiprocessor Environments

Guests may have more virtual CPUs (vCPUs) than available physical cores. However,

multiplexing more than one guest vCPU on a single core will lead to an immediate

drop in performance, due to the increased number of exits and entries [LGBK08]. Since

our main goal is virtual machine performance that equals bare-metal performance, we

assume that each guest vCPU has a mostly-dedicated physical core. Executing a guest

with multiple vCPUs, each running on its own mostly-dedicated core, requires that

ELI support interrupt affinity correctly. ELI allows the guest to configure the delivery

of interrupts to a subset of its vCPUs, just as it does on bare metal. ELI does this

by intercepting the guest’s interrupt affinity configuration changes and configuring the

physical hardware to redirect device interrupts accordingly.

3.6 Evaluation

We implement ELI, as described in the previous sections, within the KVM hyper-

visor [KKL+07]. This section evaluates the functionality and performance of our

implementation.

3.6.1 Methodology and Experimental Setup

We measure and analyze ELI’s effect on high-throughput network cards assigned to

a guest virtual machine. Network cards are the most common use-case of device

assignment, due to: (1) their higher throughput relative to other devices (which makes

device assignment particularly appealing over the slower alternatives of emulation and

53

paravirtualization); and because (2) SR-IOV network cards make it easy to assign one

physical network card to multiple guests.

We use throughput and latency to measure performance, and we contrast the results

achieved by virtualized and bare-metal settings to demonstrate that the former can

approach the latter. As noted earlier, performance-minded applications would typically

dedicate whole cores to guests (single virtual CPU per core). We limit our evaluation

to this case.

Our test machine is an IBM System x3550 M2, which is a dual-socket, 4-cores-per-

socket server equipped with Intel Xeon X5570 CPUs running at 2.93 GHz. The chipset

is Intel 5520, which includes an IOMMU as required for device assignment. The system

includes 24GB of memory and an Emulex OneConnect 10Gbps NIC. We use another

similar remote server (connected directly by 10Gbps fiber) as workload generator and

a target for I/O transactions. We set the Maximum Transmission Unit (MTU) to its

default size of 1500 bytes; we do not use jumbo Ethernet frames.

Guest mode configurations execute with a single vCPU. Bare-metal configurations

execute with a single core enabled, so as to have comparable setups. We assign

1GB of memory for both types of configurations. We disable the IOMMU in bare-

metal configurations, such that the associated results represent the highest attainable

performance. We use the IOMMU for device assignment in virtualized configuration,

but do not expose it to guests, as presented in Chapter 2. We disable Dynamic Voltage

and Frequency Scaling (DVFS) to avoid power features related artifacts. Both guest

and bare-metal setups run Ubuntu 9.10 with Linux 2.6.35.

We run all guests on the KVM hypervisor (which is part of Linux 2.6.35) with

QEMU 0.14.0. We run them with and without ELI modifications. To check that ELI

functions correctly in other setups, we also deploy it in an environment that uses a

different device (a Broadcom NetXtreme II BCM5709 1Gbps NIC) and a different OS

(Windows 7); we find that ELI indeed operates correctly.

Unless otherwise stated, we configure the hypervisor to back the guest’s memory

with 2MB huge pages [NIDC02] and two-dimensional page tables. Huge pages minimize

two-dimensional paging overhead [BSSM08] and reduce TLB pressure. We note that

only the host uses huge pages; in all cases the guest still operates with the default 4KB

page size. We later quantify the performance without huge pages, finding that they

improve performance of both baseline and ELI runs.

Recall that ELI makes use of the x2APIC hardware to avoid exits on interrupt

completions (see Section 3.5.4). Alas, the hardware we used for evaluation did not

support x2APIC. To nevertheless measure the benefits of ELI utilizing x2APIC hardware,

we slightly modify our Linux guest to emulate the x2APIC behavior. Specifically, we

expose the physical LAPIC and a control flag to the guest, such that the guest may

perform an EOI on the virtual LAPIC (forcing an exit) or the physical LAPIC (no exit),

depending on the value of the control flag.

54

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0G

1G

2G

3G

4G

5G

%
 o

f
b
a
re

-m
e
ta

l
th

ro
u
g
h
p
u
t

T
h
ro

u
g
h
p
u
t
(b

p
s
)

Baseline ELI
delivery

only

ELI

Netperf

55% 63%

(a) Netperf

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0K

2K

4K

6K

8K

10K

%
 o

f
b
a
re

-m
e
ta

l
th

ro
u
g
h
p
u
t

R
e
q
u
e
s
ts

 /
 s

e
c
o
n
d

Baseline ELI
delivery

only

ELI

Apache

33%
49%

(b) Apache

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0K

20K

40K

60K

80K

100K

120K

140K

160K

180K

%
 o

f
b
a
re

-m
e
ta

l
th

ro
u
g
h
p
u
t

T
ra

n
s
a
c
ti
o
n
s
 /
 s

e
c
o
n
d

Baseline ELI
delivery

only

ELI

Memcached

37%

66%

(c) Memcached

Figure 3.3: Performance of three I/O intensive workloads (described in the main text).
We compare the throughput measured when using baseline device assignment, delivery-
only ELI and full ELI, scaled so 100% means bare-metal throughput. Throughput gains
over baseline device assignment are noted inside the bars.

3.6.2 Throughput

I/O virtualization performance suffers the most with workloads that are I/O intensive,

and which incur many interrupts. We start our evaluation by measuring three well-known

examples of network-intensive workloads, and show that for these benchmarks ELI

provides a significant (49%–66%) throughput increase over baseline device assignment,

and that it nearly (to 0%-3%) reaches bare-metal performance. We consider the following

three benchmarks:

1. Netperf TCP stream, is the simplest of the three benchmarks [Jon95]. It opens a

single TCP connection to the remote machine, and makes as many rapid write()

calls of a given size as possible.

2. Apache is an HTTP server. We use ApacheBench to load the server and measure

its performance. ApacheBench runs on the remote machine and repeatedly requests

a static page of a given size from several concurrent threads.

3. Memcached is a high-performance in-memory key-value storage server [Fit04]. It

is used by many high-profile Web sites for caching results of slow database queries,

thereby significantly improving the site’s overall performance and scalability. We

used the Memslap benchmark, part of the libmemcached client library, to load

the server and measure its performance. Memslap runs on the remote machine,

sends a random sequence of memcached get (90%) and set (10%) requests to the

server and measures the request completion rate.

We configure each benchmark with parameters which fully load the tested machine’s

CPU (so that throughput can be compared), but do not saturate the tester machine.

We configure Netperf to do 256-byte writes, ApacheBench to request 4KB static pages

55

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0G

1G

2G

3G

4G

5G

%
 o

f
b
a
re

-m
e
ta

l
th

ro
u
g
h
p
u
t

T
h
ro

u
g
h
p
u
t
(b

p
s
)

4K 2M 4K 2M 4K 2M

Baseline ELI delivery ELI

111%

55%

128%

63%

(a) Netperf

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0K

2K

4K

6K

8K

10K

%
 o

f
b
a
re

-m
e
ta

l
th

ro
u
g
h
p
u
t

R
e
q
u
e
s
ts

 /
 s

e
c
o
n
d

4K 2M 4K 2M 4K 2M

Baseline ELI delivery ELI

26%

33%
42%

49%

(b) Apache

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0K

20K

40K

60K

80K

100K

120K

140K

160K

180K

%
 o

f
b
a
re

-m
e
ta

l
th

ro
u
g
h
p
u
t

T
ra

n
s
a
c
ti
o
n
s
 /
 s

e
c
o
n
d

4K 2M 4K 2M 4K 2M

Baseline ELI delivery ELI

34%

37%
59%

66%

(c) Memcached

Figure 3.4: ELI’s improvement for each of the workloads, with normal (4K) and huge
(2M) host pages. Gains over baseline device assignment with normal pages or huge
pages are noted inside the respective bars.

from 4 concurrent threads, and Memslap to make 64 concurrent requests from 4 threads

(with other parameters set to their default values). We verify that the results do not

significantly vary when we change these parameters.

Figure 3.3 illustrates how ELI improves the throughput of these three benchmarks.

Each of the benchmarks was run on bare metal (no virtualization) and under three

virtualized setups: baseline device assignment, device assignment with ELI delivery only,

and device assignment with full ELI (avoiding exits on both delivery and completion of

interrupts). The results are based on averaging ten identical runs, with the standard

deviation being up to 0.9% of the average for the Netperf runs, up to 0.5% for Apache,

and up to 2.6% for Memcached.

The figure shows that baseline device assignment performance is still considerably

below bare-metal performance: Netperf throughput on a guest is at 60% of bare-metal

throughput, Apache is at 65%, and Memcached at 60%. With ELI, Netperf achieves

98% of the bare-metal throughput, Apache 97%, and Memcached 100%.

It is evident from the figure that using ELI gives a significant throughput increase,

63%, 49%, and 66% for Netperf, Apache, and Memcached, respectively. The measure-

ments also show that ELI delivery-only gives most of the performance benefit of the full

ELI. For Apache, ELI delivery-only gives a 33% throughput increase, and avoiding the

remaining completion exits improves throughput by an additional 12%.

As noted, these results are obtained with the huge pages feature enabled, which means

KVM utilizes 2MB host pages to back guests’ memory (though guests still continue

to use normal-sized 4KB pages). Backing guests with huge pages gives an across-

the-board performance improvement to both baseline and ELI runs. To additionally

demonstrate ELI’s performance when huge pages are not available, Figure 3.4 contrasts

results from all three benchmarks with and without huge pages. We see that using ELI

gives a significant throughput increase, 128%, 42%, and 59% for Netperf, Apache, and

Memcached, respectively, even without huge pages. We further see that bare-metal

performance for guests requires the host to use huge pages. This requirement arises due

to architectural limitations; without it, pressure on the memory subsystem significantly

56

Netperf Baseline ELI delivery ELI Bare metal

Exits/s 102222 43832 764
Time in guest 69% 94% 99%
Interrupts/s 48802 42600 48746 48430
handled in host 48802 678 103

Injections/s 49058 941 367
IRQ windows/s 8060 686 103

Throughput mbps 3145 4886 5119 5245

Apache Baseline ELI delivery ELI Bare metal

Exits/s 90506 64187 1118
Time in guest 67% 89% 98%
Interrupts/s 36418 61499 66546 68851
handled in host 36418 1107 195

Injections/s 36671 1369 458
IRQ windows/s 7801 1104 192

Requests/s 7729 10249 11480 11875
Avg response ms 0.518 0.390 0.348 0.337

Memcached Baseline ELI delivery ELI Bare metal

Exits/s 123134 123402 1001
Time in guest 60% 83% 98%
Interrupts/s 59394 120526 154512 155882
handled in host 59394 2319 207

Injections/s 59649 2581 472
IRQ windows/s 9069 2345 208

Transactions/s 112299 153617 186364 186824

Table 3.1: Execution breakdown for the three benchmarks, with baseline device assign-
ment, delivery-only ELI, and full ELI.

hampers performance due to two-dimensional hardware page walks [BSSM08]. As can

be seen in Figures 3.3 and 3.4, the time saved by eliminating the exits due to interrupt

delivery and completion varies. The host handling of interrupts is a complex operation,

and is avoided by ELI delivery. What ELI completion then avoids is the host handling

of EOI, but that handling is quick when ELI is already enabled—it basically amounts

to issuing an EOI on the physical LAPIC (see Section 3.5.4).

3.6.3 Execution Breakdown

Breaking down the execution time to host, guest, and overhead components allows us

to better understand how and why ELI improves the guest’s performance. Table 3.1

shows this breakdown for the above three benchmarks.

Intuitively, guest performance is better with ELI because the guest gets a larger

fraction of the CPU (the host uses less), and/or because the guest runs more efficiently

when it gets to run. With baseline device assignment, only 60%–69% of the CPU time

57

is spent in the guest. The rest is spent in the host, handling exits or performing the

world-switches necessary on every exit and entry.

With only ELI delivery enabled, the heavy “interrupts handled in host” exits are

avoided and the time in the guest jumps to 83%–94%. Although EOI exit handling is

fairly fast, there are still many exits (43,832–123,402 in the different benchmarks), and

the world-switch times still add up to a significant overhead. Only when ELI completion

eliminates most those exits and most world-switches, do both time in host (1%–2%)

and number of world-switches (764–1,118) finally become low.

In baseline device assignment, all interrupts arrive at the host (perhaps after exiting

a running guest) and are then injected to the guest. The injection rate is slightly higher

than interrupt rate because the host injects additional virtual interrupts, such as timer

interrupts.

With ELI delivery, only the 678–2,319 interrupts that occur while the host is running,

or during exits, or while handling an injected interrupt, will arrive at the host—the rest

will be handled directly by the guest. The number of interrupts “handled in host” is

even lower (103–207) when ELI completion is also used, because the fraction of the time

that the CPU is running the host or exiting to the host is much lower.

Baseline device assignment is further slowed down by “IRQ window” exits: on bare

metal, when a device interrupt occurs while interrupts are blocked, the interrupt will be

delivered by the LAPIC hardware some time later. But when a guest is running, an

interrupt always causes an immediate exit. The host wishes to inject this interrupt to

the guest (if it is an interrupt from the assigned device), but if the guest has interrupts

blocked, it cannot. The x86 architecture solution is to run the guest with an “IRQ

window” enabled, requesting an exit as soon as the guest enables interrupts. In the

table, we can see 7801–9069 of these exits every second in the baseline device assignment

run. ELI mostly eliminates IRQ window overhead, by eliminating most injections.

As expected, ELI slashes the number of exits, from 90,506–123,134 in the baseline

device assignment runs, to just 764–1,118. One might guess that delivery-only ELI,

which avoids one type of exit (on delivery) but retains another (on completion), should

result in an exit rate halfway between the two. But in practice, other factors play into

the ELI delivery-only exit rate: the interrupt rate might have changed from the baseline

case (we see it significantly increased in the Apache and Memcached benchmarks, but

slightly lowered in Netperf), and even in the baseline case some interrupts might have

not caused exits because they happened while the host was running (and it was running

for a large fraction of the time). The number of IRQ window exits is also different, for

the reasons discussed above.

3.6.4 Impact of Interrupt Rate

The benchmarks in the previous section demonstrated that ELI significantly improves

throughput over baseline device assignment for I/O intensive workloads. But as the

58

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 50 100 150 200 250 300

E
L
I’
s
 t
h
ro

u
g
h
p
u
t
im

p
ro

v
e
m

e
n
t

Computation-I/O ratio (cycles/byte)

(a) ELI’s throughput improvement

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 50 100 150 200 250 300

In
te

rr
u
p
ts

 /
 s

e
c
o
n
d

Computation-I/O ratio (cycles/byte)

(b) Baseline interrupt rate

Figure 3.5: Modified-Netperf workloads with various computation-I/O ratios.

workload spends less of its time on I/O and more of its time on computation, it seems

likely that ELI’s improvement might be less pronounced. Nonetheless, counterintuitively,

we shall now show that ELI continues to provide relatively large improvements until

we reach some fairly high computation-per-I/O ratio (and some fairly low throughput).

To this end, we modify the Netperf benchmark to perform a specified amount of

extra computation per byte written to the stream. This resembles many useful server

workloads, where the server does some computation before sending its response.

A useful measure of the ratio of computation to I/O is cycles/byte, the number

of CPU cycles spent to produce one byte of output; this ratio is easily measured

as the quotient of CPU frequency (in cycles/second) and workload throughput (in

bytes/second). Note, cycles/byte is inversely proportional to throughput. Figure 3.5(a)

depicts ELI’s improvement as a function of this ratio, showing it remains over 25% until

after 60 cycles/byte (which corresponds to throughput of only 50Mbps). The reason

underlying this result becomes apparent when examining Figure 3.5(b), which shows

the interrupt rates measured during the associated runs from Figure 3.5(a). Contrary to

what one might expect, the interrupt rate is not proportional to the throughput (until

60 cycles/byte); instead, it remains between 30K–60K. As will be shortly exemplified,

rates are kept in this range due to the NIC (which coalesces interrupts) and the Linux

driver (which employs the NAPI mechanism), and they would have been higher if it

were not for these mechanisms. Since ELI lowers the overhead of handling interrupts,

its benefit is proportional to their rate, not to throughput, a fact that explains why the

improvement is similar over a range of computation-I/O values. The fluctuations in

interrupt rate (and hence in ELI improvement) shown in Figure 3.5 for cycles/byte <

20 are not caused by virtualization; they are also present in bare metal settings and

have to do with the specifics of the Linux NIC driver implementation.

We now proceed to investigate the dependence of ELI’s improvement on the amount

of coalescing done by the NIC, which immediately translates to the amount of generated

interrupts. Our NIC imposes a configurable cap on coalescing, allowing its users to set a

59

0%

20%

40%

60%

80%

100%

120%

10K 20K 30K 40K 50K 60K 70K 80K

E
L

I’
s
 t

h
ro

u
g

h
p

u
t

im
p

ro
v
e

m
e

n
t

Interrupts / second

16

24

32
40485664

72

80

88

96

Figure 3.6: Throughput improvement and interrupt rate for Netperf benchmark with
different interrupt coalescing intervals (shown in labels).

time duration T , such that the NIC will not fire more than one interrupt per Tµs (longer

T implies less interrupts). We set the NIC’s coalescing cap to the following values: 16µs,

24µs, 32µs, . . ., 96µs. Figure 3.6 plots the results of the associated experiments (the

data along the curve denotes values of T). Clearly, higher interrupt rates imply higher

savings due to ELI. The smallest interrupt rate that our NIC generates for this workload

is 13K interrupts per second (with T=96µs), and even with this maximal coalescing

ELI still provides a respectable 10% performance improvement over the baseline. ELI

achieves at least 99% of bare-metal throughput in all of the experiments described in

this subsection.

3.6.5 Latency

By removing the exits caused by external interrupts, ELI substantially reduces the

time it takes to deliver interrupts to the guest. This period of time is critical for

latency-sensitive workloads. We measure ELI’s latency improvement using Netperf

UDP request-response, which sends a UDP packet and waits for a reply before sending

the next. To simulate a busy guest that always has some work to do alongside a

latency-sensitive application, we run a busy-loop within the guest. Table 3.2 presents

the results. We can see that baseline device assignment increases bare metal latency by

8.21µs and that ELI reduces this gap to only 0.58µs, which is within 98% of bare-metal

latency.

60

Configuration Avg latency % of bare-metal

Baseline 36.14 µs 129%
ELI delivery-only 30.10 µs 108%
ELI 28.51 µs 102%
Bare-metal 27.93 µs 100%

Table 3.2: Latency measured by Netperf UDP request-response benchmark.

3.7 Security and Isolation

ELI’s performance stems from the host giving guests direct access to privileged architec-

tural mechanisms. In this section, we review potential threats and how ELI addresses

them.

3.7.1 Threat Model

We analyze malicious guest attacks against the host through a hardware-centric ap-

proach. ELI grants guests direct control over several hardware mechanisms that current

hypervisors keep protected: interrupt masking, reception of physical interrupts, and

interrupt completion via the EOI register. Using these mechanisms, a guest can disable

interrupts for unbounded periods of time, try to consume (steal) host interrupts, and

issue interrupt completions incorrectly.

Delivering interrupts directly to the guest requires that the guest be able to control

whether physical interrupts are enabled or disabled. Accordingly, ELI allows the guest to

control interrupt masking, both globally (all interrupts are blocked) and by priority (all

interrupts whose priority is below a certain threshold are blocked). Ideally, interrupts

that are not assigned to the guest would be delivered to the host even when the guest

masks them, yet x86 does not currently provide such support. As a result, the guest is

able to mask any interrupt, possibly forever. Unless addressed, masking high-priority

interrupts such as the thermal interrupt that indicates the CPU is running hot, may

cause the system to crash. Likewise, disabling and never enabling interrupts could allow

the guest to run forever.

While ELI configures the guest shadow IDT to trigger an exit for non-assigned

physical interrupts, the interrupts are still first delivered to the guest. Therefore, we

must consider the possibility that a guest, in spite of ELI, manages to change the

physical IDT. If this happens, both assigned interrupts and non-assigned interrupts

will be delivered to the guest while it is running. If the guest manages to change the

physical IDT, a physical interrupt might not be delivered to the host, which might cause

a host device driver to malfunction.

ELI also grants the guest direct access to the EOI register. Reading EOI is prevented

by the CPU, and writes to the register while no interrupt is handled do not affect the

system. Nevertheless, if the guest exits to the host without signaling the completion of

in-service interrupts, it can affect the host interruptibility, as x86 automatically masks

61

all interrupts whose priority is lower than the one in service. Since the interrupt is

technically still in service, the host may not receive lower-priority interrupts.

3.7.2 Protection

ELI’s design addresses all of these threats. To protect against malicious guests stealing

CPU time by disabling interrupts forever, ELI uses the preemption timer feature of x86

virtualization, which triggers an unconditional exit after a configurable period of time

elapses.

To protect host interruptibility, ELI signals interrupt completion for any assigned

interrupt still in service after an exit. To maintain correctness, when ELI detects that

the guest did not complete any previously delivered interrupts, it falls back to injection

mode until the guest signals completions of all in-service interrupts. Since all of the

registers that control CPU interruptibility are reloaded upon exit, the guest cannot

affect host interruptibility.

To protect against malicious guests blocking or consuming critical physical interrupts,

ELI uses one of the following mechanisms. First, if there is a core which does not

run any ELI-enabled guests, ELI redirects critical interrupts there. If no such core is

available, ELI uses a combination of Non-Maskable-Interrupts (NMIs) and IDT limiting.

Non-Maskable-Interrupts (NMIs) trigger unconditional exits; they cannot be blocked

by guests. ELI redirects critical interrupts to the core’s single NMI handles. All critical

interrupts are registered with the NMI handler, and whenever an NMI occurs, the NMI

handler calls all registered interrupt vectors to discern which critical interrupt occurred.

NMI sharing has a negligible run-time cost (since critical interrupts rarely happen).

However, some devices and device drivers may lock up or otherwise misbehave if their

interrupt handlers are called when no interrupt was raised.

For critical interrupts whose handlers must only be called when an interrupt actually

occurred, ELI uses a complementary coarse grained IDT limit mechanism. The IDT

limit is specified in the IDTR register, which is protected by ELI and cannot be changed

by the guest. IDT limiting reduces the limit of the shadow IDT, causing all interrupts

whose vector is above the limit to trigger the usually rare general purpose exception (GP).

GP is intercepted and handled by the host similarly to the not-present (NP) exception.

Unlike reflection through NP (Section 3.5.1), which the guest could perhaps subvert by

changing the physical IDT, no events take precedence over the IDTR limit check [Int10].

It is therefore guaranteed that all handlers above the limit will trap to the host when

called.

For IDT limiting to be transparent to the guest, the limit must be set above the

highest vector of the assigned devices’ interrupts. Moreover, it should be higher than

any software interrupt that is in common use by the guest, since such interrupts will

undesirably trigger frequent exits and reduce performance. Therefore, in practice ELI

sets the threshold just below the vectors used by high-priority interrupts in common

62

operating systems [BC05, RS04]. Since this limits the number of available above-the-

limit handlers, ELI uses the IDT limiting for critical interrupts and reflection through

not-present exceptions for other interrupts.

3.8 Architectural Support

The overhead of interrupt handling in virtual environments is due to the design choices

of x86 hardware virtualization. The implementation of ELI could be simplified and

improved by adding a few features to the processor.

First, to remove the complexity of managing the shadow IDT and the overhead

caused by exits on interrupts, the processor should provide a feature to assign physical

interrupts to a guest. Interrupts assigned to a guest should be delivered through the

guest IDT without causing an exit. Any other interrupt should force an exit to the host

context. Interrupt masking during guest mode execution should not affect non-assigned

interrupts. To solve the vector sharing problem described in Section 3.5.3, the processor

should provide a mechanisms to translate from host interrupt vectors to guest interrupt

vectors. Second, to remove the overhead of interrupt completion, the processor should

allow a guest to signal completion of assigned interrupts without causing an exit. For

interrupts assigned to a guest, EOI writes should be directed to the physical LAPIC.

Otherwise, EOI writes should force an exit.

3.9 Applicability and Future Work

While this work focuses on the advantages of letting guests handle physical interrupts

directly, ELI can also be used to directly deliver all virtual interrupts, including those

of paravirtual devices, emulated devices, and inter-processor interrupts (IPI). Currently,

hypervisors deliver these interrupts to guests through the architectural virtual interrupt

mechanism. This mechanism requires multiple guest exits, which would be eliminated

by ELI. The only requirement for using ELI is that the interrupt vector not be used by

the host. Since interrupt vectors tend to be fixed, the host can in most cases relocate

the interrupts handlers it uses to other vectors that are not used by guests.

ELI can also be used for injecting guests with virtual interrupts without exits, in

scenarios where virtual interrupts are frequent. The host can send an IPI from any core

with the proper virtual interrupt vector to the target guest core, eliminating the need

for exits due to interrupt-window, interrupt delivery, and completion. The host can also

inject interrupts into the guest from the same core by sending a self-IPI right before

resuming the guest, so the interrupt will be delivered in the guest context, saving at

least the exit currently required for interrupt completion.

ELI can also be used for direct delivery to guests of LAPIC-triggered non-critical

interrupts such as the timer interrupt. Once the timer interrupt is assigned to the

63

guest, the host can use the architectural preemption timer (described in Section 3.7) for

preempting the guest instead of relying on the timer interrupt.

The current ELI implementation configures the shadow IDT to force an exit when the

guest is not supposed to handle an incoming physical interrupt. In the future, we plan

to extend our implementation and configure the shadow IDT to invoke shadow interrupt

handlers—handler routines hidden from the guest operating system and controlled by

the host [BDA]. Using this approach, the shadow handlers running host code will be

executed in guest mode without causing a transition to host mode. The code could

then inspect the interrupt and decide to batch it, delay it, or force an immediate exit.

This mechanism can help to mitigate the overhead of physical interrupts not assigned

to the guest. In addition, shadow handlers can also be used for function call injection,

allowing the host to run code in guest mode.

3.10 Conclusions

The key to high virtualization performance is for the CPU to spend most of its time in

guest mode, running the guest, and not in the host, handling guest exits. Yet current

approaches to x86 virtualization induce multiple exits by requiring host involvement

in the critical interrupt handling path. The result is that I/O performance suffers.

We propose to eliminate the unwarranted exits by introducing ELI, an approach that

lets guests handle interrupts directly and securely. Building on many previous efforts

to reduce virtualization overhead, ELI finally makes it possible for untrusted and

unmodified virtual machines to reach nearly bare-metal performance, even for the most

I/O-intensive and interrupt-heavy workloads.

ELI also demonstrates that the rich x86 architecture, which in many cases complicates

hypervisor implementations, provides exciting opportunities for optimization. Exploiting

these opportunities, however, may require using architectural mechanisms in ways that

their designers did not necessarily foresee.

64

Chapter 4

VSWAPPER: A Memory

Swapper For Virtualized

Environments

4.1 Abstract

1 The number of guest virtual machines that can be consolidated on one physical host

is typically limited by the memory size, motivating memory overcommitment. Guests

are given a choice to either install a “balloon” driver to coordinate the overcommit-

ment activity, or to experience degraded performance due to uncooperative swapping.

Ballooning, however, is not a complete solution, as hosts must still fall back on un-

cooperative swapping in various circumstances. Additionally, ballooning takes time

to accommodate change, and so guests might experience degraded performance under

changing conditions.

Our goal is to improve the performance of hosts when they fall back on uncooperative

swapping and/or operate under changing load conditions. We carefully isolate and

characterize the causes for the associated poor performance, which include various

types of superfluous swap operations, decayed swap file sequentiality, and ineffective

prefetch decisions upon page faults. We address these problems by implementing

VSwapper, a guest-agnostic memory swapper for virtual environments that allows

efficient, uncooperative overcommitment. With inactive ballooning, VSwapper yields

up to an order of magnitude performance improvement. Combined with ballooning,

VSwapper can achieve up to double the performance under changing load conditions.

1 Joint work with Dan Tsafrir (CS, Technion) and Assaf Schuster (CS, Technion). A paper regarding
this part of the work was presented in ASPLOS 2014.

65

4.2 Introduction

The main enabling technology for cloud computing is machine virtualization, which

abstracts the rigid physical infrastructure and turns it into soft components easily

managed and used. Clouds and virtualization are driven by strong economic incentives,

notably the ability to consolidate multiple guest servers on one physical host. The

number of guests that one host can support is typically limited by the physical memory

size [BCS12, GLV+10, HGS+11, WTLS+09b]. So hosts overcommit their memory to

increase their capacity.

Memory of guest virtual machines is commonly overcommitment via a special

“balloon” driver installed in the guest [Wal02]. Balloons allocate pinned memory pages

at the host’s request, thereby ensuring that guests will not use them; the pages can then

be used by the host for some other purpose. When a balloon is “inflated,” it prompts

the guest operating system to reclaim memory on its own, which often results in the

guest swapping out some of its less frequently used pages to disk.

Ballooning is a common-case optimization for memory reclamation and overcom-

mitment, but, inherently, it is not a complete solution [Hor11, Tan10, Wal02, Yan11].

Hosts cannot rely on guest cooperation, because: (1) clients may have disabled or

opted not to install the balloon [Bra08, Oza11, vZ10]; (2) clients may have failed to

install the balloon due to technical difficulties [VMw11b, VMw12b, VMw12a, VMw12c,

VMw13a, VMw13b, VMw13c]; (3) balloons could reach their upper bound, set by the

hypervisor (and optionally adjusted by clients) to enhance stability and to accommodate

various guest limitations [Chi10, Den09, Sas12, TH09, VMw10b, Wal02]; (4) balloons

might be unable to reclaim memory fast enough to accommodate the demand that

the host must satisfy, notably since guest memory swapping involves slow disk activity

[HRP+14, MhMMH09, Wal02]; and (5) balloons could be temporarily unavailable due

to inner guest activity such as booting [Wal02] or running high priority processes that

starve guest kernel services. In all these cases, the host must resort to uncoopera-

tive swapping, which is notorious for its poor performance (and which has motivated

ballooning in the first place).

While operational, ballooning is a highly effective optimization. But estimating the

memory working set size of guests is a hard problem, especially under changing conditions

[LS07, HGS+11, JADAD06b], and the transfer of memory pages between guests is slow

when the memory is overcommitted [HRP+14, KJL11, MhMMH09, Cor10b]. Thus,

upon change, it takes time for the balloon manager to adjust the balloon sizes and to

achieve good results. Hosts might therefore rely on uncooperative swapping during this

period, and so guests might experience degraded performance until the balloon sizes

stabilize.

We note in passing that the use of ballooning constitutes a tradeoff that embodies

both a benefit and a price. The benefit is the improved performance achieved through

curbing the uncooperative swapping activity. Conversely, the price for clients is that they

66

need to modify their guest operating systems by installing host-specific software, which

has various undesirable consequences such as burdening the clients, being nonportable

across different hypervisors, and entailing a small risk of causing undesirable interactions

between new and existing software [KT12]. The price for vendors is that they need to

put in the effort to support different drivers for every guest operating system kernel and

version. (We speculate that, due to this effort, for example, there is no balloon driver

available for OS X under KVM and VirtualBox, and the latter supports ballooning for

only 64-bit guests [Cor13].) Therefore, arguably, reducing the overheads of uncooperative

swapping could sway the decision of whether to employ ballooning or not.

Our goal in this paper is twofold. To provide a superior alternative to baseline

uncooperative host swapping, to be used by hosts as a performant fall back for when

balloons cannot be used. And to enhance guests’ performance while ballooning is utilized

under changing load conditions. We motivate this goal in detail in Section 4.3.

We investigate why uncooperative swapping degrades performance in practice and

find that it is largely because of: (1) “silent swap writes” that copy unchanged blocks of

data from the guest disk image to the host swap area; (2) “stale swap reads” triggered

when guests perform explicit disk reads whose destination buffers are pages swapped

out by the host; (3) “false swap reads” triggered when guests overwrite whole pages

previously swapped out by the host while disregarding their old content (e.g., when

copying-on-write); (4) “decayed swap sequentiality” that causes unchanged guest file

blocks to gradually lose their contiguity while being kept in the host swap area and

thereby hindering swap prefetching; and (5) “false page anonymity” that occurs when

mislabeling guest pages backed by files as anonymous and thereby confusing the page

reclamation algorithm. We characterize and exemplify these problems in Section 4.4.

To address the problems, we design VSwapper, a guest-agnostic memory swapper

to be used by hypervisors. VSwapper is implemented as a KVM extension and is

comprised of two components. The first is the Swap Mapper, which monitors the disk

I/O performed by a guest while maintaining a mapping between its unmodified memory

pages and their corresponding origin disk blocks. When such mapped memory pages

are reclaimed, they need not be written to the host swap file; instead the Mapper

records their location in the guest’s virtual disk for future reference and discards them,

thereby eliminating the root cause of silent writes, stale reads, decayed sequentiality,

and false page anonymity. The second component is the False Reads Preventer, which

eliminates false reads by emulating faulting write instructions directed at swapped out

pages. Instead of immediately faulting-in the latter, the Preventer saves the written

data in a memory buffer for a short while, in the hope that the entire buffer would fill

up soon, obviating the need to read. We describe VSwapper in detail in Section 4.5.

We evaluate VSwapper in Section 4.6 and find that when memory is tight, VSwapper

is typically much better than baseline swapping and is oftentimes competitive with

ballooning. At its worst, VSwapper is respectively 1.035x and 2.1x slower than baseline

and ballooning. At its best, VSwapper is respectively 10x and 2x faster than baseline

67

and ballooning, under changing load conditions. In all cases, combining VSwapper and

ballooning yields performance comparable to the optimum.

We discuss the related work in Section 4.7, outline possible future work in Section 4.8,

and conclude in Section 4.9.

4.3 Motivation

4.3.1 The Benefit of Ballooning

Current architectural support for machine virtualization allows the host operating

system (OS) to manage the memory of its guest virtual machines (VMs) as if they

were processes, and it additionally allows the guest OSes to do their own memory

management for their internal processes, without host involvement.

Hardware provides this capability by supporting a two-level address translation

mechanism (Figure 4.1). The upper level is controlled by the guest and is comprised of

page tables translating “guest virtual addresses” (GVAs) to “guest physical addresses”

(GPAs). The lower level is controlled by the host and is comprised of tables translating

guest physical addresses to “host physical addresses” (HPAs). A guest physical address

is of course not real in any sense. The host can (1) map it to some real memory page

or (2) mark it as non-present, which ensures the host will get a page fault if/when the

guest attempts to access the non-present page. Consequently, when memory is tight,

the host can temporarily store page content on disk and read it back into memory only

when handling the corresponding page faults [SM79]. We denote the latter activity as

uncooperative swapping, because the host can conduct it without guest awareness or

participation .

The problem with uncooperative swapping is that it might lead to substantially

degraded performance due to unintended interactions with the memory management

subsystem of the guest OS. A canonical example used to highlight the problematic

nature of uncooperative swapping is that of double paging [GH74, GTHR99, Wal02],

whereby the guest kernel attempts to reclaim a page that has already been swapped

out by the host, a fact unknown to the guest since it is uncooperative. When such an

event occurs, it causes the page contents to be faulted-in from the host swap area, only

to be immediately written to the guest swap area, generating wasteful I/O activity that

host/guest cooperation would have obviated.

To circumvent difficulties of this sort, Waldspurger proposed to delegate to the

guest the decision of which pages to reclaim, by utilizing memory ballooning [Wal02].

A memory balloon is a paravirtual pseudo-driver installed in the guest. The balloon

communicates with, and gets instructions from, the host through a private channel. It

is capable of performing two operations: inflating and deflating, that is, allocating and

freeing pages pinned to the guest memory. Inflating increases memory demand, thereby

prompting the guest to run its page reclamation procedure and swap memory on its

68

guest

host

TLB fill

hardware

guest page

 table

host page

 table

GVA HPA

TLB

GPA => HPA

GVA => GPA

Figure 4.1: The Translation Lookaside Buffer (TLB) translates guest virtual addresses
(GVAs) to host physical addresses (HPAs), disregarding guest physical addresses (GPAs).
Upon a miss, the TLB fill hardware adds the missing entry by walking the guest and
host page tables to translate GVAs to GPAs and GPAs to HPAs, respectively. The
hardware delivers a page fault to the host if it encounters a non-present GPA⇒HPA,
allowing the host to fault-in the missing guest page, on demand. (Figure reproduced
from [DG08].)

own (Figure 4.2). The pinned pages can then be used by the host for other purposes.

Ballooning is the prevailing mechanism for managing memory of guest virtual machines.

4.3.2 Ballooning is Not a Complete Solution

Memory ballooning typically provides substantial performance improvements over the

baseline uncooperative swapping. Ballooning likewise often outperforms the VSwapper

system that we propose in this paper. An extreme example is given in Figure 4.3. The

baseline is 12.5x slower than ballooning. And while VSwapper improves the baseline

by 9.7x, it is still 1.3x slower than the ballooning configurations. One might therefore

perceive swapping as irrelevant in virtualized setups that employ balloons. But that

would be misguided, because ballooning and swapping are complementary activities.

Since its inception, ballooning has been positioned as a common-case optimization

for memory reclamation, not as a complete solution [Wal02]. Ballooning cannot be

a complete solution, because, inherently, hypervisors cannot exclusively rely on any

mechanism that requires guest cooperation, which cannot be ensured in any way. Thus,

for correctness, host-level swapping must be available to forcibly reclaim guest memory

when necessary. Indeed, when introducing ballooning, Waldspurger noted that “[d]espite

its advantages, ballooning does have limitations. The balloon driver may be uninstalled,

disabled explicitly, unavailable while a guest OS is booting, or temporarily unable to

reclaim memory quickly enough to satisfy current system demands. Also, upper bounds

69

guest memory

guest memory

balloon

guest memory

deflate inflate

virtual

disk

swap out swap in

Figure 4.2: Inflating the balloon increases memory pressure and prompts the guest
to reclaim memory, typically by swapping out some of its pages to its virtual disk.
Deflating relieves the memory pressure. (Figure reproduced from [Wal02].)

 0

 10

 20

 30

 40

baseline
only

balloon +
baseline

vswapper

only

balloon +

vswapper

ru
n
ti
m

e
 [
s
e
c
]

38.7

3.1 4.0 3.1

Figure 4.3: Time it takes a guest to sequentially read a 200MB file, believing it has
512MB of physical memory whereas in fact it only has 100MB. (This setup is analyzed in
detail later on.) The results shown are the best we have observed in favor of ballooning.

70

on reasonable balloon sizes may be imposed by various guest OS limitations” [Wal02].

The balloon size is limited, for example, to 65% of the guest memory in the case of

VMware ESX [Chi10, Wal13].

Guests might also lack a balloon due to installation and configuration problems

[VMw11b, VMw12b, VMw12a, VMw12c, VMw13a, VMw13b, VMw13c], as installing

hypervisor tools and making them work appropriately is not always easy. For example,

Googling the quoted string “problem with vmware tools” returns 118,000 hits, describing

many related difficulties that users experience. Balloon configuration becomes more

complex if/when clients need to experiment with their software so as to configure

memory reservations for their VMs [Den09, Sas12, TH09, VMw10b].

Virtualization professionals attest to repeatedly encountering clients who disable

ballooning or do not install hypervisor tools for misguided reasons. Brambley reports

that “[i]t happens more frequently than I would ever imagine, but from time to time

I find clients [that] have not installed the VMware tools in their virtual machine [...]

Some times the tools install is overlooked or forgotten, but every once in a while I am

told something like: Does Linux need VMware tools? or What do the VMware tools do

for me anyways?” [Bra08]. Ozar reports that “There’s plenty of bad advice out on the

web saying things like: just disable the balloon driver” [Oza11]. van Zanten concludes

that the “Misconceptions on memory overcommit [amongst clients include believing

that] overcommit is always a performance hit; real world workloads don’t benefit; the

gain by overcommitment is negligible; [and] overcommitment is dangerous” [vZ10].

Regardless of the reason, balloons are sometimes unavailable or unusable. In such

cases, the hypervisor falls back on uncooperative swapping for memory reclamation and

overcommitment. We submit that it is far more preferable to fall back on VSwapper

than on baseline swapping.

4.3.3 Ballooning Takes Time

So far, we have considered VSwapper as a more performant alternative to baseline

swapping, to only be used as a fallback for when a balloon is not available or cannot

be utilized due to, e.g., reaching its size limit. We have noted that VSwapper yields

better performance than the baseline, but we have seen that this performance is still

inferior relative to when ballooning is employed (Figure 4.3). Ballooning, however, is

superior to VSwapper under steady-state conditions only. Steady-state occurs when

(1) the balloon manager has had enough time to reasonably approximate the memory

needs of the VMs and to inflate/deflate their balloons accordingly, and (2) the VMs

have had enough time to react to decisions of the balloon manager by swapping data in

or out as depicted in Figure 4.2.

Alas, the process of transferring memory pages from one VM to another is slow

[HRP+14], and estimating the size of guests’ working sets is hard, especially under

changing conditions [LS07, HGS+11, JADAD06b]. Ballooning performance is hence

71

 0

 50

 100

 150

 200

baseline
only

balloon +
baseline

vswapper

only

balloon +

vswapper

a
v
g
.
ru

n
ti
m

e
 [
s
e
c
]

153
167

88 97

Figure 4.4: Average completion time of ten guests running map-reduce workloads in
a dynamic setup that starts them 10 seconds apart. (This setup is described in detail
later on.) VSwapper configuration are up to twice as fast as baseline ballooning.

suboptimal under changing load conditions, during which the balloon manager is

approximating and adjusting the balloon sizes and prompting the VMs to engage in

swapping activity. Ballooning is consequently recognized as “useful for shaping memory

over time, but inadequately responsive enough to ensure that, for example, the rapidly

growing working set of one or more VMs can be instantly satisfied” [Cor10b]. Kim et

al. observe that “ballooning is useful to effectively reclaim idle memory, but there may

be latency, especially when inflating a large balloon; more importantly, when an idle

domain that donates its memory becomes active, reclaimed memory must be reallocated

to it via balloon deflating [and] this process could be inefficient when an idle domain

has a varying working set, since prediction of the active working set size is difficult”

[KJL11]. Likewise, Magenheimer et al. observe that “if the light load is transient and

the memory requirements of the workload on the VM suddenly exceed the reduced

RAM available, ballooning is insufficiently responsive to instantaneously increase RAM

to the needed level” [MhMMH09].

VSwapper proves to be a highly effective optimization that can greatly enhance

the performance under dynamic, changing memory load conditions. Its effectiveness is

exemplified in Figure 4.4, which shows the average completion time of ten VMs running

map-reduce workloads that are started 10 seconds apart. (The exact details of this

experiment are provided in Section 4.6.2.) In this dynamic scenario, non-VSwapper

ballooning worsens performance over baseline swapping by nearly 10%, and it yields an

average runtime that is up to 2x slower than the VSwapper configurations. Ballooning

is about 10% worse in the VSwapper configurations as well. It is counterproductive in

this setup, because the balloon sizes are inadequate, and there is not enough time for

the balloon manager to adjust them.

We thus conclude that not only is VSwapper an attractive fallback alternative

for when ballooning is nonoperational, it is also an effective optimization on top of

ballooning that significantly enhances the performance under dynamic conditions.

72

4.3.4 The Case for Unmodified Guests

Earlier, we provided evidence that clients sometimes have trouble installing and correctly

configuring hypervisor tools, and that there are those who refrain from installing the

tools because they wrongfully believe the tools degrade or do not affect the performance.

Arguably, such problems would become irrelevant if hypervisors were implemented in a

way that provides fully-virtualized (unmodified) guests with performance comparable to

that of modified guests. We do not argue that such a goal is attainable, but VSwapper

takes a step in this direction by improving the performance of unmodified guests and

being agnostic to the specific kernel/version that the guest is running.

A guest OS is paravirtual if it is modified in a manner that makes it aware that it is

being virtualized, e.g., by installing hypervisor tools. Paravirtualization has well-known

merits, but also well-known drawbacks, notably the effort to continuously provide per-OS

support for different kernels and versions. In particular, it is the responsibility of the

hypervisor vendor to make sure that a balloon driver is available for every guest OS.

Thus, from the vendor’s perspective, it could be easier to maintain only one mechanism

(the likes of VSwapper), as it works the same for all OSes.

Avoiding paravirtualization could similarly be advantageous for clients in terms of

portability. Note that the balloon drivers of KVM, vSphere, XenServer, and Hyper-V,

for example, are incompatible, such that the per-guest driver of one will not work

with another. In the era of IaaS clouds, it is in the interest of clients to be able

to move their VMs from one cloud provider to another without much difficulty, on

the basis of the technical and economical merits of the cloud systems, optimally in

a transparent manner [LYS+08, Bra09, Met09]. Having paravirtualization interfaces

negates this interest, as they are hypervisor specific. For example, installing the tools of

the hypervisor used by Amazon EC2 will not serve VMs in Microsoft Azure and vice

versa. Also, every additional installation and removal of hypervisor tools risks triggering

problems, compatibility issues, and undesirable interactions between new and existing

software [KT12]. Anecdotal evidence based on interaction with enterprise cloud clients

indeed suggests that they tend to prefer not to install hypervisor tools as long as their

workloads performance remains reasonable [Fac13].

A final benefit of refraining from installing a balloon in a guest is that it prevents over-

ballooning, whereby the guest OS experiences a sudden spike in memory demand that it

cannot satisfy, causing it to terminate some of its running applications before the balloon

manager deflates its balloon. We have conducted some limited experiments with the

VMware hypervisor, vSphere 5.1, and learned that in this environment over-ballooning

seems to be a rare corner case.2 Conversely, in the KVM/QEMU-based experimental

setup we utilize in this paper, over-ballooning was more frequent, prompting our Ubuntu

guests to terminate running applications with their out-of-memory (OOM) or low-

2Triggered, for example, when two guests allocate (what they perceive to be) pinned memory that
collectively amounts to 1.5x of the physical memory available to the hypervisor.

73

 100

 120

 140

 160

 180

 200

 220

 240

 260

512MB
240MB

128MB

ru
n

ti
m

e
 [
s
e
c
]

guest’s physical memory size

baseline
mapper (= vswapper-preventer)
vswapper
balloon + baseline

Figure 4.5: Over-ballooning in our KVM/QEMU experimental setup, when compressing
the Linux kernel code with pbzip2 from within a 512MB guest whose actual physical
memory size is displayed along the X axis. Ballooning delivers better performance, but
the guest kills bzip2 when its memory drops below 240MB.

VM
image

host
swap
area

disk

DRAM

P P

P

(1)
vm

reads
page,
and

then…

(2)
host

 swaps
page

(creates
copy)

P

P

Figure 4.6: Silent swap writes.

memory killers under memory pressure. Using VSwapper without ballooning eliminated

this problem, as depicted in Figure 4.5.

4.4 Problems in Baseline Swapping

If we are to improve the performance of virtual systems that employ uncooperative

swapping, we need to have a thorough understanding of why it really hinders performance.

We have characterized the root causes of the degraded performance through careful

experimentation. The aforementioned double paging problem did not turn out to have

a dominant effect or notable volume in our experiments, probably because bare metal

(non-virtualized) swapping activity is typically curbed so long as the system is not

thrashing [BCS12], and because the uncooperative guest believes it operates in an

environment where memory is sufficient.3 The problems that did turn out to have a

meaningful effect and that we were able to address are listed next.

Silent Swap Writes: So long as memory is plentiful, much of the memory of general

purpose OSes is dedicated to caching file content long after the content is used, in the

3Conversely, when a guest is cooperative, the explicit purpose of inflating the balloon is to prompt
the guest to swap out pages, in which case double paging is probably more likely.

74

disk

DRAM (1)
VM reads P2 to “frame”

holding P, but the “frame”
is actually swapped out,

so the host first…

VM
image

host
swap
area

disk

DRAM (2)
handles

the
page-

fault by
reading

P

(3)
only to
over-
write

it with
P2

P

P2

P2

P2

P2

P

P2

P

P

P2

P2

P

g
u

e
st

 v
ie

w

h
o

st
 v

ie
w

Figure 4.7: Stale swap reads.

hope that it will get re-used in the future [BCS12]. When memory gets tight, unused

content is discarded and the corresponding memory frames are freed by the OS.

In a virtual setup with uncooperative swapping, it is the host that decides which

pages to swap, whereas the guest OS remains unaware. The host can nonetheless

make an informed decision, as it too maintains per-frame usage statistics, allowing it to

victimize unused pages. If a victim page is dirty, the host writes it to its swap area so

as to later be able to recover the correct data.

The question is what to do if the page being reclaimed is clean. One alternative is to

just discard it. But then the host would need: (1) to track and maintain correspondence

between guest memory pages and the original file blocks from which they were read;

(2) to handle subtle consistency issues (to be addressed later on); and (3) to treat

clean and dirty reclaimed pages differently, mapping the former to the original file and

the latter to its swap area. The easier alternative—that hypervisors like KVM and

VMware’s vSphere favor [VMw11a, p. 20]—is to keep all reclaimed guest pages in the

host swap area, saving them there even if they are clean and identical to their origin file

blocks. Worse, current x86 server hardware does not yet support dirty bits for guest

pages,4 so hosts assume that reclaimed pages are always dirty. Since hosts write to disk

data that is already there, we denote this activity as silent swap writes (see Figure 4.6).5

Stale Swap Reads: Suppose a guest generates an explicit I/O request to read some

block from its (virtual) disk into one of its memory pages, denoted P . The virtual

I/O operation generated by the guest triggers an exit to the host that generates a

corresponding physical I/O request directed at the physical disk. Page P is hence

4The expected features of Intel’s next generation “Haswell” server architecture (to be released not
before the end of 2014 [Wik13]) include support for access and dirty bits for guest pages [Val13].

5The chosen term is analogous to “silent stores,” which characterize cases whereby a value being
written by the store machine operation matches the exact value already stored at that corresponding
memory location [LL00].

75

VM
image

host
swap
area

disk

DRAM

P

P (1)
vm

writes
to P’s

“frame”
so the
host…

(2)
reads P,

only
for the
VM to
over-
write

it

P

Figure 4.8: False swap reads.

designated to be the destination of the physical I/O operation as well.

Consider what happens if P was previously reclaimed by the host. In such a case,

the host would experience a page fault as part of the processing of the virtual I/O

request, before the corresponding physical request is issued. P ’s old content would thus

be faulted-in, only to be overwritten shortly after by the physical I/O operation and

the newly read block. We denote such host reads, whose outcome is never read and is

instantly superseded by subsequent reads, as stale swap reads (see Figure 4.7).

Note that after a file block is read, so long as the uncooperative guest keeps it in its

file cache, it will never again be accompanied by a stale read, because, by definition,

stale reads only occur due to explicit guest I/O requests.

False Swap Reads: Memory management performed by guests includes activities

like zeroing pages before they are (re)allocated [RS04], copying memory pages on write

(COW) [JFFG95], and migrating pages from one DRAM location to another due to

memory compaction [Cor10a], e.g., for super paging [NIDC02, GW07]. Whether by

copying memory or zeroing it, guests often overwrite full pages without regard to their

old content. Such activity has no undesirable side effects in bare metal setups. But in

virtual setups with uncooperative swapping, the target page being overwritten might

be swapped out, generating an outcome similar to that of stale reads. Namely, the old

content would be read and immediately overwritten. We denote such useless reads as

false swap reads (see Figure 4.8).

The difference between stale and false reads is the computational entity that does

the overwriting. It is the disk device that overwrites the stale reads via direct memory

access (DMA). And it is the (guest) CPU that overwrites the false reads by copying or

zeroing content. Clearly, it will be harder to identify and eliminate false reads, because

the host has no a priori knowledge about whether the CPU is going to overwrite an

entire target page or only part of it; in the latter case, the reads are necessary and hence

are not false.

Decayed Swap Sequentiality: OSes perform file prefetching to alleviate the long

latencies that programs endure when forced to wait for disk reads. The most rewarding

76

and straightforward read pattern to anticipate is sequential access. It is easy for the OS

to notice. And it is easy to issue reads for subsequent parts of the file beforehand. Addi-

tionally, contiguous file pages tend to be contiguous on disk, minimizing the movement

of the head of the hard drive and thus making prefetching relatively inexpensive.

Being an OS, the guest does its own prefetching from its virtual disk. The host merely

acts as proxy by issuing the I/O operations generated by the guest. But things change

when memory becomes scarcer under uncooperative swapping. When the host reclaims

pages, it swaps their content out. And from this point onward, any prefetch activity

related to those pages is inevitably performed only by the host, as the uncooperative

guest is not even aware that the pages are not there. Importantly, the swap prefetch

activity is exclusively initiated by the host page fault handler when it must swap in

previously swapped out content. Namely, (swap) file prefetching is in fact a memory

management issue.

The problem that consequently arises is the outcome of a detrimental guest-host

interaction. Unaware that memory is scarce, the guest too aggressively prefetches/caches

file content from its virtual disk. So the host swaps out some other guest pages to

accommodate the excessive memory demand. It therefore happens that cached file

content from the guest virtual disk ends up in host swap area. But whereas the content

blocks are contiguous on the virtual disk, they become scattered and uncoupled in the

swap area, because spatial locality is secondary when victimizing pages for reclamation

(as opposed to usage, which is primary). Host swap prefetching therefore becomes

ineffective, such that the longer the execution, the more pronounced the effect. We call

this phenomenon decayed swap sequentiality.

False Page Anonymity: Memory pages backed by files are called named pages. Such

are the pages of loaded executables and of files mapped to memory [Ope04]. Conversely,

memory pages not backed by files are called anonymous pages. Such are the pages of

heaps and stacks of processes. Note that any page that could be moved to the swap

area is anonymous, or else it would have been backed by some other (non-swap) file. As

explained above, all the guest disk image pages are classified by the host as anonymous.

This (mis)classification turns out to have negative consequences.

OSes are generally configured to have some preference to evict named pages when

the need arises, because they can be reclaimed faster without write-back to swap, and

because file access patterns typically exhibit more spatial locality than access to pages

residing in the swap [Rie10], making named pages easier to prefetch. Alas, guests

are unable to enjoy such a preferential reclamation with uncooperative swapping, as

the host (mis)classifies all their pages as anonymous. Worse, when the hypervisor is

hosted (as is the case with QEMU/KVM), the hypervisor executable code within the

otherwise-anonymous guest address space is classified as named, making the host OS

inclined to occasionally reclaim these vital pages, thereby hindering performance further.

We characterize this deficiency as false page anonymity.

77

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8

s
e
c
o
n
d
s

(a)

sysbench
runtime

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8h
o
s
t
p
a
g
e
 f
a
u
lt
s
 [
1
0
0
0
s
]

(b)

stale reads &
false anonymity

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8g
u
e
s
t
p
a
g
e
 f
a
u
lt
s
 [
1
0
0
0
s
]

(c)

decayed
sequentiality

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8

s
e
c
to

rs
 [
1
0
0
0
s
]

(d)

silent
writes

baseline
vswapper

balloon+base

Figure 4.9: Sysbench iteratively reads a 200MB file within a 100MB guest that believes
it has 512MB. The x-axis shows the iteration number. The y-axis shows: (a) the
benchmark’s runtime; (b) the number of page faults triggered while the host code is
running (first iteration faults are caused by stale reads, and the rest are due to false
page anonymity); (c) number of page faults triggered while the guest code is running (a
result of decayed sequentially); and (d) the number of sectors written to the host swap
area (a result of silent writes).

4.4.1 Demonstration

Having enumerated the problems in uncooperative swapping that we have identified,

we now experimentally demonstrate the manifestation of each individual problem in

isolation. We use a simple experiment whereby one guest iteratively runs a Sysbench

benchmark configured to sequentially read a 200MB file. The guest believes it has

512MB, whereas in fact it is allocated only 100MB and all the rest has been reclaimed

by the host. The results are depicted in Figure 4.9.

The performance of baseline uncooperative swapping is roughly U-shaped (Figure

4.9a), taking about 40 seconds in the first iteration, which are halved in the second

iteration, only to gradually work their way back to 40 seconds in the final iteration.

The first iteration performance is largely dominated by stale swap reads. Those occur

when the guest performs explicit I/O reads from its virtual disk, bringing content into

memory that has been reclaimed by the host. The counterproductive activity is evident

when examining the number of page faults experienced by the host while executing its

own code in service of the guest (Figure 4.9b; first iteration). From the second iteration

onward, no stale reads occur because the guest stops generating explicit I/O requests,

believing it caches the entire file in memory and servicing all subsequent reads from its

file cache. Thus, it is the absence of stale reads from all iterations but the first that

accounts for the left side of the aforementioned U-shape.

With the exception of the first iteration, all page faults shown in Figure 4.9b are

due to the hosted hypervisor code faulted-in while it is running. The code was swapped

out because it was the only named part of the guest’s address space, a problem we have

denoted as false page anonymity. The problem becomes more pronounced over time as

evident by the gradual increase in the baseline curve in Figure 4.9b.

Contributing to the gradually worsened performance (second half of U-shape) is

the increasingly decayed sequentially of the host swap area. The file content is read to

memory and then swapped out to disk, over and over again. As the content moves back

78

and forth between disk and memory, it gradually loses its contiguity. Special locality is

diminished, and host swap prefetching becomes ineffective. This negative dynamic is

evident when plotting the number of page faults that fire when the guest accesses its

memory in Figure 4.9c. Such faults occur due to non-present GPA⇒HPA mappings6

while the guest is running (as opposed to Figure 4.9b, which depicts faults that occur

while the host is running, servicing explicit virtual I/O requests generated by the guest).

Every such page fault immediately translates into a disk read from the host swap area,

which may or may not succeed to prefetch additional adjacent blocks. Importantly, only

if the prefetch is successful in bringing the next file block(s) to be accessed will the next

memory access(es) avoid triggering another page fault. Thus, amplified sequentiality

decay implies greater page fault frequency, which is what we see in Figure 4.9c for the

baseline curve. (Conversely, the VSwapper curve implies no decay, as it is horizontal.)

Baseline uncooperative swapping copies unchanged blocks of data to the swap area,

although the corresponding source blocks are identical and stored within the guest disk

image. We have denoted this phenomenon as silent swap writes. We find that the

volume of this activity is significant, but that it contributes equally to the degraded

performance exhibited by all iterations (Figure 4.9d).

The remaining problem we have not yet demonstrated is that of false reads, which

occur when the guest attempts to overwrite memory pages that have been reclaimed

by the host, e.g., when reallocating and initializing a page that previously held some

information the guest no longer needs. We did not encounter false reads in the above

Sysbench benchmark because it reads, rather than writes. We therefore extend the

benchmark such that after it finishes all the read activity, it forks off a process that

allocates and sequentially accesses 200MB. The simplest way to get a sense of the effect

of false reads on this newly added microbenchmark is to measure its performance when

using VSwapper without and with its False Reads Preventer component. Figure 4.10

shows the results. (The balloon performance is missing since it crashed the workload

due to over-ballooning.) Comparing the two VSwapper configurations, we see that

enabling the Preventer more than doubles the performance and that the performance is

tightly correlated to the disk activity.

4.5 Design and Implementation

We mitigate the problems of uncooperative swapping by introducing two new mechanisms.

The first is the Swap Mapper (§4.5.1), which tracks the correspondence between disk

blocks and guest memory pages, thereby addressing the problems of silent writes, stale

writes, decayed sequentially, and false page anonymity. The second mechanism is the

False Reads Preventer (§4.5.2), which temporarily buffers data written by unaware

guests to swapped out pages, thereby addressing the problem of false reads.

6See Figure 4.1 for the meaning of GPA and HPA.

79

 0

 5

 10

 15

 20

 25

ru
n

ti
m

e
 [

s
e

c
]

baseline
vswapper w/o preventer
vswapper
balloon + baseline (crashed)

 0

 25

 50

 75

 100

 125

d
is

k
 o

p
s
 [

th
o

u
s
a

n
d

s
]

Figure 4.10: Effect of false reads on a guest process that allocates and accesses 200MB.

4.5.1 The Swap Mapper

The poor performance of uncooperative swapping is tightly related to how guests utilize

page caches, storing in memory large volumes of currently unused disk content because

they (wrongfully) believe that memory is plentiful. Hypervisors need to learn to cope

with this pathology if they are to efficiently exercise uncooperative swapping. The

Swap Mapper achieves this goal by tracking guest I/O operations and by maintaining

a mapping between corresponding disk and memory locations. When used carefully

(so as to avoid subtle consistency issues), the mapping equips the hypervisor with the

much-needed ability to treat relevant guest pages as file-backed. This ability counteracts

the harmful effect of large page caches within unaware guests, because it allows the

hypervisor to reasonably identify the pages that populate the cache and to efficiently

discard them when the need arises, without undesirable consequences.

The Mapper’s goal is to bridge a semantic gap. It needs to teach the hypervisor

which guest pages are backed by which disk blocks. This goal could in principle be

achieved through intrusive modifications applied to the guest [SFM+06] or through

exhaustive memory/disk scans. But we favor a much simpler approach. Our Mapper

leverages the fact that guest disk I/O is overwhelmingly implemented via emulation

[SVL01] or paravirtualization [Rus08, BDF+03], whereby the hypervisor serves all I/O

request directed at the virtual disk. The Mapper can thus interpose on this activity

and maintain the required association between disk blocks and memory pages.

The core of our Mapper implementation is simple. In the KVM/QEMU environment,

each guest VM resides within (and is served by) a regular user-level QEMU process.

The guest I/O requests are trapped by QEMU, which uses standard read and write

system calls to satisfy the requests. Our Mapper replaces these reads/writes with mmap

system calls [Ope04], which provide the basic functionality of mapping guest pages to

disk blocks, out of the box. The pages thus become named and are treated by the

host Linux kernel accordingly. We establish “private” mappings (via standard mmap

flags), which preserve the per-page disk association only so long as the page remains

80

unchanged. A subsequent write instruction directed at the page will prompt the host

kernel to copy-on-write the page and to make it anonymous. Thus, the disk-to-memory

association is correctly maintained only as long as the content of the memory page

is identical to the corresponding disk blocks. Future memory store operations by the

unaware guest will not alter the disk.

As a result of this change, native uncooperative swapping done by the host Linux

kernel automagically becomes more effective. Since the pages are named, they are

evicted more frequently than anonymous pages, as their reclamation and retrieval is

more efficient [Rie10] (no false page anonymity). Specifically, when the kernel’s page

frame reclaiming mechanism selects a guest page for eviction, it knows the page is backed

by a file, so it discards the page by discarding the mapping, instead of by swapping

the page out (no silent swap writes). Later on, if/when the reclaimed page is accessed,

the kernel knows from where to retrieve it using the information associated with the

faulting non-present page table entry. Realizing the page is backed by a file, the kernel

re-maps it instead of swapping it in, disregarding the specific target memory frame (no

stale swap reads). At that point, host prefetch mechanisms perform disk read-ahead,

benefiting from the sequential structure of the original guest disk image (no decayed

swap sequentiality).

Data Consistency: While the core idea is simple, we need to resolve several problems

to make the Mapper correct, as the mmap mechanism was not designed to be used in

such a way. The first problem stems from the fact that a memory mapped file region

can, in parallel, be written to through ordinary I/O channels. To better understand this

difficulty, suppose that (1) a named page P with content C0 is mapped to memory, that

(2) P previously resided in DRAM because the guest accessed it via the memory, that

(3) C0 currently resides on disk because P ’s frame was reclaimed by the host, and that

(4) the guest has now issued an explicit disk I/O write directed at the blocks holding

C0 in order to write to them new content C1. In this situation, it would be an error to

naively process the latter I/O write, because, later, if the guest reads P via memory, it

will rightfully expect to get C0, but it will instead erroneously get C1 (after P is faulted

in).

To solve the problem, we modify the host open system call to support a new flag,

used by QEMU when opening the guest virtual disk file. The flag instructs the kernel

to invalidate page mappings when associated disk blocks are being written to through

the corresponding file descriptor. Invalidation involves reading C0 and delaying the

processing of C1 until C0 is fetched. Then, the mapping is destroyed and C1 is finally

written to disk. The host kernel (not QEMU) is the natural place to implement this

semantic extension, as the kernel maintains the page mappings.

Host Caching & Prefetching: It is generally recommended to turn off host caching

and prefetching for guest disk images [HH10, KVMb, SK12, Sin10]. The reasoning is

81

that guest OSes do their own caching/prefetching, and that they are inherently better

at it because the hypervisor suffers from a semantic gap. (For example, a guest knows

about files within its virtual disk, whereas, for the hypervisor, the disk is just one

long sequence.) For this reason, all non-VSwapper configurations in the evaluation

section (§4.6) have host caching disabled. Conversely, VSwapper must utilize the host

“caching” for the prosaic reason that mmaped pages reside in the host page cache. Our

implementation, however, carefully makes sure that, beyond this technicality, the host

page cache never truly functions as a cache; namely, it holds virtual disk blocks only

if they are currently residing in guest memory. Thus, when a guest writes to a host

filed-backed page, the page is COWed (due to being privately mapped), and then

VSwapper removes the source page from the host page cache.

In all configurations, host prefetching activity is prompted by page faults. It is

limited to reading content that is already cached by the guest and has been reclaimed due

to uncooperative swapping. But whereas non-VSwapper configurations only prefetch

from their host swap area, the VSwapper design allows it to prefetch these pages from

the disk image.

Using the host page cache does not break crash consistency guarantees of guest

filesystems. QEMU supports crash consistency by default with its “writethrough” disk

caching mode, which synchronizes writes to the disk image upon guest flush commands

[IBM]. Guests are notified that their flushes succeed only after the synchronization,

thereby ensuring the Mapper does not deny crash consistency.

Guest I/O Flow: Explicit disk read requests issued by the guest are translated by

QEMU to a preadv system call invocation, which reads/scatters a contiguous block

sequence to/within a given vector of guest pages. There is no mmapv equivalent. So,

instead, the Mapper code within QEMU initiates reading the blocks to the page cache

by invoking readahead (an asynchronous operation). It then iteratively applies mmap

to the pages, using the “populate” mmap flag. The latter ensures that the readahead

completes and that the pages are mapped in QEMU’s page tables, thereby respectively

preventing future major and minor page faults from occurring when QEMU accesses

the pages. Alas, an undesirable side-effect of using “populate” is that the pages will be

COWed when they are first accessed. We therefore patch the host’s mmap to support

a “no COW” flag and thus avoid this overhead. Lastly, the Mapper iteratively invokes

ioctl, requesting KVM to map the pages in the appropriate GPA⇒HPA table so as to

prevent (minor) page faults from occurring when the guest (not QEMU) accesses the

pages.

A second problem that immediately follows is how to correctly mmap a guest page

P that is being written to a disk block B via a write request that has just been issued

by the guest. Due to our newly added open flag (see “Data Consistency” above), B

is not mmaped right before the request is processed, even if B was accessed in the

past. Conversely, we want B to be mmaped right after the request is processed, such

82

that, later, if P is reclaimed, we will not need to swap it out. The Mapper therefore:

(1) writes P into B using the write system call, (2) mmaps P to B, and (3) only then

notifies the guest that its request is completed.

Page Alignment: An inherent constraint of file-backed memory is that it mandates

working in whole page granularity. The standard mmap API indeed dictates that both

the file offset and the mapped memory address should be 4KB-aligned. The Mapper

therefore must arrange things such that virtual disk requests coming from guests will

comply with this requirement. Our Mapper imposes compliance by informing the guest

that its virtual disk uses a 4KB logical sector size upon the creation of the virtual disk

image. This approach will not work for preexisting guest disk images that utilize a

smaller block size. Such preexisting images will require a reformat. (We remark that

disks are expected to gradually shift to employing a 4KB physical block size [CHG+07].)

4.5.2 The False Reads Preventer

A dominant contributor to the poor performance of uncooperative swapping is the

host’s inability to know a-priori when guests overwrite entire pages and discard their

old content. Such events routinely happen, e.g, when guests allocate pages to new

processes. Unaware, the hypervisor needlessly reads the old content if it happens to be

swapped out, a costly operation paid only because the host does not understand the

guest semantics. The False Reads Preventer alleviates this problem by trapping guest

write instructions directed at a swapped out pages, emulating them, and storing their

result in page-sized, page-aligned buffers. If a buffer fills up, the Preventer maps it to

the guest, thereby eliminating the extraneous disk accesses, which we have denoted as

“false reads.”

The Preventer does not utilize any knowledge about guest OS internals, nor does it

resort to paravirtual guest/host collaboration that others deem necessary [SFM+06].

Instead, it optimistically intercepts and emulates guest write instructions directed at

swapped out pages, hoping that all bytes comprising the page will soon be overwritten,

obviating the need to read the old content from disk. When that happens, the Preventer

stops emulating and repurposes its write buffer to be the guest’s page.

The Preventer can sustain the emulation of all writes and all reads directed at

already-buffered data. But emulation is slow, so we stop emulating a page when a

predetermined interval has elapsed since the page’s first emulated write (1ms), or if the

write pattern is not sequential. We further avoid emulating a newly accessed page if

too many pages are already being emulated (32). (The two values—1ms and 32—were

empirically set.) In both cases, the corresponding missing page is read asynchronously.

The guest is allowed to continue to execute so long as it does not read unavailable data;

if it does, then the Preventer suspends it. When the disk content finally arrives, the

Preventer merges the buffered and read information, and it resumes regular execution.

83

component user (QEMU) kernel sum

Mapper 174 235 409
Preventer 10 1,964 1,974
sum 184 2,199 2,383

Table 4.1: Lines of code of VSwapper.

The Preventer design is architected to avoid a data hazard created by the fact

that, in addition to the guest, the guest’s memory pages can also be directly accessed

by QEMU, which is the user-level part of the hypervisor that resides in an ordinary

(non-virtualized) process. To preserve correctness and consistency, QEMU must observe

exactly the same data as its guest, motivating the following design.

Let P be a reclaimed page frame that is being emulated. The data we maintain for

P includes the time of P ’s first emulated write, a page-sized buffer that stores emulated

writes at the same offset as that of the real writes, the number of buffered bytes, and a

bitmap marking all the buffered bytes, utilized to decide if reads can be emulated and to

determine how to merge with the original disk content. The data structure also contains

a reference to the original memory mapping of the reclaimed page (a vm area struct

denoted here as Mold), to be used for reading the preexisting data in case a merge is

required. Upon the first emulated write to P , we break the association between P and

Mold, and we associate P with a new vm area struct (denoted Mnew).

Note that P is respectively accessed by QEMU and the guest via HVAs and GVAs

(see Figure 4.1), such that the two types of accesses trigger different page fault handlers.

Faulting HVAs trigger a “regular” handler (denoted h), whereas faulting GVAs trigger

a special virtualization handler (denoted g).7 The Preventer associates Mnew with an h

handler that, when invoked, terminates the emulation by merging the buffer with the old

content, reading the latter via Mold if it is needed; QEMU is suspended until h finishes,

ensuring it will always get up-to-date data when it faults. In contrast, the Preventer

patches g to sustain the emulation by buffering writes and serving reads if their data

has been previously buffered. When g decides to terminate the emulation (e.g., because

1ms has elapsed since the first write), it initiates the termination by invoking h.

We have identified a number of emulated instructions that allow the Preventer to

recognize outright that the entire page is going to be rewritten, when the x86 REP

prefix is used [Int10]. The Preventer short-circuits the above mechanism when such

instructions are encountered. We expect that advanced binary translation techniques

[AMRS11] could do better.

The number of lines of code of VSwapper is detailed in Table 4.1. The VSwapper

source code is publicly available [Ami14].

7This handler serves “extended page table (EPT) violations,” which occur when the hardware
traverses GPA⇒HPA page table entries (bottom of Figure 4.1) that are marked non-present, e.g., due
to uncooperative swapping.

84

 0

 100

 200

 300

 400

5
1

2
4

4
8

3
8

4
3

2
0

2
5

6
1

9
2

(a)

disk operations
[thousands]

 0

 100

 200

 300

 400

5
1

2
4

4
8

3
8

4
3

2
0

2
5

6
1

9
2

(b)

written sectors
[thousands]

 0

 1

 2

 3

5
1

2
4

4
8

3
8

4
3

2
0

2
5

6
1

9
2

(c)

pages scanned
[millions]

Figure 4.11: Pbzip’s 8 threads compressing Linux within a guest whose actual memory
size is displayed along the X axis (in MB).

4.6 Evaluation

We implement VSwapper within QEMU [SS07] and KVM, the Linux kernel-based

hypervisor [KKL+07]. We run our experiments on a Dell PowerEdge R420 server

equipped with two 6-core 1.90GHz Intel Xeon E5-2420 CPUs, 16GB of memory, and

a 2TB Seagate Constellation 7200 enterprise hard drive. Host and Linux guests run

Ubuntu 12.04, Linux 3.7, and QEMU 1.2 with their default settings. The Windows guest

runs Windows Server 2012. Guests have 20GB raw image disk drives, paravirtual disk

controllers, and 1–2 VCPUs as indicated. We disable host kernel memory deduplication

(KSM) and compression (zRAM) to focus on ballooning. We constrain guest memory

size using container groups (“cgroups”) as recommended [KVMa]. The host caching

policy is as specified in §4.5.1.

We evaluate five configurations: (1) “baseline,” which relies solely on uncooperative

swapping; (2) “balloon,” which employs ballooning and falls back on uncooperative

swapping; (3) “mapper,” which denotes VSwapper without the Preventer; (4) “vswap-

per,” which consists of both Mapper and Preventer; and (5) “balloon + vswapper,”

which combines ballooning and VSwapper. We typically run each experiment 5 times

and present the average. When balloon values are missing it is because the workload

crashed due to over-ballooning (§4.3.4).

4.6.1 Controlled Memory Assignment

We begin by executing a set of experiments whereby we systematically reduce and

fix the size of the memory assigned to a 1-VCPU Linux guest, such that the guest

believes it has 512MB of memory but it may actually have less. Balloon configurations

communicate this information to the guest by appropriately inflating the balloon driver,

85

 20

 21

 22

 23
5

1
2

4
4

8
3

8
4

3
2

0
2

5
6

1
9

2

(a)

runtime
[minutes]

baseline
mapper

vswapper
balloon+base

 0

 20

 40

 60

 80

 100

5
1

2
4

4
8

3
8

4
3

2
0

2
5

6
1

9
2

(b)

preventer remaps
[thousands]

Figure 4.12: Compiling the Linux kernel source code with Kernbench. (The X axis is
the same as in Figure 4.11.)

whereas baseline and VSwapper configurations leave the guest unaware. The exact

memory size allocated to the guest is displayed along the X-axis of the respective figures.

In this subsection, the results of the two balloon configurations (with and with-

out VSwapper) were similar, so the respective figures display the balloon + baseline

configuration only, to avoid clutter.

Pbzip2: In our first set of experiments, the guest runs pbzip2, which is a parallel

implementation of the bzip2 block-sorting file compressor [Gil04]. We choose this

multithreaded benchmark to allow the baseline configuration to minimize uncooperative

swapping overheads by leveraging the “asynchronous page faults” mechanism employed

by Linux guests [Nat]. This mechanism exploits intra-guest parallelism to allow guests

to continue to run despite experiencing page faults caused by host swapping (the host

delivers a special page fault exception advising the guest to context switch or else it

would block). We evaluate the performance by applying pbzip2 to the Linux kernel

source code.

The execution time is shown in Figure 4.5, indicating that despite the asynchronous

faults, the baseline performance rapidly worsens with memory pressure, yielding an

execution time up to 1.66x slower than ballooning. VSwapper and its mapper-only

configuration improve upon the baseline, respectively yielding performance within

1.03–1.08x and 1.03–1.13x of ballooning, since they greatly reduce the number of disk

operations (Figure 4.11a). Baseline disk operations include a notable component of

writes, which is largely eliminated by VSwapper (Figure 4.11b), thus making it beneficial

for systems that employ solid state drives (SSDs).

86

 150

 200

 250

 300

 350

512 448 384 320 256
ru

n
ti
m

e
 [

s
e

c
]

guest memory limit [MB]

baseline
mapper
vswapper
balloon+base

Figure 4.13: Eclipse IDE workload from the DaCapo benchmark suite.

Kernbench: For our second benchmark evaluation, we reproduce an experiment

reported in a VMware white paper [VMw11a] in which the authors executed Kernbench—

a standard benchmark measuring the time it takes to build the Linux kernel [Kol]—inside

a 512MB guest whose actual memory allocation was 192MB. Relative to the runtime

measured when the guest was allocated the entire 512MB, the authors reported 15%

and 4% slowdowns with baseline uncooperative swapping and ballooning, respectively.

Although our experimental environment is different, we observe remarkably similar

overheads of 15% and 5%, respectively (Figure 4.12a).

The performance of the baseline, mapper, and VSwapper configurations relative to

ballooning is 0.99–1.10x, 1.00–1.05x, and 0.99–1.01x faster/slower, respectively. The

Preventer eliminates up 80K false reads (Figure 4.12b), reducing guest major page faults

by up to 30%.

Eclipse: Our final set of controlled memory experiments executes Eclipse workloads

that are part of the DaCapo Java benchmark suite [BGH+06]. (Eclipse is a popular

integrated development environment.) Java presents a challenge for virtual environments,

as its garbage collector subsystem causes an LRU-related pathological case of degraded

performance when the physical memory allocated to the guest is smaller than the Java

virtual machine (JVM) working set [VMw11a].

Figure 4.13 depicts the benchmark results, executed using OpenJDK and a 128MB

heap. While it manages to run, ballooning is 1–4% faster than the other configurations,

but Eclipse is occasionally killed by the ballooning guest when its allocated memory is

smaller than 448MB. Relative to VSwapper, the baseline and mapper configurations

are 0.97–1.28x and 1.00–1.08x faster/slower, respectively.

87

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4 5 6 7 8 9 10

g
u

e
s
t

a
v
e

ra
g

e
 r

u
n

ti
m

e
 [

s
e

c
]

guests

balloon+base
baseline
vswapper
balloon+vswap

Figure 4.14: Phased execution of multiple guests running the MapReduce runtime.

4.6.2 Dynamic Memory Assignment

So far, we have utilized benchmarks whereby the amount of memory allocated to

guests is fixed. Virtualization setups, however, commonly run multiple guests with

memory demands that dynamically change over time. To evaluate the performance

in this scenario, we execute a workload whose dispatch is phased so that guests start

the benchmark execution one after the other ten seconds apart. Handling such work-

loads is challenging for balloon managers, yet similar resource consumption spikes in

virtualization environments are common [SA10, ABYBYST12].

In our dynamic experiment set, we vary the number of guests from one to ten. Each

guest runs the Metis Mapreduce runtime for multicores [BWCM+10, MMK10, RRP+07],

which comes with a benchmark suite comprised of 8 applications. The results we present

here are of the word-count application, which uses a 300MB file holding 1M keys. The

memory consumption of Metis is large, as it holds large tables in memory, amounting

to roughly 1GB in this experiment. We assign each guest with 2 VCPUs and 2GB of

memory, and we limit the host memory to 8GB so that it will eventually overcommit.

(We note that each guest virtual disk is private, and so VSwapper does not exploit file

caching to improve performance by saving fewer data copies.)

We employ MOM, the Memory Overcommitment Manager [Lit11], to manage and

adapt the balloon sizes. MOM is a host daemon which collects host and guest OS

statistics and dynamically inflates and deflates the guest memory balloons accordingly.

MOM requires that we use libvirt [BSB+10], a virtualization API for controlling virtual

machines.

Figure 4.14 presents the average runtime as a function of the number of guests

comprising the experiment. Running seven or more guests creates memory pressure.

From that point on we observe a cascading effect, as guest execution is prolonged due

to host swap activity and therefore further increases memory pressure. Clearly, the

88

slowdown is lowest when using VSwapper, whereas memory ballooning responds to

guest memory needs belatedly. Relative to the combination of ballooning and VSwapper,

we get that: ballooning only, baseline, and VSwapper are 0.96–1.84x, 0.96–1.79x, and

0.97–1.11x faster/slower, respectively, suggesting that the combination is the preferable

configuration.

4.6.3 Overheads and Limitations

Slowdown: VSwapper introduces slowdowns which might degrade the performance by

up to 3.5% when memory is plentiful and host swapping is not required. The slowdowns

are mostly caused by our use of Linux mmap, which was advantageous for simplifying

our prototype but results in some added overheads. Firstly, because using mmap is

slower than regular reading [HNY99]. And secondly, because a COW (which induces

an exit) is required when a named page is modified, even if there are no additional

references to that page. The latter overhead could be alleviated on hardware that

supports dirty bits for virtualization page tables, which would allow VSwapper to know

that pages have changed only when it needs to, instead of immediately when it happens.

We uncovered another source of overhead introduced by the page frame reclamation

mechanism, which scans the pages in search for eviction candidates when the need

arises. Due to subtleties related to how this mechanism works in Linux, the impact of

VSwapper is such that it up to doubles the length of the mechanism traversals when

memory pressure is low (Figure 4.11c).

The aforementioned 3.5% overhead can be compared to the overhead of “Geiger,” a

guest page cache monitoring mechanism by Jones et al., which introduced overheads

of up to 2% [JADAD06a]. Part of the 1.5% difference is probably accounted for by

the fact that Geiger was evaluated on a system that did not support guest memory

virtualization in hardware, forcing the hypervisor to write-protect newly mapped pages

in the baseline setup and thereby creating exits that Geiger leveraged for tracking.

Memory Consumption: The Mapper’s use of the native Linux memory area data

structures (vm area struct and i mmap) increases memory consumption and might frag-

ment the hypervisor address space. These structures consume 200 bytes, so theoretically,

in the worst case, the overhead might be 5% of the guest memory size, if every 4KB

page requires its own structure. Underlying this upper bound is our decision to use

the already existing mmap mechanism. A dedicated mechanism for tracking guest page

caches can achieve a similar goal with only 20 bytes per page [JADAD06b]. Empirically,

the Mapper consumed not more than 14MB across all of our experiments.

The Mapper is quite successful in tracking only the memory pages that reside in

the guest page cache. The Mapper’s effectiveness is illustrated in Figure 4.15, which

shows that the memory size it tracks coincides with the size of the guest page cache

excluding dirty pages. The Mapper correctly avoids tracking dirty pages, as they do

89

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

m
e

m
o

ry
 s

iz
e

 [
M

B
]

time [sec]

guest page cache
excluding dirty

tracked by mapper

Figure 4.15: Size of page cache as time progresses. (From the Eclipse benchmark.)

not correspond to disk blocks. The Mapper occasionally tracks more pages than found

in the page cache (time≈50 in Figure 4.15), because guests sometimes repurpose pages

holding disk content for other uses. The Mapper will break the disk association of these

pages when they are subsequently modified.

The Mapper will lose track of disk-backed pages if guests perform memory migration,

e.g., for superpages [NIDC02, GW07] or due to NUMA considerations. This drawback

can be eliminated in a straightforward manner via paravirtual interfaces [vR12]; the

question of whether it could be efficiently done for fully virtualized guests remains open,

but the wealth of efficient memory deduplication techniques [GLV+10] suggests the

answer is yes.

4.6.4 Non-Linux Guests and Hosts

Windows: We validate the applicability of VSwapper to non-Linux guests using a

VM running Windows 2012 Server. Windows does not align its disk accesses to 4KB

boundaries by default. The hypervisor should therefore report that the disk uses 4KB

physical and logical sectors to enforce the desired behavior. Our patched QEMU reports

a 4KB physical sector size. But alas, QEMU virtual BIOS does not support 4KB logical

sectors. We therefore formatted the Windows guest disk before installation as if the

BIOS reported 4KB logical sectors by: creating aligned partitions, setting the cluster

size to be 4KB, and using large file record segments (FRS). We remark that despite

this configuration we still observed sporadic 512 byte disk accesses.

Our first experiment consists of Sysbench reading a 2GB file from within a single

VCPU 2GB guest that is allocated only 1GB of physical memory. The resulting average

runtime without VSwapper is 302 seconds, reduced to 79 seconds with VSwapper. Our

second experiment consists of bzip2 running within the same guest with 512 MB of

physical memory. The average runtime without and with VSwapper is 306 and 149

90

balloon enabled balloon disabled

runtime (sec) 25 78
swap read sectors 258,912 1,046,344
swap write sectors 292,760 1,042,920
major page faults 3,659 16,488

Table 4.2: Runtime and swap activity of executing a 1GB sequential file read from
within a Linux VM on VMware Workstation.

seconds, respectively.

VMware: In our last experiment we attempt to demonstrate that the benefit of using

a VSwapper-like system is not limited to just KVM. We use the VMware Workstation

9.0.2 hypervisor as an example, running the Sysbench benchmark to execute a sequential

1GB file read from within a Linux guest. We set the host and guest memory to 512MB

and 440MB, and we reserve a minimum of 350MB for the latter. The results (Table 4.2)

indicate that disabling the balloon more than triples the execution time and creates

substantial additional swap activity, coinciding with VMware’s observation that “guest

buffer pages are unnecessarily swapped out to the host swap device” [VMw11a]. (It is

interesting to note that a similar benchmark on KVM using VSwapper completed in

just 12 seconds.)

4.7 Related Work

Many paravirtual memory overcommitment techniques were introduced in recent years.

Memory ballooning is probably the most common [Wal02, BDF+03]. CMM2 is a

collaborative memory management mechanism for Linux guests that makes informed

paging decisions on the basis of page usage and residency information [SFM+06]. CMM2

can discard free and file-backed guest page frames and thereby eliminate undesirable

swap writes, yet it requires substantial and intrusive guest modifications. Transcendent

memory [MhMMH09] uses a pool of underutilized memory to allow the hypervisor to

quickly respond to changing guest memory needs. This approach does not suit situations

in which multiple guests require more memory all at once [BGTV13]. Application-level

ballooning [SARE13] can mitigate negative side effects of ballooning on applications

that manage their own memory. Like OS-level ballooning, this approach does not render

host swapping unnecessary. In contrast to all these paravirtual approaches, VSwapper

does not require guest modifications.

Memory overcommitment can also be performed by emulating memory hotplug.

The hypervisor can inform the guest about “physical” removal/addition of DRAM by

emulating the corresponding architectural mechanisms. This approach is fully-virtual,

but it has several shortcomings: it takes a long time to hot-unplug memory due to

memory migration, the operation might fail [SFS06], and it is unsupported by popular

91

OSes, such as Windows. Like memory ballooning, memory hotplug cannot cope with

memory consumption spikes of guests, and therefore requires host-swapping fallback for

good performance under high memory pressures [Hor11].

Regardless of how memory is overcommitted, improved memory utilization can lead to

greater server consolidation. Unrelated mechanisms that help to achieve this goal include

transparent page sharing [BDGR97], cooperative page sharing [MMHF09], memory

deduplication [TG05], and sub-page level sharing [GLV+10]. All are complementary to

VSwapper (and to ballooning).

Improving uncooperative host swapping performance was discussed before in Cellular

Disco [GTHR99], in which two cases of undesirable disk traffic in virtualization envi-

ronments were presented and addressed: writes of unallocated guest pages to the host

swap, and double paging (explained in §4.3.1). Neither of these cases are addressed by

VSwapper. Cellular Disco requires guest OS annotations to avoid writing unallocated

guest pages to the host swap. VSwapper requires no such cooperation.

Our Mapper monitoring techniques resemble those used by Jones et al. for guest

buffer cache monitoring [JADAD06b]. That work used the monitoring techniques to

estimate the guest working set size. Lu and Shen used similar techniques for guest

memory access tracing [LS07]. Disco, by Bugnion et al., used “COW disks” for efficient

disk sharing across multiple guests in order to eliminate memory redundancy [BDGR97].

To this end, they used memory mappings of a single shared disk. The Mapper uses similar

techniques for monitoring, but it leverages them for a different purpose: improving

host swapping reclamation and prefetching decisions by “teaching” the host memory

management subsystem about guest memory to disk image mappings.

Useche used asynchronous page faults and write buffering in OSes to allow non-

blocking writes to swapped-out pages [Use12]. His work implied that such methods

have limited potential, as the additional overhead often surpasses the benefits obtained

by reducing I/O wait time. Conversely, our work shows that write buffering is beneficial

when deployed by hypervisors to enhance uncooperative swapping performance. The

opposing conclusions are due to the different nature and purpose of the systems. Useche

strives to handle page faults asynchronously in bare metal OSes, whereas VSwapper

reduces the faults for hypervisors.

4.8 Future Work

OSes gather knowledge about their pages and use it for paging decisions. Although

such information is located in intrinsic OS data structures, the hypervisor may be

able to infer some of it and base its paging decisions on common OS paradigms. For

instance, since OSes tend not to page out the OS kernel, page tables, and executables,

the hypervisor may be able to improve guest performance by adapting a similar policy.

The hypervisor can acquire the information by write-protecting and monitoring the

guest state upon guest page faults. Alternatively, the hardware could be enhanced to

92

perform such tracking more efficiently, by supporting additional usage flags beyond

“accessed” and “dirty.” The hardware could, for example, indicate if a page was used: in

user mode (which means it is not a kernel page); for page walks while resolving a TLB

miss (which means it is a page table); and for fetching instructions (which means it is

part of an executable).

VSwapper techniques may be used to enhance live migration of guests and reduce

the migration time and network traffic by avoiding the transfer of free and clean guest

pages. Previous research suggested to achieve this goal via guest cooperation by inflating

the balloon prior to live migration [HG09], or by migrating non-page-cache pages first

[AHTH13]. The Mapper and the Preventer techniques can achieve the same goal without

guest cooperation. Hypervisors that migrate guests can migrate memory mappings

instead of (named) memory pages; and hypervisors to which a guest is migrated can

avoid requesting memory pages that are wholly overwritten by guests.

4.9 Conclusions

To this day, uncooperative host swapping is considered a necessary evil in virtual setups,

because it is commonly unavoidable but induces high overheads. We isolate, characterize,

name, and experimentally demonstrate the major causes for the poor performance. We

propose VSwapper to address these causes, and we show that VSwapper is highly

effective in reducing the overheads without or in addition to memory ballooning.

4.10 Availability

The source code of VSwapper is publicly available [Ami14].

93

94

Chapter 5

Conclusion and open questions

In this work we address a variety of common virtualization performance bottlenecks

using full-virtualization techniques. Despite the common belief that paravirtualization

significantly outperforms full-virtualization, our work shows that the performance

difference can be considerably reduced, and that full-virtualization overheads due to

memory overcommitment can be reduced by up to 90% (Chapter 4). Moreover, in the

case of I/O intensive workloads, our research showed full-virtualization by assigning

the device to the guest can reach bare-metal performance, while paravirtualization lags

behind (Chapter 3).

Once the performance advantage of paravirtualization has been challenged, we

can also ask whether its drawbacks are severe enough to warrant following another

path entirely. The incompatibility of para-APIs causes development and deployment

complexity and aggravates the lock-in problem, which impedes migration from one cloud

vendor to another.

Arguably, solutions can be delivered by CPU and hardware vendors. In our work we

propose several hardware mechanisms that can further improve the performance of I/O

device emulation, I/O device assignment, and uncooperative memory overcommitment.

Emulating devices in hardware, for instance, seems like a promising path. Since CPU

vendors exhaustively look for new architectural features that can improve single core

performance, the proposed mechanisms may be implemented in future hardware.

Nonetheless, we acknowledge that the potential of paravirtualization is greater when

hypervisor intervention is required, as is the case, for example, in dynamic memory

provisioning. In such cases, CPU vendors can also implement new mechanisms that

would allow the guest and the hypervisor to efficiently communicate. Such mechanisms

can require that the guest explicitly free pages and allow the hypervisor to easily reclaim

free guest memory.

Our work leads us to question other concepts of virtualization. Memory overcom-

mitment is considered to be done efficiently if the memory reclamation decisions are

delegated to the VMs. However, since the VM has no global view of the physical system,

it may make poor reclamation decisions by reclaiming memory which was deduplicated

95

by the hypervisor. As a result, memory reclaimed by the guest may not reduce the

hypervisor memory pressure in such cases. The hypervisor may make better reclamation

decisions if it is informed or can infer the VM memory use.

Another prevailing concept is the role of the hypervisor in virtualization. Currently,

hypervisors usually strive to be as transparent as possible and to impose minimal

overhead on the guest. Yet the goal of achieving bare-metal performance by the least

intervention may not be ambitious enough. In our work we altered the hypervisor so that

it would intervene with the guest execution quite intrusively, and in doing so we managed

to improve VM performance considerably. Other studies have already shown that post-

compilation optimizations can reduce power consumption and improve performance.

Having a global view on system resources, as the hypervisor does, is a known method

for achieving better resource utilization, for instance by memory deduplication. Thus,

future research may explore new techniques to make VMs outperform native OSes.

96

Bibliography

[AA06] Keith Adams and Ole Agesen. A comparison of software and

hardware techniques for x86 virtualization. In ACM Architec-

tural Support for Programming Languages & Operating Systems

(ASPLOS), 2006.

[ABYBYST12] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and

Dan Tsafrir. The resource-as-a-service (RaaS) cloud. In USENIX

Conference on Hot Topics in Cloud Computing (HotCloud), pages

12–12, 2012.

[ABYTS11] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schus-

ter. vIOMMU: efficient IOMMU emulation. In USENIX Annual

Technical Conference (ATC), 2011.

[ABYY10] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. IOMMU:

Strategies for mitigating the IOTLB bottleneck. In Workshop on

Interaction between Opearting Systems & Computer Architecture

(WIOSCA), 2010.

[ADAD01] Andrea C Arpaci-Dusseau and Remzi H Arpaci-Dusseau. Informa-

tion and control in gray-box systems. In ACM SIGOPS Operating

Systems Review (OSR), volume 35, pages 43–56, 2001.

[AFT+00] Yariv Aridor, Michael Factor, Avi Teperman, Tamar Eilam, and

Assaf Schuster. A high performance cluster jvm presenting a pure

single system image. In ACM conference on Java Grande, pages

168–177, 2000.

[AGM11] Irfan Ahmad, Ajay Gulati, and Ali Mashtizadeh. vIC: Interrupt

coalescing for virtual machine storage device IO. In USENIX

Annual Technical Conference (ATC), 2011.

[AHTH13] S. Akiyama, T. Hirofuchi, R. Takano, and S. Honiden. Fast

wide area live migration with a low overhead through page cache

teleportation. In IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGrid), pages 78–82, 2013.

97

[AJM+06] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil

Neiger, Greg Regnier, Rajesh Sankaran, Ioannis Schoinas, Rich

Uhlig, Balaji Vembu, and John Wiegert. Intel virtualization

technology for directed I/O. Intel Technology Journal, 10(3):179–

192, 2006.

[AK08] N. Anastopoulos and N. Koziris. Facilitating efficient synchro-

nization of asymmetric threads on hyper-threaded processors. In

IEEE International Parallel & Distributed Processing Symposium

(IPDPS), pages 1–8, 2008.

[AMD09] AMD Inc. IOMMU architectural specification v2.0. http://

support.amd.com/us/Processor_TechDocs/48882.pdf, 2009.

[AMD11] AMD Inc. AMD64 Architecture Programmer’s Manual Volume 2:

System Programming, 2011.

[Ami14] Nadav Amit. VSwapper code. http://nadav.amit.to/vswapper,

2014.

[AMRS11] Ole Agesen, Jim Mattson, Radu Rugina, and Jeffrey Sheldon.

Software techniques for avoiding hardware virtualization exits. In

USENIX Annual Technical Conference (ATC), volume 12, 2011.

[BB11] Mervat Adib Bamiah and Sarfraz Nawaz Brohi. Seven deadly

threats and vulnerabilities in cloud computing. International Jour-

nal of Advanced Engineering Sciences and Technologies (IJAEST),

9, 2011.

[BBC+06] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin, Jakob

Lichtenberg, Con McGarvey, Bohus Ondrusek, Sriram K. Raja-

mani, and Abdullah Ustuner. Thorough static analysis of device

drivers. In ACM SIGOPS European Conference on Computer

Systems (EuroSys), pages 75–85, 2006.

[BBD+09] Andrew Baumann, Paul Barham, Pierre E. Dagand, Tim Harris,

Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach,

and Akhilesh Singhania. The multikernel: a new OS architecture

for scalable multicore systems. In ACM Symposium on Operating

Systems Principles (SOSP), pages 29–44, 2009.

[BC05] Daniel Bovet and Marco Cesati. Understanding the Linux Kernel,

Third Edition. O’Reilly & Associates, Inc., 2005. Editor = Oram,

Andy.

98

http://support.amd.com/us/Processor_TechDocs/48882.pdf
http://support.amd.com/us/Processor_TechDocs/48882.pdf
http://nadav.amit.to/vswapper

[BCS12] Robert Birke, Lydia Y Chen, and Evgenia Smirni. Data

centers in the wild: A large performance study. Technical

Report RZ3820, IBM Research, 2012. http://tinyurl.com/

data-centers-in-the-wild.

[BDA] Travis Betak, Adam Duley, and Hari Angepat. Reflective vir-

tualization improving the performance of fully-virtualized x86

operating systems. http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.129.7868.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Har-

ris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield.

Xen and the art of virtualization. In ACM Symposium on Operat-

ing Systems Principles (SOSP), 2003.

[BDGR97] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel

Rosenblum. Disco: running commodity operating systems on

scalable multiprocessors. ACM Transactions on Computer Systems

(TOCS), 15(4):412–447, November 1997.

[BDK05] Michael Becher, Maximillian Dornseif, and Christian N. Klein.

FireWire: all your memory are belong to us. In CanSecWest,

2005.

[Bel05] Fabrice Bellard. QEMU, a fast and portable dynamic translator.

In USENIX Annual Technical Conference (ATC), page 41, 2005.

[BGH+06] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M

Khang, Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel

Feinberg, Daniel Frampton, Samuel Z Guyer, et al. The DaCapo

benchmarks: Java benchmarking development and analysis. In

ACM SIGPLAN Conference on Object-Oriented Programing, Sys-

tems, Languages, and Applications (OOPSLA), pages 169–190,

2006.

[BGTV13] Ishan Banerjee, Fei Guo, Kiran Tati, and Rajesh Venkatasubra-

manian. Memory overcommitment in the ESX server. VMware

technical journal (VMTJ), Summer, 2013.

[BPS+09] Andrew Baumann, Simon Peter, Adrian Schüpbach, Akhilesh

Singhania, Timothy Roscoe, Paul Barham, and Rebecca Isaacs.

Your computer is already a distributed system. Why isn’t your

OS? In USENIX Workshop on Hot Topics in Operating Systems

(HOTOS), page 12, 2009.

99

http://tinyurl.com/data-centers-in-the-wild
http://tinyurl.com/data-centers-in-the-wild
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.7868
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.7868

[Bra08] Rich Brambley. Why do I need to install

VMware tools? http://vmetc.com/2008/08/30/

why-do-i-need-to-install-vmware-tools/, 2008.

[Bra09] Mary Brandel. The trouble with cloud: Vendor lock-

in. http://www.cio.com/article/488478/The_Trouble_with_

Cloud_Vendor_Lock_in, 2009.

[BSB+10] Matthias Bolte, Michael Sievers, Georg Birkenheuer, Oliver

Niehörster, and André Brinkmann. Non-intrusive virtualization

management using libvirt. In Conference on Design, Automation

and Test in Europe, pages 574–579, 2010.

[BSSM08] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Sri-

latha Manne. Accelerating two-dimensional page walks for virtu-

alized systems. ACM SIGOPS Operating Systems Review (OSR),

42(2):26–35, 2008.

[BWCM+10] Silas Boyd-Wickizer, Austin T Clements, Yandong Mao, Alek-

sey Pesterev, M Frans Kaashoek, Robert Morris, and Nickolai

Zeldovich. An analysis of Linux scalability to many cores. In

USENIX Symposium on Operating Systems Design & Implemen-

tation (OSDI), 2010.

[BXL10] Yuebin Bai, Cong Xu, and Zhi Li. Task-aware based co-scheduling

for virtual machine system. In ACM Symposium on Applied

Computing (SAC), pages 181–188, 2010.

[BYDD+10] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor,

Nadav Har’El, Abel Gordon, Anthony Liguori, Orit Wasserman,

and Ben-Ami Yassour. The Turtles project: Design and imple-

mentation of nested virtualization. In USENIX Symposium on

Operating Systems Design & Implementation (OSDI), 2010.

[BYMX+06] Muli Ben-Yehuda, Jon Mason, Jimi Xenidis, Orran Krieger, Leen-

dert van Doorn, Jun Nakajima, Asit Mallick, and Elsie Wahlig.

Utilizing IOMMUs for virtualization in Linux and Xen. In Ottawa

Linux Symposium (OLS), pages 71–86, 2006.

[BYXO+07] Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski, Karl Rister,

Alexis Bruemmer, and Leendert van Doorn. The price of safety:

Evaluating IOMMU performance. In Ottawa Linux Symposium

(OLS), pages 9–20, 2007.

100

http://vmetc.com/2008/08/30/why-do-i-need-to-install-vmware-tools/
http://vmetc.com/2008/08/30/why-do-i-need-to-install-vmware-tools/
http://www.cio.com/article/488478/The_Trouble_with_Cloud_Vendor_Lock_in
http://www.cio.com/article/488478/The_Trouble_with_Cloud_Vendor_Lock_in

[CG04] Brian D. Carrier and Joe Grand. A hardware-based memory ac-

quisition procedure for digital investigations. Digital Investigation,

1(1):50–60, 2004.

[CHG+07] P. Chicoine, M. Hassner, E. Grochowski, S. Jenness, M. Noblitt,

G. Silvus, C. Stevens, and B. Weber. Hard disk drive long data

sector white paper. Technical report, IDEMA, 2007.

[Chi10] YP Chien. The yin and yang of memory overcommitment in

virtualization: The VMware vSphere 4.0 edition. Technical Report

MKP-339, Kingston Technology Corporation, Fountain Valley,

CA, 2010. http://media.kingston.com/images/branded/MKP_

339_VMware_vSphere4.0_whitepaper.pdf.

[CN01] Peter M. Chen and Brian D. Noble. When virtual is better than

real. In USENIX Workshop on Hot Topics in Operating Systems

(HOTOS), pages 133–, 2001.

[Cod62] Edgar F. Codd. Advances in Computers, volume 3, pages 77–153.

New York: Academic Press, 1962.

[Cor10a] Jonathan Corbet. Memory compaction. http://lwn.net/

Articles/368869/, 2010.

[Cor10b] Orcale Corporation. Project: Transcendent memory – new ap-

proach to managing physical memory in a virtualized system.

https://oss.oracle.com/projects/tmem/, 2010. Visited: Dec

2013.

[Cor13] Oracle Corporation. Virtual box manual. https://www.

virtualbox.org/manual/, 2013.

[Den09] Frank Denneman. Impact of memory reser-

vation. http://frankdenneman.nl/2009/12/08/

impact-of-memory-reservation/, 2009.

[DG08] Johan De Gelas. Hardware virtualization: the nuts and bolts.

AnandTech, 2008. http://www.anandtech.com/show/2480/

10.

[DKC+02] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A.

Basrai, and Peter M. Chen. ReVirt: enabling intrusion analy-

sis through virtual-machine logging and replay. ACM SIGOPS

Operating Systems Review (OSR), 36:211–224, 2002.

101

http://media.kingston.com/images/branded/MKP_339_VMware_vSphere4.0_whitepaper.pdf
http://media.kingston.com/images/branded/MKP_339_VMware_vSphere4.0_whitepaper.pdf
http://lwn.net/Articles/368869/
http://lwn.net/Articles/368869/
https://oss.oracle.com/projects/tmem/
https://www.virtualbox.org/manual/
https://www.virtualbox.org/manual/
http://frankdenneman.nl/2009/12/08/impact-of-memory-reservation/
http://frankdenneman.nl/2009/12/08/impact-of-memory-reservation/
http://www.anandtech.com/show/2480/10
http://www.anandtech.com/show/2480/10

[DTR01] Constantinos Dovrolis, Brad Thayer, and Parameswaran Ra-

manathan. HIP: hybrid interrupt-polling for the network interface.

ACM SIGOPS Operating Systems Review (OSR), 35:50–60, 2001.

[DYL+10] Yaozu Dong, Xiaowei Yang, Xiaoyong Li, Jianhui Li, Kun Tian,

and Haibing Guan. High performance network virtualization with

SR-IOV. In IEEE International Symposium on High Performance

Computer Architecture (HPCA), 2010.

[DYR08] Yaozu Dong, Zhao Yu, and Greg Rose. SR-IOV networking in Xen:

architecture, design and implementation. In USENIX Workshop

on I/O Virtualization (WIOV), 2008.

[Fac13] Michael Factor. Enterprise cloud clients tend to prefer unmodified

guest virtual machines. Private communication, 2013.

[Fit04] Brad Fitzpatrick. Distributed caching with memcached. Linux

Journal, 2004(124):5, 2004.

[Fri08] Thomas Friebel. How to deal with lock-holder preemption. Xen

Summit http://www.amd64.org/fileadmin/user_upload/pub/

LHP-slides.pdf, 2008.

[FSS03] Michael Factor, Assaf Schuster, and Konstantin Shagin. JavaS-

plit: a runtime for execution of monolithic java programs on

heterogenous collections of commodity workstations. In IEEE

International Conference on Cluster Computing, pages 110–117,

2003.

[GH74] Robert P. Goldberg and Robert Hassinger. The double paging

anomaly. In ACM National Computer Conference and Exposition,

pages 195–199, 1974.

[GHW06] Al Gillen, John Humphreys, and Brett Waldman. The impact of

virtualization software on operating environments. IDC Report,

2006.

[Gil04] Jeff Gilchrist. Parallel data compression with bzip2. In IASTED

International Conference on Parallel and Distributed Computing

and Systems (ICPDCS), volume 16, pages 559–564, 2004.

[GKR+07] Ada Gavrilovska, Sanjay Kumar, Himanshu Raj, Karsten Schwan,

Vishakha Gupta, Ripal Nathuji, Radhika Niranjan, Adit Ranadive,

and Purav Saraiya. High-performance hypervisor architectures:

Virtualization in HPC systems. In Workshop on System-level

Virtualization for HPC (HPCVirt), 2007.

102

http://www.amd64.org/fileadmin/user_upload/pub/LHP-slides.pdf
http://www.amd64.org/fileadmin/user_upload/pub/LHP-slides.pdf

[GLV+10] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage,

Alex C. Snoeren, George Varghese, Geoffrey M. Voelker, and

Amin Vahdat. Difference engine: harnessing memory redundancy

in virtual machines. Communications of the ACM (CACM),

53(10):85–93, 2010.

[GND+07] Sriram Govindan, Arjun R. Nath, Amitayu Das, Bhuvan

Urgaonkar, and Anand Sivasubramaniam. Xen and co.:

communication-aware cpu scheduling for consolidated xen-based

hosting platforms. In Proceedings of the 3rd international con-

ference on Virtual execution environments, ACM/USENIX Inter-

national Conference on Virtual Execution Environments (VEE),

pages 126–136, 2007.

[GTHR99] Kinshuk Govil, Dan Teodosiu, Yongqiang Huang, and Mendel

Rosenblum. Cellular Disco: resource management using virtual

clusters on shared-memory multiprocessors. In ACM Symposium

on Operating Systems Principles (SOSP), pages 154–169, 1999.

[GW07] Mel Gorman and Andy Whitcroft. Supporting the allocation of

large contiguous regions of memory. In Ottawa Linux Symposium

(OLS), pages 141–152, 2007.

[Hab08] Irfan Habib. Virtualization with kvm. Linux J., 2008, February

2008.

[HBG+07] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and

Andrew S. Tanenbaum. Failure resilience for device drivers. In

IEEE International Conference on Dependable Systems & Net-

works (DSN), pages 41–50, 2007.

[HG09] Michael R Hines and Kartik Gopalan. Post-copy based live virtual

machine migration using adaptive pre-paging and dynamic self-

ballooning. In ACM/USENIX International Conference on Virtual

Execution Environments (VEE), pages 51–60, 2009.

[HGS+11] Michael R Hines, Abel Gordon, Marcio Silva, Dilma Da Silva,

Kyung Dong Ryu, and Muli Ben-Yehuda. Applications know best:

Performance-driven memory overcommit with Ginkgo. In IEEE

Cloud Computing Technology and Science (CloudCom), pages

130–137, 2011.

[HH10] Khoa Huynh and Stefan Hajnoczi. KVM / QEMU storage stack

performance discussion. In Linux Plumbers Conference, 2010.

103

[HNY99] Yiming Hu, Ashwini Nanda, and Qing Yang. Measurement, anal-

ysis and performance improvement of the Apache web server. In

IEEE International Performance Computing & Communications

Conference (IPCCC), pages 261–267, 1999.

[Hor11] Eric Horschman. Hypervisor memory management done

right. http://blogs.vmware.com/virtualreality/2011/02/

hypervisor-memory-management-done-right.html, 2011.

[HRP+14] Woomin Hwang, Yangwoo Roh, Youngwoo Park, Ki-Woong Park,

and Kyu Ho Park. HyperDealer: Reference pattern aware instant

memory balancing for consolidated virtual machines. In IEEE

International Conference on Cloud Computing (CLOUD), pages

426–434, 2014.

[IBM] IBM documentation. Best practice: KVM guest caching

modes. http://pic.dhe.ibm.com/infocenter/lnxinfo/

v3r0m0/topic/liaat/liaatbpkvmguestcache.htm. Visited:

Dec 2013.

[Int08] Intel Corporation. Intel 64 Architecture x2APIC Specification,

2008.

[Int10] Intel Corporation. Intel 64 and IA-32 Architectures Software

Developer’s Manual, 2010.

[Int11] Intel Corporation. Intel virtualization technology for directed I/O,

architecture specification, 2011.

[IS99] Ayal Itzkovitz and Assaf Schuster. MultiView and MilliPage—

fine-grain sharing in page-based DSMs. In USENIX Symposium

on Operating Systems Design & Implementation (OSDI), 1999.

[JADAD06a] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. Antfarm: tracking processes in a virtual machine

environment. In USENIX Annual Technical Conference (ATC),

page 1, 2006.

[JADAD06b] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. Geiger: monitoring the buffer cache in a virtual

machine environment. ACM SIGARCH Computer Architecture

News (CAN), 34:14–24, 2006.

[JADAD08] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. VMM-based hidden process detection and identi-

104

http://blogs.vmware.com/virtualreality/2011/02/hypervisor-memory-management-done-right.html
http://blogs.vmware.com/virtualreality/2011/02/hypervisor-memory-management-done-right.html
http://pic.dhe.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liaat/liaatbpkvmguestcache.htm
http://pic.dhe.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liaat/liaatbpkvmguestcache.htm

fication using lycosid. In ACM/USENIX International Conference

on Virtual Execution Environments (VEE), pages 91–100, 2008.

[JFFG95] Francisco Javier, Thayer Fábrega, Francisco, and Joshua D.

Guttman. Copy on write. http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.33.3144, 1995.

[Jon95] Rick A. Jones. A network performance benchmark (revision 2.0).

Technical report, Hewlett Packard, 1995.

[KJL11] Hwanju Kim, Heeseung Jo, and Joonwon Lee. XHive: Efficient

cooperative caching for virtual machines. IEEE Transactions on

Computers, 50(1):106–119, Jan 2011.

[KKL+07] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony

Liguori. KVM: the Linux virtual machine monitor. In Ottawa

Linux Symposium (OLS), 2007.

[KLJ+11] Hwanju Kim, Hyeontaek Lim, Jinkyu Jeong, Heeseung Jo, Joon-

won Lee, and Seungryoul Maeng. Transparently bridging semantic

gap in CPU management for virtualized environments. J. Parallel

Distrib. Comput., 71:758–773, 2011.

[Kol] Con Kolivas. KernBench project. freecode.com/projects/

kernbench.

[KRSG07] Sanjay Kumar, Himanshu Raj, Karsten Schwan, and Ivan Ganev.

Re-architecting VMMs for multicore systems: The sidecore ap-

proach. In Workshop on Interaction between Opearting Systems

& Computer Architecture (WIOSCA), 2007.

[KS08] Asim Kadav and Michael M. Swift. Live migration of direct-access

devices. In USENIX Workshop on I/O Virtualization (WIOV),

page 2, 2008.

[KSRL10] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby B. Lee. No-

hype: virtualized cloud infrastructure without the virtualization.

In ACM/IEEE International Symposium on Computer Architec-

ture (ISCA), 2010.

[KT12] Ilia Kravets and Dan Tsafrir. Feasibility of mutable replay for

automated regression testing of security updates. In Runtime

Environments/Systems, Layering, & Virtualized Environments

workshop (RESoLVE), 2012.

105

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.3144
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.3144
freecode.com/projects/kernbench
freecode.com/projects/kernbench

[KTR+04] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan,

Norman P. Jouppi, and Keith I. Farkas. Single-ISA heterogeneous

multi-core architectures for multithreaded workload performance.

ACM SIGARCH Computer Architecture News (CAN), 32:64–,

2004.

[KVMa] KVM. Tuning kernel for KVM. http://www.linux-kvm.org/

page/Tuning_Kernel.

[KVMb] KVM. Tuning KVM. http://www.linux-kvm.org/page/

Tuning_KVM.

[LA09] Jiuxing Liu and Bulent Abali. Virtualization polling engine (VPE):

Using dedicated CPU cores to accelerate I/O virtualization. In

ACM International Conference on Supercomputing (ICS), pages

225–234, 2009.

[LBYG11] Alex Landau, Muli Ben-Yehuda, and Abel Gordon. SplitX: Split

guest/hypervisor execution on multi-core. In USENIX Workshop

on I/O Virtualization (WIOV), 2011.

[LD11] John R. Lange and Peter Dinda. SymCall: symbiotic virtualization

through VMM-to-guest upcalls. In ACM/USENIX International

Conference on Virtual Execution Environments (VEE), pages

193–204, 2011.

[LGBK08] Guangdeng Liao, Danhua Guo, Laxmi Bhuyan, and Steve R King.

Software techniques to improve virtualized I/O performance on

multi-core systems. In ACM/IEEE Sumposium on Architectures

for Netowkring and Communications Systems (ANCS), 2008.

[LH10] Yaqiong Li and Yongbing Huang. TMemCanal: A VM-oblivious

dynamic memory optimization scheme for virtual machines in

cloud computing. In IEEE International Conference on Computer

and Information Technology (CIT), pages 179–186, 2010.

[LHAP06] Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar K. Panda.

High performance VMM-bypass I/O in virtual machines. In

USENIX Annual Technical Conference (ATC), pages 29–42, 2006.

[Lig] Anthony Liguori. Tpr patching. http://blog.codemonkey.ws/

2007/10/tpr-patching.html.

[Lit11] Adam Litke. Automatic memory ballooning with

MOM. http://www.ibm.com/developerworks/library/

l-overcommit-kvm-resources/, 2011. Visited: Dec 2013.

106

http://www.linux-kvm.org/page/Tuning_Kernel
http://www.linux-kvm.org/page/Tuning_Kernel
http://www.linux-kvm.org/page/Tuning_KVM
http://www.linux-kvm.org/page/Tuning_KVM
http://blog.codemonkey.ws/2007/10/tpr-patching.html
http://blog.codemonkey.ws/2007/10/tpr-patching.html
http://www.ibm.com/developerworks/library/l-overcommit-kvm-resources/
http://www.ibm.com/developerworks/library/l-overcommit-kvm-resources/

[Liu10] Jiuxing Liu. Evaluating standard-based self-virtualizing devices:

A performance study on 10 GbE NICs with SR-IOV support. In

IEEE International Parallel & Distributed Processing Symposium

(IPDPS), 2010.

[LL00] Kevin M. Lepak and Mikko H. Lipasti. On the value locality of

store instructions. In ACM/IEEE International Symposium on

Computer Architecture (ISCA), pages 182–191, 2000.

[LPD+11] John R. Lange, Kevin Pedretti, Peter Dinda, Patrick G. Bridges,

Chang Bae, Philip Soltero, and Alexander Merritt. Minimal-

overhead virtualization of a large scale supercomputer. In

ACM/USENIX International Conference on Virtual Execution

Environments (VEE), 2011.

[LS07] Pin Lu and Kai Shen. Virtual machine memory access tracing

with hypervisor exclusive cache. In USENIX Annual Technical

Conference (ATC), pages 3:1–3:15, 2007.

[LSHK09] Steen Larsen, Parthasarathy Sarangam, Ram Huggahalli, and Sid-

dharth Kulkarni. Architectural breakdown of end-to-end latency

in a TCP/IP network. In International Symposium on Computer

Architecture and High Performance Computing, 2009.

[LUC+05] Joshua LeVasseur, Volkmar Uhlig, Matthew Chapman, Peter

Chubb, Ben Leslie, and Gernot Heiser. Pre-virtualization: Slash-

ing the cost of virtualization. Technical Report 2005–30, Fakultät

für Informatik, Universität Karlsruhe (TH), 2005.

[LUSG04] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz.

Unmodified device driver reuse and improved system dependabil-

ity via virtual machines. In USENIX Symposium on Operating

Systems Design & Implementation (OSDI), 2004.

[LYS+08] Pengcheng Liu, Ziye Yang, Xiang Song, Yixun Zhou, Haibo Chen,

and Binyu Zang. Heterogeneous live migration of virtual machines.

In International Workshop on Virtualization Technology (IWVT),

2008.

[MCZ06] Aravind Menon, Alan L. Cox, and Willy Zwaenepoel. Optimizing

network virtualization in Xen. In USENIX Annual Technical

Conference (ATC), page 2, 2006.

[Met09] Cade Metz. The meta cloud—flying data centers enter fourth

dimension. http://www.theregister.co.uk/2009/02/24/the_

meta_cloud/, 2009.

107

http://www.theregister.co.uk/2009/02/24/the_meta_cloud/
http://www.theregister.co.uk/2009/02/24/the_meta_cloud/

[MhMMH09] Dan Magen heimer, Chris Mason, Dave McCracken, and Kurt

Hackel. Transcendent memory and Linux. In Ottawa Linux

Symposium (OLS), pages 191–200, 2009.

[MHSM09] Daniel Molka, Daniel Hackenberg, Robert Schone, and Matthias S.

Muller. Memory performance and cache coherency effects on an In-

tel Nehalem multiprocessor system. In ACM/IEEE International

Conference on Parallel Architecture & Compilation Techniques

(PACT), pages 261–270, 2009.

[MMHF09] Grzegorz Mi lós, Derek G Murray, Steven Hand, and Michael A

Fetterman. Satori: Enlightened page sharing. In USENIX Annual

Technical Conference (ATC), 2009.

[MMK10] Yandong Mao, Robert Morris, and Frans Kaashoek. Optimizing

MapReduce for multicore architectures. Technical Report MIT-

CSAIL-TR-2010-020, Massachusetts Institute of Technology, 2010.

URL http://pdos.csail.mit.edu/metis/.

[MP07] Karissa Miller and Mahmoud Pegah. Virtualization: virtually at

the desktop. In ACM SIGUCCS fall conference, pages 255–260,

2007.

[MR97] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive

livelock in an interrupt-driven kernel. ACM Transactions on

Computer Systems (TOCS), 15:217–252, 1997.

[MST+05] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. Janakira-

man, and Willy Zwaenepoel. Diagnosing performance overheads

in the Xen virtual machine environment. In ACM/USENIX Inter-

national Conference on Virtual Execution Environments (VEE),

pages 13–23, 2005.

[Mun10] Eduard Gabriel Munteanu. AMD IOMMU emulation patch-

set. KVM mailing list, http://www.spinics.net/lists/kvm/

msg38514.html, 2010.

[Nat] Gleb Natapov. Asynchronous page faults - AIX

did it. www.linux-kvm.org/wiki/images/a/ac/

2010-forum-Async-page-faults.pdf.

[NHB08] Kara Nance, Brian Hay, and Matt Bishop. Virtual machine

introspection. IEEE Computer Society, 2008.

[NIDC02] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan Cox. Prac-

tical, transparent operating system support for superpages. In

108

http://www.spinics.net/lists/kvm/msg38514.html
http://www.spinics.net/lists/kvm/msg38514.html
www.linux-kvm.org/wiki/images/a/ac/2010-forum-Async-page-faults.pdf
www.linux-kvm.org/wiki/images/a/ac/2010-forum-Async-page-faults.pdf

USENIX Symposium on Operating Systems Design & Implemen-

tation (OSDI), 2002.

[OCR08] Diego Ongaro, Alan L. Cox, and Scott Rixner. Scheduling I/O

in virtual machine monitors. In ACM/USENIX International

Conference on Virtual Execution Environments (VEE), pages

1–10, 2008.

[Ope04] The Open Group. mmap - map pages of memory, 2004.

The Open Group Base Specifications Issue 6. IEEE Std

1003.1. http://pubs.opengroup.org/onlinepubs/009695399/

functions/mmap.html.

[Oza11] Brent Ozar. Top 10 keys to deploying SQL server

on VMware. http://www.brentozar.com/archive/2011/05/

keys-deploying-sql-server-on-vmware/, 2011.

[PCI] Single root I/O virtualization and sharing 1.0 speci-

fication. http://www.pcisig.com/members/downloads/

specifications/iov/sr-iov1.0_11Sep07.pdf.

[Pfa04] Ben Pfaff. Performance analysis of BSTs in system software. In

ACM SIGMETRICS International Conference on Measurement

and Modeling of Computer Systems, pages 410–411, 2004.

[PG74] G. J. Popek and R. P. Goldberg. Formal requirements for virtu-

alizable third generation architectures. Communications of the

ACM (CACM), 17:412–421, 1974.

[PS75] D. L. Parnas and D. P. Siewiorek. Use of the concept of trans-

parency in the design of hierarchically structured systems. Com-

mun. ACM, 18:401–408, 1975.

[RG05] M. Rosenblum and T. Garfinkel. Virtual machine monitors: cur-

rent technology and future trends. Computer, 38(5):39–47, 2005.

[Rie10] Rikvan Riel. Linux page replacement design. http://linux-mm.

org/PageReplacementDesign, 2010.

[ROS+11] Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel

Rosenblum, and John K. Ousterhout. It’s time for low latency. In

USENIX Workshop on Hot Topics in Operating Systems (HOTOS),

2011.

[RRP+07] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary

Bradski, and Christos Kozyrakis. Evaluating MapReduce for

109

http://pubs.opengroup.org/onlinepubs/009695399/functions/mmap.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/mmap.html
http://www.brentozar.com/archive/2011/05/keys-deploying-sql-server-on-vmware/
http://www.brentozar.com/archive/2011/05/keys-deploying-sql-server-on-vmware/
http://www.pcisig.com/members/downloads/specifications/iov/sr-iov1.0_11Sep07.pdf
http://www.pcisig.com/members/downloads/specifications/iov/sr-iov1.0_11Sep07.pdf
http://linux-mm.org/PageReplacementDesign
http://linux-mm.org/PageReplacementDesign

multi-core and multiprocessor systems. In IEEE International

Symposium on High Performance Computer Architecture (HPCA),

pages 13–24, 2007.

[RS04] Mark E. Russinovich and David A. Solomon. Microsoft Windows

Internals, Fourth Edition: Microsoft Windows Server(TM) 2003,

Windows XP, and Windows 2000 (Pro-Developer). Microsoft

Press, 2004.

[RS07] Himanshu Raj and Karsten Schwan. High performance and scal-

able I/O virtualization via self-virtualized devices. In International

Symposium on High Performance Distributed Computer (HPDC),

2007.

[RST+09] Kaushik K. Ram, Jose R. Santos, Yoshio Turner, Alan L. Cox,

and Scott Rixner. Achieving 10Gbps using safe and transparent

network interface virtualization. In ACM/USENIX International

Conference on Virtual Execution Environments (VEE), 2009.

[Rus08] Rusty Russell. virtio: towards a de-facto standard for virtual

I/O devices. ACM SIGOPS Operating Systems Review (OSR),

42(5):95–103, 2008.

[RWR+00] Theodore L. Ross, Douglas M. Washabaugh, Peter J. Roman,

Wing Cheung, Koichi Tanaka, and Shinichi Mizuguchi. Method

and apparatus for performing interrupt frequency mitigation in a

network node. US Patent 6,115,775, 2000.

[SA10] Vijayaraghavan Soundararajan and Jennifer M. Anderson. The

impact of management operations on the virtualized datacente. In

ACM/IEEE International Symposium on Computer Architecture

(ISCA), pages 326–337, 2010.

[Sal07] Khaled Salah. To coalesce or not to coalesce. International Journal

of Electronics and Communications, 61(4):215–225, 2007.

[SARE13] Tudor-Ioan Salomie, Gustavo Alonso, Timothy Roscoe, and Kevin

Elphinstone. Application level ballooning for efficient server con-

solidation. In ACM SIGOPS European Conference on Computer

Systems (EuroSys), pages 337–350, 2013.

[Sas12] Vinay Sastry. Virtualizing tier 1 applications -

MS SQL server. http://blogs.totalcaos.com/

virtualizing-tier-1-sql-workloads, 2012.

110

http://blogs.totalcaos.com/virtualizing-tier-1-sql-workloads
http://blogs.totalcaos.com/virtualizing-tier-1-sql-workloads

[SBL05] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Im-

proving the reliability of commodity operating systems. ACM

Transactions on Computer Systems (TOCS), 23:77–110, 2005.

[SBM09] Karan Singh, Major Bhadauria, and Sally A. McKee. Real time

power estimation and thread scheduling via performance counters.

ACM SIGARCH Computer Architecture News (CAN), 37:46–55,

2009.

[SFM+06] Martin Schwidefsky, Hubertus Franke, Ray Mansell, Himanshu

Raj, Damian Osisek, and JongHyuk Choi. Collaborative memory

management in hosted Linux environments. In Ottawa Linux

Symposium (OLS), volume 2, pages 313–328, 2006.

[SFS06] Joel H Schopp, Keir Fraser, and Martine J Silbermann. Resizing

memory with balloons and hotplug. In Ottawa Linux Symposium

(OLS), volume 2, pages 313–319, 2006.

[SGD05] A.I. Sundararaj, Ashish Gupta, and P.A. Dinda. Increasing ap-

plication performance in virtual environments through run-time

inference and adaptation. In International Symposium on High

Performance Distributed Computer (HPDC), pages 47–58, 2005.

[Sin10] Balbir Singh. Page/slab cache control in a virtualized environment.

In Ottawa Linux Symposium (OLS), volume 1, pages 252–262,

2010.

[SK11] Orathai Sukwong and Hyong S. Kim. Is co-scheduling too expen-

sive for SMP VMs? In ACM SIGOPS European Conference on

Computer Systems (EuroSys), pages 257–272, 2011.

[SK12] Prateek Sharma and Purushottam Kulkarni. Singleton: system-

wide page deduplication in virtual environments. In International

Symposium on High Performance Distributed Computer (HPDC),

pages 15–26, 2012.

[SLQP07] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVi-

sor: a tiny hypervisor to provide lifetime kernel code integrity

for commodity OSes. ACM SIGOPS Operating Systems Review

(OSR), 41(6):335–350, 2007.

[SM79] L. H. Seawright and R. A. MacKinnon. VM/370—a study of

multiplicity and usefulness. IBM Systems Journal, 18(1):4–17,

Mar 1979.

111

[SOK01] Jamal Hadi Salim, Robert Olsson, and Alexey Kuznetsov. Beyond

Softnet. In Anual Linux Showcase & Conference, 2001.

[SQ08] Khaled Salah and A. Qahtan. Boosting throughput of Snort

NIDS under Linux. In International Conference on Innovations

in Information Technology (IIT), 2008.

[SS07] Balbir Singh and Vaidyanathan Srinivasan. Containers: Chal-

lenges with the memory resource controller and its performance.

In Ottawa Linux Symposium (OLS), page 209, 2007.

[SSBBY10] Leah Shalev, Julian Satran, Eran Borovik, and Muli Ben-Yehuda.

IsoStack—Highly Efficient Network Processing on Dedicated Cores.

In USENIX Annual Technical Conference (ATC), page 5, 2010.

[STJP08] Jose R. Santos, Yoshio Turner, (john) G. Janakiraman, and Ian

Pratt. Bridging the gap between software and hardware techniques

for I/O virtualization. In USENIX Annual Technical Conference

(ATC), 2008.

[SVL01] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim.

Virtualizing I/O devices on Vmware workstation’s hosted vir-

tual machine monitor. In USENIX Annual Technical Conference

(ATC), pages 1–14, 2001.

[Tan10] Taneja Group. Hypervisor shootout: Maximizing workload density

in the virtualization platform. http://www.vmware.com/files/

pdf/vmware-maximize-workload-density-tg.pdf, 2010.

[TEF05] Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson. General purpose

timing: the failure of periodic timers. Technical Report 2005-6,

School of Computer Science & Engineering, the Hebrew University,

2005.

[TEFK05] Dan Tsafrir, Yoav Etsion, Dror G. Feitelson, and Scott Kirkpatrick.

System noise, OS clock ticks, and fine-grained parallel applications.

In ACM International Conference on Supercomputing (ICS), pages

303–312, 2005.

[TG05] Irina Chihaia Tuduce and Thomas R Gross. Adaptive main

memory compression. In USENIX Annual Technical Conference

(ATC), pages 237–250, 2005.

[TH09] Ryan Troy and Matthew Helmke. VMware Cookbook. O’Reilly

Media, Inc., 2009. Section 4.1: Understanding Virtual Machine

Memory Use Through Reservations, Shares, and Limits.

112

http://www.vmware.com/files/pdf/vmware-maximize-workload-density-tg.pdf
http://www.vmware.com/files/pdf/vmware-maximize-workload-density-tg.pdf

[THWDS08] Dan Tsafrir, Tomer Hertz, David Wagner, and Dilma Da Silva.

Portably solving file TOCTTOU races with hardness amplification.

In USENIX Conference on File & Storage Technologies (FAST),

2008.

[UNR+05] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando

C. M. Martins, Andrew V. Anderson, Steven M. Bennett, Alain

Kagi, Felix H. Leung, and Larry Smith. Intel virtualization

technology. Computer, 38(5):48–56, 2005.

[Use12] Luis Useche. Optimizing Storage and Memory Systems for Energy

and Performance. PhD thesis, Florida International University,

2012.

[Val13] Bob Valentine. Intel next generation microarchitecture co-

dename Haswell: New processor innovations. In 6th An-

nual Intel Software Developer Conference & User Group,

June 2013. http://ftp.software-sources.co.il/Processor_

Architecture_Update-Bob_Valentine.pdf. Visited: Dec 2013.

[VMw10a] VMware, Inc. Understanding memory resource management

in VMware ESX 4.1. http://www.vmware.com/files/pdf/

techpaper/vsp_41_perf_memory_mgmt.pdf, 2010.

[VMw10b] VMware, Inc. vSphere 4.1 - ESX and VCenter. VMware, Inc., 2010.

Section: “VMware HA Admission Control”. http://tinyurl.

com/vmware-admission-control.

[VMw11a] VMware, Inc. Understanding memory management in VMware

vSphere 5, 2011. Technical white paper. http://www.vmware.

com/files/pdf/mem_mgmt_perf_vsphere5.pdf.

[VMw11b] VMware Knowledge Base (KB). Problems installing VMware tools

when the guest CD-ROM drive is locked. http://kb.vmware.

com/kb/2107, 2011. Visited: Dec 2013.

[VMw12a] VMware Knowledge Base (KB). Troubleshooting a failed VMware

tools installation in a guest operating system. http://kb.vmware.

com/kb/1003908, 2012. Visited: Dec 2013.

[VMw12b] VMware Knowledge Base (KB). Unable to upgrade existing

VMware tools. http://kb.vmware.com/kb/1001354, 2012. Vis-

ited: Dec 2013.

113

http://ftp.software-sources.co.il/Processor_Architecture_Update-Bob_Valentine.pdf
http://ftp.software-sources.co.il/Processor_Architecture_Update-Bob_Valentine.pdf
http://www.vmware.com/files/pdf/techpaper/vsp_41_perf_memory_mgmt.pdf
http://www.vmware.com/files/pdf/techpaper/vsp_41_perf_memory_mgmt.pdf
http://tinyurl.com/vmware-admission-control
http://tinyurl.com/vmware-admission-control
http://www.vmware.com/files/pdf/mem_mgmt_perf_vsphere5.pdf
http://www.vmware.com/files/pdf/mem_mgmt_perf_vsphere5.pdf
http://kb.vmware.com/kb/2107
http://kb.vmware.com/kb/2107
http://kb.vmware.com/kb/1003908
http://kb.vmware.com/kb/1003908
http://kb.vmware.com/kb/1001354

[VMw12c] VMware Knowledge Base (KB). VMware tools may not install on

a windows guest operating system after upgrading to a newer ver-

sion of ESX/ESXi. http://kb.vmware.com/kb/1012693, 2012.

Visited: Dec 2013.

[VMw13a] VMware Knowledge Base (KB). Troubleshooting a failed VMware

tools installation in Fusion. http://kb.vmware.com/kb/1027797,

2013. Visited: Dec 2013.

[VMw13b] VMware Knowledge Base (KB). Updating VMware tools fails with

the error. http://kb.vmware.com/kb/2007298, 2013. Visited:

Dec 2013.

[VMw13c] VMware Knowledge Base (KB). Updating VMware tools operating

system specific package fails with dependency errors and driver

issues on RHEL 6 and CentOS 6. http://kb.vmware.com/kb/

2051322, 2013. Visited: Dec 2013.

[vR12] Rik van Riel. KVM and memory managment updates.

KVM Forumhttp://www.linux-kvm.org/wiki/images/1/19/

2012-forum-memory-mgmt.pdf, 2012.

[vZ10] Gabrie van Zanten. Memory overcommit in produc-

tion? YES YES YES. http://www.gabesvirtualworld.com/

memory-overcommit-in-production-yes-yes-yes/, 2010.

[Wal02] Carl A. Waldspurger. Memory resource management in Vmware

ESX server. In USENIX Symposium on Operating Systems Design

& Implementation (OSDI), volume 36, pages 181–194, 2002.

[Wal13] Carl A. Waldspurger. Default ESX configuration for balloon size

limit. Personal communication, 2013.

[Wik13] Wikipedia. Haswell microarchitecture – expected server

features. http://en.wikipedia.org/wiki/Haswell_

(microarchitecture)#Expected_Server_features, 2013.

Visited: Dec 2013.

[Woj08] Rafal Wojtczuk. Subverting the Xen hypervisor. In Black Hat,

2008. http://www.invisiblethingslab.com/bh08/papers/

part1-subverting_xen.pdf. (Accessed Apr, 2011).

[WR11] Rafal Wojtczuk and Joanna Rutkowska. Following the White

Rabbit: Software attacks against Intel VT-d technology. Technical

report, Invisible Things Lab, 2011.

114

http://kb.vmware.com/kb/1012693
http://kb.vmware.com/kb/1027797
http://kb.vmware.com/kb/2007298
http://kb.vmware.com/kb/2051322
http://kb.vmware.com/kb/2051322
http://www.linux-kvm.org/wiki/images/1/19/2012-forum-memory-mgmt.pdf
http://www.linux-kvm.org/wiki/images/1/19/2012-forum-memory-mgmt.pdf
http://www.gabesvirtualworld.com/memory-overcommit-in-production-yes-yes-yes/
http://www.gabesvirtualworld.com/memory-overcommit-in-production-yes-yes-yes/
http://en.wikipedia.org/wiki/Haswell_(microarchitecture)#Expected_Server_features
http://en.wikipedia.org/wiki/Haswell_(microarchitecture)#Expected_Server_features
http://www.invisiblethingslab.com/bh08/papers/part1-subverting_xen.pdf
http://www.invisiblethingslab.com/bh08/papers/part1-subverting_xen.pdf

[WRC08] Paul Willmann, Scott Rixner, and Alan L. Cox. Protection

strategies for direct access to virtualized I/O devices. In USENIX

Annual Technical Conference (ATC), 2008.

[WRW+08] Dan Williams, Patrick Reynolds, Kevin Walsh, Emin Gün Sirer,

and Fred B. Schne ider. Device driver safety through a reference

validation mechanism. In USENIX Symposium on Operating

Systems Design & Implementation (OSDI), pages 241–254, 2008.

[WSC+07] Paul Willmann, Jeffrey Shafer, David Carr, Aravind Menon, Scott

Rixner, Alan L. Cox, and Willy Zwaenepoel. Concurrent direct

network access for virtual machine monitors. In IEEE Interna-

tional Symposium on High Performance Computer Architecture

(HPCA), 2007.

[WTLS+09a] Timothy Wood, Gabriel Tarasuk-Levin, Prashant Shenoy, Peter

Desnoyers, Emmanuel Cecchet, and Mark D. Corner. Memory

buddies: exploiting page sharing for smart colocation in virtualized

data centers. ACM SIGOPS Operating Systems Review (OSR),

43:27–36, 2009.

[WTLS+09b] Timothy Wood, Gabriel Tarasuk-Levin, Prashant Shenoy, Peter

Desnoyers, Emmanuel Cecchet, and Mark D. Corner. Memory

buddies: exploiting page sharing for smart colocation in virtualized

data centers. ACM SIGOPS Operating Systems Review (OSR),

43:27–36, 2009.

[WZW+11] Xiaolin Wang, Jiarui Zang, Zhenlin Wang, Yingwei Luo, and

Xiaoming Li. Selective hardware/software memory virtualization.

In ACM/USENIX International Conference on Virtual Execution

Environments (VEE), pages 217–226, 2011.

[Yan11] Xiaowei Yang. Evaluation and enhancement to mem-

ory sharing and swapping in Xen 4.1. In Xen Sum-

mit, 2011. http://www-archive.xenproject.org/xensummit/

xensummit_summer_2011.html.

[YBYW08] Ben-Ami Yassour, Muli Ben-Yehuda, and Orit Wasserman. Direct

device assignment for untrusted fully-virtualized virtual machines.

Technical Report H-0263, IBM Research, 2008.

[YBYW10] Ben-Ami Yassour, Muli Ben-Yehuda, and Orit Wasserman. On

the DMA mapping problem in direct device assignment. In Haifa

Experimental Systems Conference (SYSTOR), 2010.

115

http://www-archive.xenproject.org/xensummit/xensummit_summer_2011.html
http://www-archive.xenproject.org/xensummit/xensummit_summer_2011.html

[ZCD08] Edwin Zhai, Gregory D. Cummings, and Yaozu Dong. Live

migration with pass-through device for Linux VM. In Ottawa

Linux Symposium (OLS), pages 261–268, 2008.

[ZMv02] Marko Zec, Miljenko Mikuc, and Mario Žagar. Estimating the

Impact of Interrupt Coalescing Delays on Steady State TCP

Throughput. In International Conference on Software, Telecom-

munications and Computer Networks (SoftCOM), 2002.

116

epzexyt`a did ,zgxe`d dlrtdd zkxrna zelz `lle ,ef dlabn zexnl .dldpnl wlge

dxard .oldpnl zexg`d z`e zexiyi zegxe`d zekxrnl zecreind zewiqtd z` xiardl

zlaha yeniy jez ,zil`ehxied dpeknl zewiqtd lk zxard ici-lr dqiqaa drvazd ef

.milwlewn mpid zgx`nd dlrtdd zkxrn zeixg`ay zewiqtd ixry da ,zxzqp zewiqt

ztlgdl znxebd dbixg zrvazn ,zgxe`d zkxrnl z`fky dwiqt dxard zra ,jkl-i`

ly xetiy biydl epglvd ef jxca .df xywda dwiqta letihle ,zgx`nd zkxrnl xywd

zepeknd irevia ,dyrnl .oenhn zxye hpxhpi` zxy oebk ,mivetp miyeniy xear 60% cr

opi`y zekxrn ly el`l minec eid odireviay jk ickl cr extzyd el` mixwna zeil`ehxied

.3-n jenp did mireviaa yxtdde ,zil`ehxie daiaqa zevx

oekp .zeil`ehxie zekxrn ly iqitd oexkifd ia`yn ly liri ledipa zwqer ziyilyd epzcear

zeil`ehxied zepeknd xtqn z` liabnd ixwird mxebd z` deedn iqit oexkif zenk ,meidl

mezig rval zeil`ehxie zepekn ildpn mibdep ,ef dlabn awr .iynn zxy lr mwnl ozipy

.zeil`ehxied zepeknd ikxv itl oexkifd ly sectc rval jxev epyi df avna .oexkif ly xzi

zil`ehxied dpeknd z` oitiwra rciin xy` ,oelad oepbpn epid uetp il`ehxie-dx`t oexzt

itc reazl zgxe`d dlrtdd zkxrnl xyt`ne zgx`nd zkxrnd deegy oexkf iqner zece`

df oexzt ,dzeyxay oexkifd ciwtzl zrcen zgxe`d zkxrndy oeeikn .dikildzn oexkf

epi`e elceba laben ,mizirl oinf epi` oelady oeeikn mly epi` ef oexzt ,z`f-mr .iicnl liri

oepbpn lr mb miknzqn zeile`hxie zekxrn ildpn ,jkl-i` .zexidna mipzyn miqnerl aibn

ezxewza dvnyl reci df oepbpn ,lfnd rexl .lcgn zxixak zgx`nd zkxrnd ly sectcd

.dlecbd

dxewzl zenxeby zeifkxn zeaiq xtqn oiit`l epglvd ,ef dxewz ly dwinrn dcinl ici-lr

minxeb mivetp zeil`ehxie zepekn ildpn ,dbivn epzceary itk .ze`ivnd zeaiegn opi`e

xak `vnp mpkezy mitc ly dvegd sectc ,uegp epi` llk mpkezy mitc ly dnipt sectcl

wqica xak `vnp mpkezy mitc iepit ztcrzn dpi`y dwel iepit zeipicn ,giywd wqica

ep` ,el` miiyw mr ccenzdl zpn-lr .sectcd uaewn dliri `l dnicw-d`ixwe ,giywd

aewrl xyt`n dtnnd .zeixwy ze`ixw rpene sectcd oexkf dtnn---zekxrn izy mibivn

ly zeaizk repnl ,dly giywd wqica miwelal zil`ehxied dpeknd oexkf oia xywd lr

rcin ly d`ixw repnl ,dfk rcin ly iepit scrzl ,giywd wqicd lr xak `vnpd rcin

ly zeil`weld z` xtyle ,wqicdn d`ixw ici-lr azkeyn zeidl cnery sectcd uaewn

-lr wgniie uegp epi`y wqicdn rcin ly ze`ixw rpen ,`ed ok enyk ,rpend .mipetn mitc

zexyt`n el` zehiy ,mibivn ep`y itk .ez`ixw xg`l ciin zgxe`d dlrtdd zkxrn ici

it cr ly xetiye ,oelaa zeynzyn opi`y zegxe` zekxrn ireviaa lceb xcq cr ly xetiy

.dpzyn qner zgz oelaa zeynzyny zegxe` zekxrna 2

`ll divfil`ehxie zekxrn ireviaa izernyn xetiy xyt`n df xwgny mipin`n ep` ,mekiql

,divfil`ehxie-dx`ta jxevd dn zcina cxei jka .zgxe`d dlrtdd zkxrn ly zen`zd

`l okle zevetp opi`y zegxe` dlrtd zekxrna mb mideab mirevia zbyd xyt`ny xac

dbivn epzcear .mipey mildpn oia zeil`ehxie zepekn ceip lr lwne ,divfil`ehxiel en`zed

dxiyi dyib zil`ehxied dpeknly hlt/hlw ipwzd ly mideab mirevia biydl ozip cvik

.zeil`ehxie-dx`t zekxrn ly el`n zizernyn mideabd mirevia ,mdil`

iii

dnly `l diincd ,divfile`hxie-dx`t dpid ,el` miiyw ipy oexztl zevetpd zeyibd zg`

-l`ehxied dpeknd ldpn mr zxywzn zgx`znd dlrtdd zkxrny jez ,zifitd dpeknd ly

irevia zizernyn xtyl zeleki ,zenec zeyibe ef dvetp dyib .lirie icerii wypin ici-lr zi

dn`zd zeaiign dizenece divfil`ehxie-dx`t ,z`f-mr .miavn oeebna zeil`ehxie zekxrn

ly xewnd cewl dyib e` micgein mipwzd ildpna yeniy ,zgxe`d dlrtdd zkxrn ly

-cew zelra dlrtd zekxrna da yeniyd lr zeywnd zeyixc—zgxe`d dlrtdd zkxrn

xcrdae ,cxtpa dlrtd zkxrn lkl zen`zd reviaa jxev miiw ,ok-enk .zepelg znbeck xebq

zekxrn ldpnn zil`ehxie dpekn ciipl iyew yi ,divfil`ehxie-dx`t iwypinl ehwt-dc owz

.xg`l cg` zeil`ehxie

dyw divfil`ehxie ly dxewzd zcxed ,zgxe`d dlrtdd zkxrn ly dlert seziy `ll

mirexi` xg` awrn ici-lr ,ezphwdl ebved zehiy xtqne rcid xrta epc zecear xtqn .xzei

irevia ipen gezipe zil`ehxied dpeknd avn zwica ,zil`ehxied dpekna miygxznd miyibx

dpeknd cew iepiy ici-lr zetiwyd xcrid z` oihwdl zepey zeceara rved ok-enk .dxneg

,zil`ehxied dpeknl dxnegl dxiyi dyib ozn ,dzvix onfa zgxe`d dlrtdd zkxrn ly

zenecn zewiqt befin oke miizpkeze miizxneg divfil`ehxie ipepbpn oia zin`pic dtlgd

milirik elbzd el` zeyib lr eqqazdy mipepbpn cera .zgxe`d dlrtdd zkxrnl zexarend

oeebna riiql mileki mpi`e ,minieqn miavna wx miyiny md ,minieqn miavna xzeia

.mivetp miavn

dlrtd zekxrn lr ybca ,divfil`ehxie ly dxewzd zphwda cwnzn ,ok-m` ,df xwgn

dpkez ipepbpn zepal eppevxa .zeil`ehxied zepeknd ldpn mr dlert zetzyn opi`y zegxe`

.mivetp miavna el`ky zegxe` zekxrn irevia ly izernyn xetiy exyt`iy

.hlt/hlw ipwzd ly oexkifd ledip zcigi ly dliri diincda zwqer dpey`xd epzcear

oeeikn ,zgxe`d dlrtdd zkxrnl mipwzdl dxiyi dyib ozn zra ziyeniy efky diincd

z` zelrdle zepeyd zeil`ehxied zepeknl zinpic oexkif zevwdl ldpnl zxyt`n dpidy

dceara .owzdd ly zeieby zexiyi oexkif zeyib iptn zgxe`d zkxrnd ly zegihad znx

.x86 zxehwhikx`a hlt/hlw ipwzd ly oekxkfd ledip zcigil dpey`x diincd epynin ef

,zgxe`d dlrtdd zkxrn ireviaa zizernyn znbet ziqiqa diincd cera ik d`xd epxwgn

`ll ode zeil`ehxie zekxrna od direvia z` xtyn did dlrtdd zkxrn ly xzei liri yenin

zcigi zpbd ly zizernyn-izla dcxed ici-lr ik dz`xd epzcear ,sqepa .divfil`ehxie

,zixwird epznexz ,z`f-mr .zxkip dcina dcigid irevia z` xtyl ozip ,oexkifd ledip

zkxrnd irevia z` dxtiyy xfr-carn zervn`a diincd ,sqep oepbpn epid ,epzrc zeiprl

oia xywd-itlgdn znxbpd dxewzd zripne xg` carnl diincdd lhp zxard ici-lr 3 it

mb znyein zeidl dleki ,epici-lr dpey`xl dbvedy ,ef dyib .dldpne zil`ehxied dpeknd

.mixg` mipwzd ziincd xear

ozn zra mb ,meik .zil`ehxied dpeknl zexiyi zewiqt zxarda zwqer diipyd epzcear

zeil`ehxied zepeknd ldpnl zexaer zewiqt oiicr ,zeil`ehxie dpeknl owzdl dxiyi dyib

micarnd zxehwhikx` ly dlabn dpid jkl daiqd .zgxe`d dlrtdd zkxrnl zexiyi `le

zil`ehxied dpeknl odn wlg zxard jez ,zepey zewiqt oia lcal dleki dpi` xy` ,zniiwd

ii

xivwz

xak dbved ,dlrtd zekxrn ly mirten xtqn zvxd zxyt`nd ,dxneg ly divfil`ehxie

mizxyd zexehwhikx` ici-lr dknzp zr ,dpexg`l wx dvetp dktd mle` 70-d zepya

zxyt`ne ,miihxt miynzyne miax mipebx` dvetp dxneg ly divfl`ehxie ,meik .zevetpd

dlrtd zekxrn xehip ,aygn zekxrn ly zxaben zeaivi ,aygn ia`yn ly xzei liri levip

.cere

dnxa .zizernyn dxeva mireviaa miax mixwna znbet divfil`ehxie ,dizepexzi zexnl

ze`yxda zil`ehxied dpeknd zvxd ici-lr dxwira zlret divfil`ehxie ,zipehwhikx`d

zepeknd ldpn letihl mixarene dxnegd ici-lr micklp miyibx mirexi` oda ,gxe` ly zekenp

ztlgd .zeile`hxied zepeknd ldpn l` xywd ztlgd zaiign efky dcikl .zeil`ehxied

onf migwel zil`ehxied dpeknd l` dxfg xywdd ztlgde cklpy rexi`a letihd ,xywdd

.zkxrnd ireviaa znbetd dax dxewz mixvei jk awre izernyn

-iqd zg`y xnel ozip .ce`n cr minieqn dcear-iqnera deab miyibxd mirexi`d xtqn

oiae epia miiqitd zkxrnd ia`yn z` wlgl ldpnd ly jxevd `id ,jkl zeifkxnd zea

-ny oeeikn ,diirad iyxey z` bivn epi` dfky xaqd ,mle` .zepeyd zeil`ehxied zepeknd

`id mby mipeyd mikildzd oia mia`ynd zwelg ly dnec dlert zrvan dlrtd zkxr

,ziy`x .mixwnd ipy oia miifkxn milcad ipy mpyi ,dyrnl .xywd zetlgd zaiign

divfil`ehxieay ixd ,lirie xcben wypin jxc dlrtdd zkxrn mr mixywzn mikildz cera

,zipy .ldpnd l` xaren cala iqiqa rcine ,dxnegd ly mipehwhikx` mirexi` micklp

dpi` llk `idy oeeikn ,zexiyi zgxe`d dlrtdd zkxrn mr xywzl leki epi` ecivn ldpnd

.eneiwl zrcen

xcridn xvepy rcid-xrt epid oey`xd .divfl`ehxiea miniiw miiyw ipy ik xnel ,ok-m` ,ozip

-xrtn d`vezk .zgxe`d dlrtdd zkxrn ly dizelert zernyne dpan lr ldpnd ly rci

xywd zetlgd ly lecb xtqn yexcl zeleki zyxa dliag gelyn enk zeheyt zelert ,rcid

.zgxe`d dlrtdd zkxrn zpeek z` ldpnd oian mdixg`l wxy ,miyibx mirexi`a letihe

xcrid .zgxe`d dlrtdd zkxrn lv` zifitd dxnegd ly zetiwy xcrid epid ipyd iyewd

zkxrn ly dyib aiignd ,migxe`d oia zkxrnd ia`yn zwelg ly i`eel-xvez epid zetiwyd

divwxhqa`n d`vezk .ztqep divwxhqa` znx jxc oitiwra dxnegl zgxe`d dlrtdd

ifit oexkif z`vwd `nbecl ,zeliri-izla zelert rval zgxe`d dlrtdd zkxrn dleki ef

-reviaa dribte sectcl mexbiy xac ,oinf epi` iynn ifit oexkif cera ,dpkez oenhnl dxe`kl

.mi

i

ircnl dhlewta ,xixtv oc xeqtexte xhqey sq` xeqtext ly eziigpda rvea xwgnd

.aygnd

-iazkae miqpka xwgnl eitzeye xagnd z`n mixn`nk enqxet df xeaiga ze`vezd on wlg

:opid xzeia zeipkcrd mdize`qxb xy` ,xagnd ly hxehwecd xwgn ztewz jldna zr

Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster. vIOMMU: efficient IOMMU
emulation. In USENIX Annual Technical Conference (ATC), 2011.

Nadav Amit, Dan Tsafrir, and Assaf Schuster. VSWAPPER: A memory swapper for
virtualized environments. In ACM Architectural Support for Programming Languages &
Operating Systems (ASPLOS), pages 349–366, 2014.

Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Assaf Schuster,
and Dan Tsafrir. ELI: Bare-metal performance for I/O virtualization. In ACM Architectural
Support for Programming Languages & Operating Systems (ASPLOS), pages 411–422, 2012.
First two authors equally contributed.

zecez

mkzkxcd zxfra .zincw`d mziigpd lr xixtv oce xhqey sq` ,iigpnl zecedl ipevxa

dlecb ef dcearl mkznexz .incw`d xwgna oazd on uend z` cixtdl cixtdl cvik izcnl

.xeriy oirl

miincw`d iicrva ipliaede xwgnl zepiiprn zeira `iady lr dcedi-oa ilenl dcez

lr ,e`cpl qkl`e oecxeb la` ,l`xd acp ,iixn`na mitqepd miazekl dcen ip` .mipey`xd

l`xwe xehwt lwiinl dcez ,sqepa .zipkhd eznexz lr uiaxw dili`le ,xwgna mwlg

.oxtyl riiqy xwgnd zecearl aeynd lr xbxetqcle

dili` ,blt xner ,dcedi-oa oenb` dpxe` ,lab iwin :iizinr ici lr izknzp iicenil jldna

l`kine x`ilenq xebi` ,ixner icr ,xbci dlb ,crlb oxr ,cltpfex ozi` ,dkln dyn ,oigeql

.jxcd jxe`l mzkinz lr dcez .aliqe

mkzpad ,mkzeplaq .oxen dwin izy`l cgeinae ,zinr xnze gep ,iixedl dcez ,meiql

.df xwgn rval il dxyt` mzkinze

.df xwgn oenin lr oeipkhde .m`.ia.ii` zxag ,xph`lt eq`d oeknl dxeqn dcez zxkd

divfil`ehxie ly dxewzd zcxed

xwgn lr xeaig

x`ezd zlawl zeyixcd ly iwlg ielin myl

zinr acp

l`xyil ibelepkh oekn --- oeipkhd hpql ybed

2014 uxn dtig c"ryzd fenz

divfil`ehxie ly dxewzd zcxed

zinr acp

	List of Figures
	List of Tables
	Abstract
	Abbreviations and Notations
	1 Introduction
	1.1 Overheads
	1.1.1 Architecture Perspective
	1.1.2 High-Level Perspective

	1.2 Achieving Transparency
	1.2.1 Cooperative Transparency
	1.2.2 Non-Cooperative Transparency

	1.3 Research Goal

	2 vIOMMU
	2.1 Abstract
	2.2 Introduction
	2.2.1 Motivation
	2.2.2 Contributions and Preview of Results

	2.3 Samecore IOMMU Emulation
	2.4 IOMMU Mapping Strategies
	2.4.1 Approximate Shared Mappings
	2.4.2 Asynchronous Invalidations
	2.4.3 Deferred Invalidation
	2.4.4 Optimistic Teardown

	2.5 Sidecore IOMMU Emulation
	2.5.1 Risk and Protection Types
	2.5.2 Quantifying Risk

	2.6 Performance Evaluation
	2.6.1 Methodology
	2.6.2 Overhead of (Un)mapping
	2.6.3 Benchmark Results
	2.6.4 Sidecore Scalability and Power-Efficiency

	2.7 Related Work
	2.8 Conclusions

	3 ELI
	3.1 Abstract
	3.2 Introduction
	3.3 Motivation and Related Work
	3.3.1 Generic Interrupt Handling Approaches
	3.3.2 Virtualization-Specific Approaches

	3.4 x86 Interrupt Handling
	3.4.1 Interrupts in Bare-Metal Environments
	3.4.2 Interrupts in Virtual Environments
	3.4.3 Interrupts from Assigned Devices

	3.5 ELI: Design and Implementation
	3.5.1 Exitless Interrupt Delivery
	3.5.2 Placing the Shadow IDT
	3.5.3 Configuring Guest and Host Vectors
	3.5.4 Exitless Interrupt Completion
	3.5.5 Multiprocessor Environments

	3.6 Evaluation
	3.6.1 Methodology and Experimental Setup
	3.6.2 Throughput
	3.6.3 Execution Breakdown
	3.6.4 Impact of Interrupt Rate
	3.6.5 Latency

	3.7 Security and Isolation
	3.7.1 Threat Model
	3.7.2 Protection

	3.8 Architectural Support
	3.9 Applicability and Future Work
	3.10 Conclusions

	4 VSWAPPER
	4.1 Abstract
	4.2 Introduction
	4.3 Motivation
	4.3.1 The Benefit of Ballooning
	4.3.2 Ballooning is Not a Complete Solution
	4.3.3 Ballooning Takes Time
	4.3.4 The Case for Unmodified Guests

	4.4 Baseline Swapping
	4.4.1 Demonstration

	4.5 Design and Implementation
	4.5.1 The Swap Mapper
	4.5.2 The False Reads Preventer

	4.6 Evaluation
	4.6.1 Controlled Memory Assignment
	4.6.2 Dynamic Memory Assignment
	4.6.3 Overheads and Limitations
	4.6.4 Non-Linux Guests and Hosts

	4.7 Related Work
	4.8 Future Work
	4.9 Conclusions
	4.10 Availability

	5 Conclusion and open questions
	Bibliography
	Hebrew Abstract

