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Abstract

Exploiting on-the-fly computation, Data Stream Processing (DSP) applica-
tions are widely used to extract valuable information in a near real-time
fashion, thus enabling the development of new pervasive services. Nev-
ertheless, running DSP applications is challenging, because they are sub-
ject to a varying workload, require long provisioning time, and express
strict QoS requirements. Moreover, since data sources are, in general, ge-
ographically distributed (e.g., in Internet-of-Things scenarios), recently we
have also witnessed a paradigm shift with the deployment and execution
of DSP applications over distributed Cloud and Fog computing resources.
This computing environment allows to move applications closer to the data
sources and consumers, thus reducing their expected response time. This
diffused computing infrastructure also promises to reduce the stress upon
the Internet infrastructure, by reducing the movement of large data sets,
and to improve the scalability of DSP systems, by better exploiting the ever
increasing amount of resources at the network periphery. Nevertheless,
such geo-distributed infrastructures pose new challenges to deal with, in-
cluding the heterogeneity of computing and networking resources and the
non-negligible network latencies.

In this thesis, we study the challenges of executing DSP applications
over geo-distributed environments. A DSP application is represented as a
directed graph, with data sources, operators, and final consumers as ver-
tices, and streams as edges. For the execution, we need to solve the operator
placement problem, which consists in determining the computing nodes
that should host and execute each operator of a DSP application. More-
over, when the DSP application should efficiently process huge amount of
incoming load, we also need to solve the operator replication problem. It
consists in determining the number of parallel instances (or replicas) for the
operators, so that each instance can process a subset of the incoming data
flow in parallel (i.e., data parallelism). We first present a taxonomy to clas-
sify the existing deployment and runtime adaptation approaches for DSP
systems. Starting from the literature review, we provide several contribu-
tions to the initial deployment and runtime adaptation of DSP applications
over heterogeneous resources. We propose a general unified formulation of
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the operator placement problem, which also provides a benchmark against
which placement heuristics can be evaluated. Then, we present several
new heuristics for efficiently solving the operator placement problem in
a feasible amount of time. Differently from existing research efforts, the
heuristics are also evaluated in terms of quality of the computed placement
solution. Afterwards, we study the operator replication problem and pro-
pose a general formulation that jointly optimizes the replication and place-
ment of the DSP operators, while considering the application QoS require-
ments. To preserve the application performance in highly changing execu-
tion environments, the deployment of DSP applications should be accord-
ingly reconfigured at runtime. Hence, we formulate the elastic replication
and placement problem, which determines whether the application should
be more conveniently redeployed by explicitly considering the adaptation
costs (i.e., state migration, application downtime). To efficiently deal with
runtime adaptation over large scale and geo-distributed infrastructures, we
present a hierarchical approach for the autonomous control of elastic DSP
applications. To evaluate the devised deployment and adaptation solutions
on real DSP systems, we design and implement two extensions of Apache
Storm, namely Distributed Storm and Elastic Storm, which are available as
open source projects.

Our thesis work demonstrates the importance of models, prototypes,
and empirical experiments to deeply understand and overcome the chal-
lenges of running DSP applications over geo-distributed environments. In-
deed, a suitable representation of applications, computing and network
resources, which explicitly considers their relevant QoS attributes, allows
to improve the application performance, while efficiently managing geo-
distributed infrastructures.
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Chapter 1

Introduction

The amount of daily generated data is quickly growing with a never seen
before pace. This tendency is supported and accelerated by many recent
developments, which are leading us towards a data-centric society. In the
last few years, the reduced cost of sensing devices and smartphones, to-
gether with the (almost) ubiquitous Internet connectivity, has fostered the
wide diffusion of new pervasive services and devices (e.g., social networks,
smart watches, wearable devices). As a result, nowadays we are witnessing
to the development of the so-called Internet of Things (IoT), where devices
(or things) exploit interconnectivity to cooperate and expose high value
services. As the world becomes more connected, there is a deluge of data
coming from disseminated sensors in the form of continuous streams.

The emerging data-intensive panorama presents old and new challenges.
In 2001, Gartner introduced the term Big Data to collectively identify data
with specific properties1, which stress the traditional processing systems
and, ultimately, require to redesign the processing paradigms. These prop-
erties are well depicted by the IBM definition of Big Data2, which spans
along the 4Vs dimensions: volume, variety, velocity, and veracity. Volume
refers to challenges of storing and processing large data set, which might
not fit within the memory of a single machine. These data sets can eas-
ily reach the size of petabyte (PB) or exabyte (EB), respectively 106 GB and
109 GB, thus requiring the adoption of distributed and efficient processing
solutions. Variety refers to the need of managing and integrating struc-
tured, unstructured, and multimedia data. Velocity refers to the high pro-
duction and consumption rate, which requires to quickly analyze streams
of data. Veracity is a property that emphasizes the uncertainty of the data,
meaning that the presence of noisy data can compromise the quality of ex-
tracted information.

1http://www.gartner.com/newsroom/id/1731916
2https://www.ibm.com/analytics/us/en/big-data/

1
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2 Chapter 1. Introduction

Accessing to raw data is not interesting by itself. Instead, we are inter-
ested in extracting high level information (e.g., aggregated insights), which
enables the development of new intelligent and pervasive services aim-
ing to improve our everyday life. Decision-making processes can benefit
from data-driven evidences3. Similarly, service providers can exploit real-
time data to optimize their offerings and services. For example, a pub-
lic transportation company can exploit information regarding user mobil-
ity and presence of events within the city, to plain (and adjust) in real-
time the number of buses within the city as well as their route. The ACM
DEBS 2015 Grand Challange presented a similar idea: considering taxis
moving in New York City, the challenge asks to find the top most fre-
quent routes and to identify the most profitable area for taxi drivers in real-
time [99]. We can readily observe that these kind of applications have a
great economical value, because they can take advantage of informed de-
cisions (i.e., data driven decisions) to develop products and services and
optimize their provisioning4. The real-world use-case from Dublin city
has shown how an urban monitoring system can identify traffic conges-
tions and (pro-actively) change traffic light priorities and speed limits, so
to reduce ripple effects [12]. Many other examples range from manufactur-
ing [155], health-care [187], energy and utilities management [98], to finan-
cial markets [155].

Two different processing modes are commonly used to elaborate data
over distributed computing resources: batch processing and stream pro-
cessing. The batch processing approaches store all the data, usually on a
distributed file system, and then operate on them on the basis of differ-
ent programming models, among which the well-known MapReduce [49].
Stream processing approaches operate on data on-the-fly, i.e., without stor-
ing them, so they can produce results in a near real-time fashion. The idea
behind DSP applications is not new, but results from almost 50 years [143]
of evolution in terms of methodologies, architectures, and technologies.
Nevertheless, the advent of the Big Data era and the diffusion of the Cloud
computing paradigm have renewed the interest in DSP applications [78].
We can identify two stream processing models: the once-at-a-time model,
where each tuple is sent individually, and the micro-batched model, where
some tuples are grouped before being sent [141]. Thanks to their properties,

3In recent years, many different research communities have investigated how to extract
insightful information from raw data, i.e., how to perform data analytics. This lead to the
definition of a new form of science, the so called data science. Data science concerns using
models, hypotheses, and empirical data to analyze phenomena, so to estimates an outcome
with a certain degree of uncertainty. Differently from the classical science, which is theory-
driven and leads to incontrovertible facts, data science shows data-driven evidences that
are deduced from the available data. This means that data science does not necessarily lead
to incontrovertible facts, but may help to narrow the field of investigation.

4https://www.economist.com/news/leaders/21721656-data-economy-demands-
new-approach-antitrust-rules-worlds-most-valuable-resource
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3

Figure 1.1: Latency comparison in performing different local and network
operations. Source: https://gist.github.com/jboner/2841832

Data Stream Processing (DSP) applications are widely used to collect and
process unbounded streams of data, aiming to extract valuable informa-
tion in a near real-time fashion. Keeping data only on main memory, DSP
applications exploit the technological advantage of this kind of memory,
which is characterized by a reduced access latency with respect to the per-
sistence on stable storage (see Figure 1.1). On the other hand, developing
algorithms that process data on the fly (i.e., operate on-line) might not be
trivial [4, 148]. DSP applications can be used to solve different problems,
ranging from simple monitoring and pattern detection, to more complex
data processing tasks that, e.g., perform reasoning, learning, or in gen-
eral distill new information in an automated fashion. As a consequence,
they enable the development of new intelligent and pervasive services that
can improve our everyday life in several domains (e.g., health-care, energy
management, logistic, and transportation). For example, a DSP application
can be used to perform sentiment analysis on multiple tweet streams from
Twitter, to create user profile (as Yahoo! does), or to trace trends evolution
(as Google does).

Since DSP applications produce results whose utility decreases quickly
over time, they are required to satisfy Quality of Service (QoS) requirements,
which describe the expected behavior with respect to a set of performance
metrics (e.g., availability, response time, throughput, cost). QoS require-
ments play a key role in nowadays DSP applications that require an effi-
cient utilization of the computing infrastructure. This requirement is es-
pecially true when DSP applications run over heterogeneous and/or ge-
ographically distributed infrastructures, collect data from multiple data
sources, and forward results to multiple consumers. The enforcement of

https://gist.github.com/jboner/2841832


4 Chapter 1. Introduction

QoS requirements translates to the presence of mechanisms that, by con-
trolling the allocation of computing resources to different part of an ap-
plication, allow to meet the performance objectives at runtime. Using the
available resources adaptively and according to the actual needs of DSP
applications allows to scale to larger and larger scenarios while efficiently
managing resources.

The emerging scenario pushes DSP systems to a whole new perfor-
mance level. Strict quality requirements, great volumes of data, and high
production rate exacerbate the need of an efficient usage of the underlying
infrastructure. To date, DSP applications are typically deployed on large-
scale and centralized (Cloud) data centers that are often distant from data
sources. However, as data increase in size, pushing them towards the Inter-
net core could cause excessive stress for the network infrastructure and also
introduce excessive delays. A solution to improve scalability and reduce
network latency lies in taking advantage of the ever increasing presence
of near-edge/Fog Cloud computing resources [22, 23]. The recent idea be-
hind Fog computing is to make the Cloud descending to the network edges
by moving computational resources from few large data centers, located in
the network core, to diffused cloudlets or micro Clouds, that serve as a
second-class data center with soft state [176]. The use of a diffused infras-
tructure allows to decentralize the execution of DSP applications, by mov-
ing the computation to the edges of the network, close to data sources and
information consumers [217]. Nevertheless, this infrastructure poses new
challenges that include network and system heterogeneity, geographic dis-
tribution as well as non-negligible network latencies among distinct nodes
that process parts of a DSP application. This latter issue can have a strong
negative impact for DSP applications running in latency-sensitive domains
(e.g., [24]).

Recently, Cisco provided an analysis of Cisco’s global IP traffic and an
estimation of the near future trends [37], which show the importance of
scalability and decentralization for the near future Internet-based systems.
Cisco reports that, in 2016, the annual run rate for global IP traffic was
1.2 ZB per year (i.e., 1.2 × 1012 GB per year, which corresponds to about
3.3× 109 GB per day). Moreover, by 2021 PCs will account for only 25% of
traffic, whereas smartphones will generate about the 33% of total IP traffic.
The emerging of a strongly decentralized environment is also supported by
the prevision that, by 2021, Content Delivery Networks will carry 71% of
Internet traffic and 35% of end-user Internet traffic will be delivered within
a metro network (i.e., by resources closer to the edge of the network). Over-
all, these results show the ever increasing importance of exploiting near-
edge resources to alleviate the Internet stress and reduce communication
latencies. This trend eventually calls for the development of efficient ap-
proaches to decentralize the execution of distributed applications.
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In this context, a very interesting problem regards the efficient exploita-
tion of the available computing resources, with the aim of executing DSP
applications with high performance. This problem is challenging not only
because of the infrastructure characteristics (i.e., computing and network
resources are heterogeneous and possibly geo-distributed), but also be-
cause of the characteristics of DSP applications. Indeed, the latter expose a
computing demand that is not usually known in advance and, most impor-
tantly, can change at runtime (DSP applications are usually long running
and subject to varying incoming workloads). Therefore, we investigate the
application deployment problem, which consists in determining the com-
puting resources that should host and execute each part a DSP application,
aiming to optimize the application QoS attributes. Due to dynamic and
long-running nature of DSP applications, the computed initial application
deployment might not guarantee satisfying performance throughout the
whole application lifetime. As a consequence, we often need to reconfig-
ure (or adjust) the application deployment at runtime, so to preserve per-
formance. Basically, reconfigurations can be regarded as small adjustment
steps that update and correct the application deployment so to keep adher-
ence with QoS requirements. Differently from the initial deployment, run-
time reconfigurations usually do not propose a fresh new deployment, be-
cause this can prohibitively penalize the application performance (through
high reconfiguration costs). Hence, even though computing the initial ap-
plication deployment and its runtime adaptation seem to be two similar
problems, they are slightly different in terms of assumptions and optimiza-
tion goals.

1.1 Data Stream Processing

In this section, we introduce the basic features of DSP applications. We
introduce the concepts of stream, tuples, and the main properties of DSP
operators, including the presence of internal state and the concept of win-
dowing.

A DSP application can be represented at different levels of abstraction;
we distinguish between a user-defined abstract model and an execution model,
which is used to run the application.

The DSP abstract model defines the streams and their characteristics,
along with the type, role, and granularity of the stream processing ele-
ments. At this level, the DSP application is represented as a directed graph,
with data sources, operators, and final consumers as vertices, and streams
as edges. Note that, even though application graphs can be cyclic, most sys-
tems only support directed acyclic graphs (DAG). The application graph
is also known as topology or stream graph. A stream is an unbounded
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Figure 1.2: Form of parallelism: pipeline, task parallelism, data parallelism.

sequence of data items (e.g., tuple, event, file chunk)5. In a DSP appli-
cation, a data item is the unit of communication exchanged between DSP
operators. An operator is a self-contained processing element that carries
out a specific operation (e.g., filtering, aggregation, merging) or something
more complex (e.g., POS-tagging). Each operator can be seen as a black-box
processing element, that continuously receives incoming streams, applies a
transformation, and generates new outgoing streams. A data source gener-
ates one or more streams that feed the DSP application; differently from op-
erators, data sources have no incoming streams. A final consumer (or sink)
is a final receiver of the application streams; it can push data on a message
queue, forward information to a persistent storage, or — more generally —
trigger the execution of external services. Differently from operators, sinks
have no outgoing streams.

Running on a distributed infrastructure, the design of DSP applications
tries to conveniently exploit different forms of parallelism among the oper-
ators, namely pipeline, task parallelism, and data parallelism [86]. Pipeline
parallelism is the concurrent execution of a producer with a consumer of
the stream. Task parallelism is the concurrent execution of different oper-
ators that do not constitute a pipeline on the same or different data. Data
parallelism is the concurrent execution of multiple instances of the same
operator on different portions of same data. Figure 1.2 shows the different
forms of parallelism.

Moreover, we distinguish between stateless and stateful operator whether
the operator computes the output data using only the incoming data or
also some internal state information, respectively. A stateless operator pro-
cesses data items independently one another, independently of prior his-
tory, or even from their order of arrival. As such, this kind of operators are
easily parallelized and can be restarted upon failures without the need of
any recovery procedure. A stateful operator maintains information across
different data items to detect complex patterns or compute aggregate statis-
tics (e.g., item summarization, detection of fraudulent financial transac-
tions). In general, stateful operators are not easily parallelized, except when

5Even though a stream is possibly infinite sequence of items, operators queues only
contain a finite sequence of in-flight data items at any point in time.
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the state is partitioned. A partitioned state maintains independent state in-
formation for each partition, which is usually identified by a key; different
partitions do not interact one another. In case of partitioned state, multi-
ple parallel instances of an operator can be executed, where each instance
is tied to one or more state partitions, and can operate on them indepen-
dently from the other operator instances.

Windowed operators are a special kind of operators that buffers the in-
coming data items (so to retain previously received data) before running
the operator logic on the buffered data items. This kind of operators can
be used to realize lightweight stateful operators, whose state is completely
defined by the buffered data items [7]. A windowing is characterized by
two parameters: size and slide period. The window size determines the
amount of data that should be buffered before triggering the operator ex-
ecution; two main policies have be adopted so far: time-based, which fills
the buffer for a specific amount of time, and count-based, which fills the
buffer with a specific number of data items. The slide period determines
how the window moves forward, and it can rely on time-based or count-
based policies. By combining accordingly the window size and the slide
period, different kinds of windowing patterns can be realized. The most
common ones are: sliding windows, tumbling windows, and session win-
dows. Sliding windows are characterized by a static window size and a
slide period having value different from the window size. Tumbling win-
dows (or fixed windows) are a special case of sliding window, where the
slide period is equal to the window size (i.e., they span the incoming stream
without overlapping). Session windows aim to capture some period of ac-
tivity over a subset of the data; as such, they are characterized by a dy-
namic size, which depends on a timeout gap: any events that occur within
a span of time less than the timeout are grouped together as a session. Fur-
thermore, windows can be either aligned or unaligned, if they are applied
across all data or only on specific subsets of the data (e.g., per key) for the
given window of time, respectively [7].

The DSP execution model is obtained from the abstract model by replac-
ing each operator with the current number of operator replicas, that is op-
erator instances each of which processes a subset of the incoming data flow
(i.e., data parallelism). By partitioning the stream over multiple replicas,
running on one or more computing nodes, the load of each replica is re-
duced, which, in turn, yields lower operator (and overall application) la-
tency. Since the load can vary over time, the number of replicas in the ex-
ecution model can change accordingly as to optimize some non functional
requirements, e.g., response time.
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1.2 Deployment and Runtime Adaptation Problem

For the execution, a DSP application needs to be deployed on computing
resources, which will execute the application operators. At runtime, the
allocation of resources can be conveniently adapted so to address changes
of the execution environment.

Deployment problem. Determining the application deployment re-
quires to perform several tasks, among which solving the operator replica-
tion problem and the operator placement problem. The operator replication
problem consists in determining the number of instances that should be ex-
ecuted for each operator of a DSP application; in other words, it computes
the parallelism degree of DSP operators. The operator placement problem (or
scheduling problem) consists in determining, within a set of available dis-
tributed computing resources, the ones that should host and execute each
operator (or operator replicas) of a DSP application. Although many feasi-
ble replication and placement solutions can be found, we are usually inter-
ested in determining the one that optimizes the application QoS attributes.

Runtime adaptation. Since DSP applications are usually long-running,
the operators can experience changing working conditions (e.g., fluctua-
tions of the incoming workload, variations in the execution environment).
To preserve the application performance within acceptable bounds, their
deployment should be adapted at runtime, through migration and scaling
operations. A migration moves an operator replica to another computing
resource, so to balance resource utilization or consolidate replicas on fewer
computing nodes. A scaling operation changes the replication degree of
an operator: a scale-out decision increases the number of replicas when the
operator needs more computing resources, whereas a scale-in decreases the
number of replicas when the operator under-uses its resources. If the oper-
ator is stateless, a reconfiguration involves only starting, stopping, adding,
or removing fresh operator replicas. Conversely, if the operator is state-
ful, a reconfiguration involves also the migration of the operator state or
its redistribution among the operator replicas. The presence of an inter-
nal state increases the complexity of performing reconfigurations, which
should preserve the application integrity. Therefore, the main drawback
of reconfigurations is that they cause application downtime and, if applied
too often, they can negatively impact the application performance.

1.3 Research Methodology

We are interested in deploying DSP applications over an infrastructure that
comprises heterogeneous and (possibly geographically) distributed com-
puting resources. This task is challenging, because it requires:
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• to understand the needs of DSP applications and the challenges of run-
ning them over geo-distributed environments;

• to identify relevant QoS attributes of DSP applications, computing and
network resources;

• to develop suitable benchmarks that enable to identify the best deploy-
ment and adaptation strategies;

• to develop efficient and effective resolution approaches that can operate
in DSP systems at runtime;

• to design a reference system architecture that can conveniently work in
geo-distributed environments.

In this thesis, we analyze all of these key issues adopting an engineering-
oriented perspective, which goes through the following steps: problem
identification and modeling, design of resolution approaches, prototype
development, and evaluation. Moreover, to rule the complexity of the
problem under investigation, we use a stepwise approach. First, we in-
vestigate the initial deployment of DSP applications; then, we focus on
their runtime adaptation. Indeed, by referring to different stages of the
applications life-cycle, the initial deployment and its runtime adaptation
are characterized by different requirements.

In general, for both these problems (i.e., initial deployment and run-
time adaptation), we proceed as follows. First, we thoroughly analyze the
existing literature, so to find suitable approaches that can operate in the
environments under investigation. Moreover, by exploring the latest re-
search contributions, we can identify and understand the most relevant
features of DSP applications and of their execution. Second, we identify
a suitable representation of DSP applications and system resources (both
computing and networking resources) with the aim of modeling the opera-
tor placement problem, the operator replication problem, and the runtime
adaptation problem. Leveraging on the optimization theory, we formal-
ize them as Integer Linear Programming (ILP) problems. They provide a
general framework against which existing (centralized and decentralized)
heuristics can be evaluated in order to assess their quality. Third, we de-
sign and develop efficient heuristics to solve the initial deployment and
runtime adaptation problems. Differently from the existing solutions, the
deployment and adaptation models help to steer the heuristics design and
to quantitatively analyze their performance, in terms of resolution time and
quality of the computed solution. Finally, we validate and evaluate our
policies and architectures, relying on empirical experiments run on system
prototypes. Therefore, we have developed new DSP frameworks that can
integrate centralized and decentralized QoS-aware placement policies as
well as support the elastic deployment adaptation. We do not usually rely
on simulations, because DSP systems might show high complexity, so they
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are difficult to be simulated; furthermore, there is a lack of DSP workload
characterization studies.

1.4 Thesis Contribution

The goal of this thesis is to analyze, model, and develop solutions for the
initial deployment and runtime adaptation of DSP applications over dis-
tributed infrastructures. The latter accounts for distributed Cloud and Fog
computing environments, where computing resources are interconnected
with not negligible delays. This emerging environment is appealing, be-
cause it promises to improve scalability and reduce latency of modern DSP
systems by moving the computation to the edges of the network, close to
data sources and consumers. Nevertheless, if we want to select one among
the existing deployment policies that can efficiently operate in this newly
emerging environment, we have to face an interesting challenge: most ex-
isting solutions rely on different modeling assumption and optimization
objectives, thus resulting in a wide pool of heuristics or best-effort ap-
proaches not easily comparable one another. We advance the state of the
art by providing general formulations of the deployment problem and run-
time adaptation problem, by developing new heuristics, and by designing
new open-source DSP frameworks.

The main contributions of this thesis are the following.

• We analyze and classify the existing deployment and adaptation poli-
cies for DSP systems. To this end, we develop a general taxonomy that
summarizes the main design choices of current solutions along the five
Ws one H concept.

• We design two DSP frameworks and develop them as extensions of
Apache Storm, an open-source DSP system. The first extension is Dis-
tributed Storm; it supports the execution of decentralized, QoS-aware
and self-adaptive placement policies on a distributed and heterogeneous
infrastructure. The second extension is Elastic Storm; it introduces in
Storm two mechanisms that support the runtime adaptation of DSP ap-
plications (i.e., elasticity and stateful migration).

• We propose Optimal DSP Placement (for short, ODP), a unified gen-
eral formulation of the operator placement problem for distributed and
networked DSP applications. ODP takes into account QoS attributes
of applications and computing and network resources. Moreover, ODP
also represents a general benchmark against which existing heuristics
can be compared.

• We design several new heuristics for solving the operator placement
problem and assess their quality relying on ODP. We propose two main
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classes of heuristics: the model-based approaches, which execute ODP
on a conveniently selected solution subspace, and the model free ap-
proaches, which customize the well-known meta-heuristics greedy first-
fit, local search, and tabu search.

• We propose Optimal DSP Replication and Placement (for short, ODRP),
an extension of ODP, that — differently from existing solutions — jointly
optimizes the replication and placement of the DSP operators, while
maximizing the QoS attributes of the application. Similarly to ODP,
ODRP provides a general framework for QoS optimization and evalua-
tion of existing heuristics.

• We investigate the challenges of adapting at runtime the application de-
ployment and show the importance of adaptation costs. Specifically, we
present Elastic DSP Replication and Placement (for short, EDRP), an ex-
tension of ODRP, that adapts at runtime the replication and placement
of DSP operators while explicitly accounting for reconfiguration costs.
As such, EDRP can conveniently determine whether adaptation actions
should be enacted.

• We propose a hierarchical distributed control approach for adapting at
runtime the deployment of elastic DSP applications. Differently from
existing solutions (which are either centralized or decentralized), our
proposal revolves around a two layered approach with separation of
concerns and time scale between layers. Here, higher-level MAPE com-
ponents oversee the overall application deployment and control subor-
dinate MAPE components, which are in charge of adapting single DSP
operators.

1.5 Thesis Outline

The remainder of this thesis is organized as follows.
In Chapter 2, we analyze and classify the main deployment policies

that have been proposed so far to compute the initial application deploy-
ment and to determine its runtime adaptation. We devise a general taxon-
omy leveraging on the five Ws one H concept. The taxonomy aims to easily
present the key design choices proposed by the existing research efforts in
literature.

In Chapter 3, we start to investigate the operator placement problem.
Specifically, we present the design and implementation of Distributed Storm,
our extension of Apache Storm with distributed placement management
capabilities, and evaluate two decentralized placement policies. In this
thesis, we will resort on Distributed Storm so to prototype the designed
deployment policies and assess their behavior on a real testbed. As fur-
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ther outcome of the chapter, we show the difficulty of developing fully
decentralized placement heuristics. Indeed, we show that, for complex
DSP applications, fully decentralized heuristics might suffer from lack of
coordination, thus leading to too frequent reconfigurations which can be
detrimental for the application performance.

In Chapter 4, we present our general unified formulation of the Op-
timal DSP Placement problem. Besides presenting the system model and
the problem formulation, we conduct a thoroughly evaluation aimed to in-
vestigate the flexibility and scalability of the proposed model. Moreover,
we demonstrate how our formulation represents a general framework by
comparing the performance achieved by some centralized and decentral-
ized placement heuristics.

In Chapter 5, we present several heuristics for efficiently solving the
operator placement problem. Some of the heuristics rely on ODP, aiming
to compute high quality placement solutions. Other heuristics customize
to the problem at hand several well-known approaches (i.e., greedy first-fit,
local search, and tabu search). Using ODP as benchmark, we show that the
heuristics find different trade-offs between computation time and quality
of the computed solution.

In Chapter 6, we extend ODP to jointly optimize the operator replica-
tion and placement problem, thus obtaining ODRP. We show the benefits
of a joint optimization of operators replication and placement on the appli-
cation performance and how ODRP can contextually optimize several QoS
metrics. Thanks to its flexibility, ODRP represents a general benchmark
against which to compare existing heuristics.

From Chapter 7 onwards, we consider the runtime adaptation problem
and, first of all, we present Elastic Storm, our extension of Storm that sup-
ports elasticity and stateful migrations. This chapter is devoted to the de-
scription of the extended Storm architecture and of the designed elasticity
and migration policies. We also show how elasticity can improve resource
utilization and enable to properly process the incoming varying workload.

By analyzing the current literature, we realize that current solutions for
runtime adaptation often neglect reconfiguration costs, propose best-effort
solutions, and hardly optimize the deployment in geo-distributed environ-
ment. Therefore, in Chapter 8, we investigate the impact of adaptation costs
on the application performance. We propose a new framework for the op-
timization of QoS metrics, named EDRP, that considers the impact of adap-
tation cost, while determining whether to apply a reconfiguration. Our
results show the importance of taking into account reconfiguration costs
and how EDRP can find interesting trade-offs among performance metrics.

In Chapter 9, we start to explore a hierarchical distributed control ap-
proach for managing elastic DSP applications. This approach represents
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a new class of heuristics with respect to those existing in literature and
promises to address scalability and stability of existing solutions. Our heuris-
tic uses a two layered architecture: a lower level per-operator component
issues reconfiguration requests, whereas a higher level per-application com-
ponent coordinates reconfigurations exploiting a global view on the appli-
cation performance. The experimental results are promising and encourage
the development of new hierarchical heuristics.

Finally, in Chapter 10, we summarize results and contributions of this
work and indicate some directions for future research on the basis of the
results presented in this thesis.
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Chapter 2

DSP Application Deployment

The existing solutions for determining the application deployment
differ in terms of optimization goals, modeling assumptions, and
resolution approach. We first develop a taxonomy based on the five
Ws one H concept and then we use it to classify some of the existing
research results and identify their main design choices.

The deployment of a DSP application over a large-scale distributed com-
puting infrastructure is a key task that has a great impact on the applica-
tion performance. In literature, we can find many different approaches,
each tailored for optimizing a specific objective, such as the application
throughput, its response time, or the efficient utilization of the available
computing resources. As shown in [29], determining the deployment of
DSP applications is an NP-hard problem, therefore several heuristics have
been proposed in literature. Nevertheless, they often rely on different mod-
eling assumptions and optimization goals [117].

In this chapter, we devise a taxonomy based on the five Ws one H con-
cept to describe the research results and development efforts related to the
deployment of DSP applications, including the approaches devoted to the
runtime deployment adaptation.

2.1 Taxonomy: A General Perspective

To summarize and organize the most relevant approaches that deal with
the deployment of DSP applications, we devise a general taxonomy, built
on the six questions: why, what, who, when, where, and how. These ques-
tions help to identify the key features of the existing deployment solutions,
enabling to quickly pinpoint their commonalities and differences.

Focusing on the deployment of DSP applications and on their runtime

17
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adaptation, we conjugate the six questions as follows.

• Why: This question investigates the motivations behind the design and
development of new approaches to the application deployment. In-
deed, each deployment solution has a specific and well-defined opti-
mization goal, which should be pursued or met by conveniently as-
signing computing resources to DSP operators (or replicas). The why
question pinpoints the utility function and the quantitative metrics that
the deployment solution aims to optimize or satisfy. For example, many
existing solutions minimize the application response time or maximize
the application throughput, whereas, in case of runtime reconfigura-
tions, they try to minimize the adaptation costs.

• What: This question identifies what entities can be managed by the de-
ployment policy, in terms of span and granularity of control. The span
of control identifies how many applications the policy controls at the
same time; specifically, the policy can oversee single applications inde-
pendently one another or multiple applications that compete or not for
obtaining resources. The granularity of control identifies the main en-
tity that is controlled by the policy so to achieve the optimization goals;
the managed entities can be single tuples, operators, or the whole ap-
plication topology.

• Who: This question aims to identify the authority in charge of com-
puting the application deployment and its runtime adaptation. In a
large scale DSP system, the control authority represents a key element,
because it influences the scalability, the optimality of the deployment
solution, and the management overhead.

• When: This question investigates the temporal aspects of the deploy-
ment solutions, exploring when the deployment optimizations and ac-
tions should are executed. As usually happens in complex systems,
timing plays an important role to efficiently perform management op-
erations. Besides dealing with the initial deployment, since DSP ap-
plications are long-running, many solutions are specifically tailored for
addressing challenges and needs of runtime adaptation. In fact, the lat-
ter enables to preserve high performance in face of changing working
conditions.

• Where: This question is concerned with the characterization of the com-
puting infrastructure managed by the deployment solution. Each com-
puting infrastructure exposes different features and challenges, includ-
ing resource heterogeneity and distribution, which ultimately impact
on the application performance (e.g., response time). Moreover, when
the scheduler plans a deployment reconfiguration at runtime, the where
question identifies the architectural level where the adaptation actions
should take place (i.e., application-level, infrastructure-lever).
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Figure 2.1: Taxonomy of deployment solutions for DSP applications. A
high-level perspective.
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• How: The how question identifies the set of actions and methodologies
that can be used for determining or changing the application deploy-
ment. Examples of actions are the operator placement, its replication,
or the application topology transformation. A methodology allows to
determine when and how the specific actions should be performed in
order to achieve the deployment objectives. Examples of methodolo-
gies are the greedy heuristics, which are commonly used for determin-
ing the operators placement, or the threshold based policies, which are
commonly used for changing the operator replication degree at run-
time. Furthermore, this dimension explores how the runtime adapta-
tion solutions deal with the operator internal state (i.e., whether they
preserve the operator state during reconfigurations).

Under the guidance of the six questions, we develop a taxonomy that
classifies the most relevant solutions proposed so far in literature. Fig-
ure 2.1 presents a high-level overview of the taxonomy. To better present
the key design choices of the different solutions, we separate them into two
main sections that cover two different dimensions along the when question.

The efficient deployment of a DSP application may be a complex task
that requires to apply different operations (e.g., topology optimization, op-
erator replication, operator placement, efficient load distribution). Each of
these operations can be executed in different stages of the application life-
time; we identify the following stages.

• Design and compile time. The design and compile time cover all the
operations performed before the application submission to the DSP sys-
tem for execution. At design time, the user creates the DSP application.
At compile time, the application is compiled and packed in an archive,
executable, or package, which is (possible optimized and) ready for
submission. The operations performed at design and compile time are
concerned with static transformations of the application topology. Al-
though applied once during the application lifetime, these transforma-
tions enable to perform more sophisticated operations at runtime. Ex-
amples of design and compile time optimizations are the operator re-
ordering, which moves more selective operators upstream to filter data
early, and the operator separation, which splits operators into smaller
computational steps to better exploit pipelining1. These operations can
be manually executed by the application designer or can be automati-
cally applied by a pre-processing engine that optimizes the application
topology before its submission to a DSP system for execution.

• Deployment time. The deployment time spans between the applica-
tion submission to the DSP system and the beginning of its execution.
In this stage, the DSP system needs to compute the initial replication

1An extensive catalog of optimizations for DSP applications can be found in [86].
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degree of each application operator and define the placement of each
operator replica on the available computing resources. At this stage,
the system can only rely on a-priori knowledge about the application
requirements, because execution data are not yet available.

• Runtime. At runtime, DSP applications can be subject to changing
working conditions, e.g., in terms of incoming workload and resource
availability. Since a varying workload changes the demand of comput-
ing resources, to retain acceptable application performance, the applica-
tion deployment should be smoothly reconfigured at runtime. Nonethe-
less, together with long term benefits, adapting the application deploy-
ment also introduces some adaptation costs, usually expressed in terms
of downtime, that penalize the application performance in the short pe-
riod. Such adaptation costs take into account the time needed to relo-
cate the operator state, so to preserve the application integrity. Because
of these costs, reconfigurations cannot be applied too frequently. There-
fore, a key challenge is to wisely select the most profitable adaptation
actions to enact.

In the following sections, we present the solutions proposed so far in
literature and classify their key design choices relying on the proposed tax-
onomy. First, in Section 2.2, we describe the challenges and approaches
that deal with the initial deployment of DSP applications. In this section,
we cover the solutions that can be adopted at design, compile, and deploy-
ment time. Then, in Section 2.3, we describe the approaches that enable to
meet desirable application performance even in face of dynamic working
conditions. In this section, we cover the solutions that adapt the application
deployment at runtime.

2.2 Initial Deployment

The taxonomy presented in Section 2.1 is here extended to discuss how
the different questions have been addressed by the existing literature that
investigates the initial deployment of DSP applications. Figure 2.2 shows
the extended taxonomy, tailored for the initial deployment.

Relying on this taxonomy, we classify and describe the most relevant
works proposed so far in literature. To this end, we augment the key nodes
of the taxonomy with a special label, wrapped in squared bracket (e.g., [S]).
Table 2.1 positions the most relevant works with respect to our taxonomy,
whereas Table 2.2 reports, for sake of clarity, the list of all the labels used to
classify the existing solutions.
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Initial DSP Deployment
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Figure 2.2: Taxonomy of the initial deployment for DSP applications.
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Table 2.1: Solutions for the initial deployment of DSP applications.

WHY WHAT WHO WHEN WHERE HOW
Obj. Metric SoC Gra. Aut. Time Heter. Distr. Env. Act. Method.

Ahmad et al. [5] S NT, NU SA O D SY HO GE CU OP H
Arkian et al. [11] S SO SA O C SY HE GE FC OP MP

Backman et al. [14] S R SA O C, D SY HE GE CC OP, OR GR
Eidenbenz et al. [53] S UO SA O C SY HO (GE) - OP MP
Eskandari et al. [54] S NT SA O C AS HO LO CU OP GRA

Fischer et al. [57] S, CS NT, LB SA O C SY HO (GE) CU OP, CL GRA
Fischer et al. [58] S, CS NT, LB SA O C AS HO (GE) CU OP, CL GRA
Gedik et al. [64] S T - G C SY HE LO CU OR GR

Ghaderi et al. [66] S NT MA G C SY HO (GE) CU OP H
Gu et al. [67] S NT SA O C SY HE GE CU OP MP
Gu et al. [68] S LB MA O D SY HE GE CU OP LS
Gu et al. [69] S UO SA O C SY HE GE CU OP H

Hwang et al. [96] CS R MA O C SY HE GE CU OR H
Khandekar et al. [107] S, CS NT, LB SA G C SY HE (GE) CU CL GRA

Lakshmanan et al. [118] S R SA O C AS HO LO CU OR LS
Li et al. [121] S DE SA O C SY HO LO CU OP H
Li et al. [122] S NU MA O C AS HE GE CU OP, RS GRA
Li et al. [124] S R SA O C AS HE GE CU OP GR, LS

Peng et al. [156] S T SA O C AS HE LO CU OP H
Pollner et al [159] S LB SA G C DT, SY HE LO CU OP, OR H
Pollner et al [160] S UO SA O, TO C SY HE GE - OP, GT H
Rychly et al [174] S R SA O C AS HE LO CU OP GR
Sajjad et al. [175] S UO SA O C AS HO GE FC OP H

Schneider et al. [180, 181] S RU - G C DT, SY HO LO CU OR GR
Schultz-Møller et al. [183] S NT, LB MA O, TO C SY HO LO CU OP, RS, GT, CL GR

Shukla et al. [185] CS T MA O C SY HO LO CC OR H
Smirnov et al. [186] S T SA O C AS HO LO CU OP GA

(continued on next page)
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WHY WHAT WHO WHEN WHERE HOW
Obj. Metric SoC Gra. Aut. Time Heter. Distr. Env. Act. Method.

Stanoi et al. [188] S T SA O, TO C SY HE LO CU OP, GT MP, GR, TS, SN
Thoma et al. [196] CS - SA O C SY HO (GE) CU OP MP

Tian et al. [197] S SO MA O D AS HO LO CU OP H
Xing et al. [211] CS2 LB SA O C SY HE LO CU OP H
Zhu et al. [226] S R SA O C SY HE GE CU OP GRA

2This solution identifies an operator placement plan that is resilient to unpredictable incoming load variations.
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Table 2.2: Acronyms used within our taxonomies.

Acronym Meaning Question
A Application-level adaptation Where

AC Optimized metric: Adaptation cost Why
AS Solution executed asynchronously at load time When
C Centralized authority Who

CC Cloud computing environment Where
CL Planning action: Operators co-location How
CS Constraint satisfaction problem Why
CT Optimized metric: cost Why

CTR Planning methodology: control theory How
CU Cluster computing environment Where
D Flat decentralized authority Who

DBS Planning action: Dynamic batch sizing How
DT Solution working at design or compile time When
E Event-based optimization When
F State management supported: stateful operators How

FC Fog computing environment Where
FTM Planning action: Fault-tolerance mechanisms How

G Granularity of control: Groups of operators What
GA Planning methodology: Genetic algorithm How
GE Geographically distributed system Where
GR Planning methodology: Greedy approach How

GAM Planning methodology: Game theory How
GRA Planning methodology: Graph theory How
GT Planning action: Graph transformation How
H Planning methodology: Heuristic How

HD Hierarchical decentralized authority Who
HE Heterogeneous computing resources Where
HO Homogeneous computing resources Where

I Infrastructure-level adaptation Where
L State management not supported: stateless operators How

LB Optimized metric: Load balancing Why
LD Planning action: Load distribution How
LO Locally distributed system Where
LS Planning methodology: Local search How
M Multi-objective optimization function Why

MA Control of multiple cooperative applications What
ML Planning methodology: Machine learning How
MN Control of multiple non-cooperative applications What
MP Planning methodology: Mathematical programming How
NT Optimized metric: Inter-node traffic Why
NU Optimized metric: Network usage Why
O Granularity of control: Single operator What

OP Planning action: Operator placement How
OR Planning action: Operator replication How
OS Planning action: Operator scaling How

(continued on next page)
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(continued from previous page)

Acronym Meaning Question
P Periodic optimization When

PR Time mode: proactive When
QT Planning methodology: Queuing theory How
R Optimized metric: Response time Why

RE Time mode: reactive When
RS Planning action: Operator reuse How
RU Optimized metric: Resource utilization Why
S Single-objective optimization function Why

SA Control of a single application What
SH Planning action: Load shedding How
SN Planning methodology: Simulated annealing How
SO System-oriented metric optimized Why
SoC Span of Control What
SY Solution executed synchronously at load time When
T Optimized metric: Throughput Why

TB Planning methodology: Threshold-based How
TO Granularity of control: Topology What
TP Planning action: Tuple scheduling How
TS Planning methodology: Tabu search How
TU Granularity of control: Single tuple or batch of tuples What
UO User-oriented metric optimized Why

2.2.1 Why: Deployment Goals

The DSP placement problem [117] has been widely investigated in litera-
ture under different modeling assumptions and optimization goals, e.g., [29,
53, 196]. We distinguish three main optimization objectives: constraint sat-
isfaction, single-objective, and multi-objective.

In a constraint satisfaction problem (referred as [CS] in Table 2.1), the
scheduler identifies a deployment solution among all the feasible ones that
satisfy requirements expressed in terms of computing resources, applica-
tion performance, or deployment constraints (e.g., co-location, isolation).
Relying on a-priori knowledge of the application performance, Shukla and
Simmhan [185] determine the initial deployment (in terms of operators
replication degree) that allows to process incoming workload characterized
by specific data rate. Conversely, Thoma et al. [196] propose an approach
to restrict the set of feasible deployment by improving the expressiveness
of constraints, including co-location, upstream/downstream, isolation, and
tag-based constraints.

Since not all feasible assignments result in desirable application per-
formance, most of the existing solutions optimize (i.e., minimize or maxi-
mize) a single-objective function (referred as [S] in Table 2.1) or a multiple
objective function (referred as [M]). A single-objective function can target
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a specific, well-defined QoS metric (e.g., response time, throughput, net-
work usage) or a generic cost function. Among the QoS metrics, we distin-
guish between user-oriented (referred as [UO]) and system-oriented ones
(referred as [SO]). We detail more on these metrics later in this section.

A multi-objective function could be aimed at optimizing a diversity of
possibly conflicting QoS attributes or optimization goals. For example,
a deployment solution might seek to minimize the application response
time, while maximizing the application availability3. In such cases, the
deployment policy has to deal with a multi-objective optimization prob-
lem, where the importance of each optimization goal (e.g., application re-
sponse time, availability) strongly depends on the utilization scenario. A
well-established approach to easily deal with a multi-objective problem is
to transform it into a single-objective problem, using the Simple Additive
Weighting (SAW) technique [218].

User-oriented QoS metrics. A user-oriented metric models a specific as-
pect of the application performance, as can be perceived by the user; exam-
ples of this kind of metric are the application response time, throughput,
cost, and dependability4 [119]. DSP applications are usually employed in
latency-sensitive domains (e.g., [12, 98, 99, 149]), therefore many solutions
try to minimize the application response time [R], which results from the op-
erators deployment. For a DSP application, with data flowing from several
sources to several destinations, there is no unique definition of response
time. Hence, most of the solutions [14, 118, 124, 174, 226] recur on the mini-
mization of the critical path average delay. The critical path of a DSP appli-
cation is defined as the set of nodes and edges, forming a path from a data
source to a sink, for which the sum of the operator computational latency
and network delays is maximal.

Other approaches try to maximize the application throughput [T]; in the
state of the art we can find two different definitions of throughput, namely
output and input throughput. The output throughput is defined as the num-
ber of tuples that can be produced by the DSP application in a given unit of
time. This is the most largely optimized QoS metric [64, 156, 185, 186]. The
input throughput is defined as the number of input tuples that can be pro-
cessed by the system in a given unit of time [188]. The existing approaches
that maximize throughput are usually designed to work in a locally dis-
tributed cluster environment, where network latencies can be neglected,
because they introduce a lightweight overhead on each transmitted tuple.

System-oriented QoS metrics. A system-oriented metric aims to quantify
a specific aspect of the system, following the service provider’s standpoint

3We define as application availability the probability that each application operator is
up and running.

4We consider dependability as a general concept that includes many attributes such as
reliability, availability, safety, integrity, and so on [13].
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who wants to efficiently use the available resources. Besides the classic
metrics that account for the utilization of computing resources (e.g., load
unbalance, CPU utilization, and number of active machines), in geograph-
ically distributed systems network-related metrics are of key importance,
because transmitting data through the network is slower than transmitting
them between processes running on the same node. As a consequence, net-
work transmissions can easily became the system bottleneck. Examples of
this kind of metric are the inter-node traffic and network usage.

Improving resource utilization [RU] aims to more efficiently use the in-
frastructure so to process higher workloads. To this end, most of the ex-
isting solutions run multiple replicas of the same DSP operator so to ex-
ploit data parallelism, as in [159, 180, 181]. Following this approach, mul-
tiple threads run on each CPU core in parallel. Another solution explicitly
tailored to improve resource utilization is to discard useless data as close
as possible to the application data sources. Following this idea, Schultz-
Møller et al. [183] have proposed a system that automatically rewrites the
application topology, by combining and reordering its operators, so to ob-
tain an equivalent application with lower CPU cost. Several policies for the
initial deployment of applications also optimize the (initial) load balancing
[LB] among computing nodes. This metric investigates a stronger property
than resource utilization, representing whether the incoming load is evenly
distributed among resources. Often, load balancing is seen as a secondary
goal by the placement algorithm: indeed, the latter uses it in combination
with the optimization of other QoS metrics, such as the minimization of
inter-node traffic as in [58, 183, 57].

The inter-node traffic [NT] is the overall amount of data exchanged per
time unit between operators placed on different nodes. In a distributed en-
vironment (both locally [LO] and geographically [GE] distributed), inter-
node communication has a higher impact on response time rather than
intra-node (i.e., inter-process) communication, which can be performed very
efficiently through in-memory operations. This is expecially true in geo-
graphically distributed environment, where the network imposes not neg-
ligible communication latencies [5, 57, 66]. Interestingly, Xing et al. [211]
investigate approaches to identify operator distributions that are resilient
to unpredictable load variations. Informally, a resilient distribution does
not easily become overloaded in presence of bursty and fluctuating input
rates. In such a way, the system will be able to better withstand short in-
put bursts. Observe that a static resilient placement is not in conflict with
a dynamic deployment adaptation, and a DSP system can benefit from the
combination of these two optimizations.

In geographically distributed environment, an alternative QoS metric is
usually adopted, representing better the impact of network latencies when
DSP operators are placed on distinct nodes. The network usage [NU] mea-
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sures the amount of data that traverse the network at a given time; formally,
it is defined as NU =

∑
l∈LDR(l) · Lat(l), where L is the set of links the

stream uses, DR(l) is the data rate over link l, and Lat(l) is the latency of
l. Basically, this metric considers the data rate exchanged on network links
weighted by the latency of the link itself. The idea is that we would like
to send data with higher production rate on faster links, whereas — at the
same time — we might accept to send some few data on links with higher
latency. The deployment solutions designed to work in geographic envi-
ronment, such as the ones by Ahmad and Çetintemel [5] and Li et al. [122],
very often minimize the network usage.

Generic cost functions. A few other works recur to the definition of
a generic cost function to be minimized (or utility function to be max-
imized) that accounts for different QoS metrics (both user-oriented [53,
160, 175] and system-oriented [11, 197]). Some examples from literature
show how the generic cost function can model energy consumption [104,
122] or processing and transmission cost [53, 160]. Alternatively, Tian and
Chandy [197] propose a utility function that represents the net economic
value generated by a fixed set of resources, that should be maximized by
efficiently placing DSP applications.

2.2.2 What: Controlled Entities

Span of Control. The vast majority of the existing solutions control the
deployment of each single application independently from the other ones
already running. As such, the deployment policy neglects the interaction
among multiple applications concurrently running on the same resources
(which can interfere one another). In this case, we say that the scheduler
controls the deployment of a single application [SA] at a time. Most of the
solutions existing in literature work in this setting.

When the scheduler controls multiple applications at the same time, to
properly identify and address the existing challenges, we need to distin-
guish between a cooperative and a non-cooperative setting (referred as
[MA] and [MN], respectively).

In a cooperative setting, the scheduler has the ability to control the de-
ployment of every application and might rearrange them so to achieve the
optimization goal. For example, the deployment of some applications can
be updated so to host a new application or to release computing nodes.
This is usually the case of a single provider that manages multiple appli-
cations. In literature, a few solutions deal with the management of mul-
tiple applications in a cooperative environment. Ghaderi et al. [66] con-
sider that applications can arrive and depart over time, therefore comput-
ing resources could be continuously re-assigned so to efficiently manage
the varying load and minimize the resulting overall network traffic. Tian
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and Chandy [197] and Shukla and Simmhan [185] investigate a more static
setting, where multiple applications run together and have the same ex-
istence interval. Other research efforts have been proposed in the field of
Complex Event Processing (CEP), a special case of DSP that allows to dis-
cover hidden and complex patterns from multiple streams of events. In this
setting, multiple queries can share well-defined operators and streams of
complex events, therefore the deployment policies try to reuse the already
deployed operators, aiming to reduce resource utilization by avoiding to
duplicate the computation [122, 183].

In a non-cooperative environment, multiple schedulers (or agents) have
a set of application to execute, therefore they compete for obtaining com-
puting and network resources. In nowadays systems this kind of envi-
ronment is worthy of further investigation, also for implementing efficient
strategies that work upon resource management tools (e.g., Mesos [84, 85]);
these tools allows to dynamically share resources among different kinds of
data analytics applications. To the best of our knowledge, so far there are
no known solutions that determine the application initial deployment in a
setting with multiple non-cooperative applications.

Granularity of Control. Another important property of the what di-
mension is the granularity of control. The vast majority of the existing ap-
proaches control the application deployment at the granularity of a single
operator (referred as [O]).

Other approaches exploit the presence of “similarities” between opera-
tors, so to consider them as a unique black-box to be deployed; these solu-
tions work at the granularity of groups of operators [G]. Specifically, Schnei-
der et al. [180, 181], Gedik et al. [64], and Pollner et al. [159] (who build
on [180]) divide the application into regions, that represent groups of op-
erators with similar characteristics in terms of data partitions to be pro-
cessed. These regions allow to automatically exploit both data parallelism
and pipeline parallelism without compromising the application integrity.
Another approach has been proposed by Ghaderi et al. [66], who consider
deployment templates, which are unique ways of partitioning a graph and
allocating each partition to a computing resource.

Finally, there is a class of solutions [160, 183, 188] that work at the
level of topology [TO]; they apply several graph transformation techniques,
which allow to further improve the application performance. These trans-
formations include the operator reordering, fusion, separation, and algo-
rithm selection.

2.2.3 Who: Management Authority

Along the who dimension, we characterize the existing approaches with
respect to the management authority distribution, which can be centralized
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or decentralized.
A centralized authority (referred as [C]) has access to the entire system

current state, including resource availability, operators working conditions,
and workload information. Relying on this broad knowledge, the central-
ized authority can potentially find a globally optimal deployment. At the
same time, this centralized point of coordination might represent the sys-
tem bottleneck that limits scalability. The vast majority of the existing ap-
proaches for the initial DSP deployment consider systems managed by a
single centralized authority.

Decentralized authorities [D] usually have a local view of the system,
therefore they take decisions based on a limited knowledge of the system
state. If on the one hand this approach allows to overcome scalability is-
sues, on the other hand it might not guarantee to find a globally optimal
solution (the decentralized agents can get stuck in local optimum configu-
ration, thus missing the globally optimum one [5, 14, 197]). To coordinate
the decentralized authorities, a hierarchical distributed architecture [HD] can
be used, where a centralized coordinator oversees the distributed agents
with the aim to improve the optimality of the deployment solution. The
management responsibilities of the centralized coordinator depends on the
specific implementation of the hierarchical architecture. At present, solu-
tions that exploit a hierarchical architecture for determining the initial ap-
plication deployment are, to the best of our knowledge, still largely unex-
plored. We further discuss about the hierarchical distributed architectures
in Section 2.3, where we detail more on reconfiguring at runtime the appli-
cation deployment.

2.2.4 When: Timing

We distinguish between three main phases of the application lifetime, where
deployment operations and optimizations can be automatically applied:
design and compile time, deployment time, and runtime.

At design time, the user is fully responsible for designing the applica-
tion topology. To achieve scalability, the user usually structures the com-
plex data analytics application as a directed acyclic graph of multiple op-
erators, each performing elementary tasks [190]. At compile time [DT], the
application topology can be automatically optimized by the DSP system,
which applies graph transformations [GT], aiming to improve performance.
This approach is pursued by Schneider et al. [180, 181] and Pollner et al. [159],
who determine groups of operators (named regions) that can be replicated
as a whole thing. Stratosphere [8] also exploits graph transformations: it
includes a query optimizer that automatically reorders and parallelizes op-
erators in an application DAG, so to better exploit computing and network
resources. We will discuss more about graph transformations while inves-
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tigating the how dimension of our taxonomy in Section 2.2.6.
At deployment time, the DSP system executes the deployment policy to

determine replication and placement of DSP operators. A good set of solu-
tions from the state of the art tackles these problems. When a DSP system
receives a new application, it can execute the deployment policy in a syn-
chronous or in an asynchronous manner. In a synchronous [S] approach, the
scheduler is activated as soon as a new application arrives to the system.
This approach works very well in theory and it is the most commonly fol-
lowed one when conceptual policies are designed. Other solutions rely on
an asynchronous [AS] approach, where the scheduler runs periodically. At
each round, it collects the submitted applications and computes their de-
ployment [58, 118, 122, 124, 156, 174, 175, 186, 197]. Note that among two
subsequent executions of the scheduler, multiple applications, that request
resources for execution, can be submitted to the system. In this case, the
deployment solution can consider them either independently (if the span
of control is [SA]) or in conjunction (if the span of control is [MA]).

We describe the solutions dealing with the application runtime in Sec-
tion 2.3.

2.2.5 Where: Computing Infrastructure

The taxonomy allows us to describe with a fine granularity the resource
infrastructure considered by the solutions existing in literature. Three main
properties describe the computing infrastructure: resource heterogeneity,
resource distribution, and computing environment.

Resource heterogeneity ([HE] in Table 2.1) refers to the ability, of the de-
ployment algorithm, to consider specific features of computing and net-
work resources, such as processing capacity, available resources, or net-
work delay (e.g., [11, 14, 64]). Other solutions consider resources as homo-
geneous [HO], i.e., as they all have same features in terms of (usually) ca-
pacity. Although this homogeneous view of the infrastructure might seem
a simplification, it is reasonable when the deployment solution is designed
to work in a clustered environment (e.g., [118, 180, 183, 186, 197]).

The resource distribution property summarizes the ability of the ap-
proaches to work with resources disseminated on different scale. We only
distinguish between local distribution [LO] and geographic distribution [GE].
Locally distributed resources are located within the same data center, where
they are inter-connected with high speed communication links. Therefore,
network delays have a light impact on the application performance and can
be neglected. Conversely, geographically distributed resources can span
multiple data centers and, although interconnected with high speed links,
they experience a communication delay that cannot be neglected. This is
usually the case of distributed Cloud and Fog computing environments. In



2.2. Initial Deployment 33

Table 2.1, we also consider "(GE)" as resource distribution, meaning that the
deployment solutions only implicitly consider geographically distributed
resources (e.g., by minimizing inter-node traffic) [53, 57, 58, 66].

The computing environment property assumes one of the following
values: cluster environment [CU], Cloud computing environment [CC], Fog
computing environment [FC]. Each computing environment is characterized
by specific features. A cluster environment is usually characterized by a
static pool of computing machines. In the Cloud, the pool of resources
is dynamic, meaning that virtual machines can be acquired and released
as needed with a very low provisioning time. Moreover, this environment
can offer virtual machines with homogeneous or heterogeneous capacity or
resources. In case of heterogeneous resources, the deployment solution has
to wisely pick the most suitable configuration that satisfies the application
needs. The Fog computing environment is characterized by highly hetero-
geneous computing resources, because the environment encompasses high
performance resources and small entry resources located at the edge of the
network [22, 23]. Due to geographic distribution, network latencies can
have a strong impact on the application performance.

The vast majority of existing solutions, which deal with the initial de-
ployment of DSP applications, have been designed to work in a locally
distributed clustered environment. Here, solutions consider both homoge-
neous [118, 180, 181, 183, 186, 197] and heterogeneous resources [64, 156,
159, 174, 188]. Solutions for geographically distributed environments usu-
ally consider resource heterogeneity so to model network delays [122, 124,
226]. In this setting, several other approaches use a coarse definition of the
network5, being only interested in reducing the amount of inter-node traf-
fic [5, 57, 58, 66]. For example, Backman et al. [14] investigate the initial
placement in a geographically distributed Cloud environment. Nowadays
the Fog computing environment is attracting a lot of interest, promising to
improve system scalability and reduce application response time by decen-
tralizing the computation (i.e., by moving operators close to data sources
and final information consumers). Arkian et al. [11] and Sajjad et al. [175]
propose deployment solutions explicitly designed for this environment.

2.2.6 How: Actions and Methodologies

Actions. The deployment actions represent the set of mechanisms that can
be used to achieve the deployment goals. Several mechanisms have been
proposed in literature and, in our taxonomy, we identify five main deploy-

5The coarse definition of the network does not explicitly model network latencies, but
only defines an ordering relation among possible placement configurations. At most, they
distinguish whether the communication is performed within the same node, same rack,
same data center, or between different data centers.
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ment actions: graph transformation, operator reuse, operator replication,
operator placement, and operator co-location.

Graph transformations [GT] rearrange the application topology with the
aim to improve performance [86, 160]. The most popular transformations
are: operator reordering, which moves more selective operators upstream
to filter data early [8, 133, 188]; operator reuse [RS] (or redundancy elimina-
tion), which avoids redundant computations by reusing already deployed
operators [122, 183]; operator separation, which splits operators into smaller
computational steps [160]; and algorithm selection, which automatically
(and safely) selects a faster algorithm for implementing an operator [166].
Among graph transformations, we also include the pre-processing of the
application graph so to identify regions of operators (i.e., groups) that can
be replicated homogeneously, as a whole thing [64, 159, 180, 181]. Schultz-
Møller et al. [183] propose a system that automatically rewrites the appli-
cation topology, by combining and reordering its operators, so to obtain an
equivalent application with lower CPU cost. Stratosphere [8] also includes
a query optimizer that automatically transforms and allocates the applica-
tion graph, so to minimize a cost function that captures network traffic and
CPU load; this component manages also User Defined Functions (UDFs).

Operator replication [OR] (also known as operator fission or data paral-
lelism) consists in determining the operator replication degree (which is
also referred to as parallelization degree) so to efficiently process the in-
coming workload. Indeed, by partitioning the stream over multiple repli-
cas, running on one or more computing nodes, the load of each replica is
reduced, which, in turn, yields better operator (and overall application)
performance. Determining the operator replication degree by hand is pos-
sible, but cumbersome. Besides identifying the bottleneck operators that
can truly benefit from replication, developers should determine the best
parallelism degree avoiding resource over-utilization or wastage; most im-
portantly, they should verify whether applying data parallelism preserves
the application semantics. To this end, developers may have to solve some
issues on their own (e.g., data ordering). All of these tasks are tedious
and error-prone, especially when the application size and the number of
relations among operators grow. Moreover, since the load can vary over
time, the number of replicas should be changed accordingly as to opti-
mize some non functional requirements. In this section, we consider only
the deployment solutions that compute the initial replication degree and
postpone to Section 2.3 the analysis of the approaches that adapt the repli-
cation degree at runtime (i.e., elasticity). To determine the initial num-
ber of operator replicas, the deployment solutions usually exploit perfor-
mance information so to identify and replicate the application bottlenecks
(e.g., [14, 64, 185]). Other approaches try to use all the available resources
by allocating replicas to each available processing unit (e.g., [180]). Gedik
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et al. [64] repeatedly locate the group of bottleneck operators and greed-
ily parallelize them until no performance improvements can be achieved.
Similarly, Lakshmanan et al. [118] propose a local search algorithm that, as-
suming (estimated or measured) knowledge on the system dynamics, repli-
cates stateless operators. Shukla and Simmhan [185] suggest to build the
operators performance model by relying on micro-benchmarks to be exe-
cuted a-priori. The research efforts by Schneider et al. [180, 181] focus on
preserving safety when stateful and stateless operators are replicated. A
transformation is safe if it does not change the observable behavior of the
application (in terms of integrity, stateful operations, and ordering of pro-
duced results).

Operator placement [OP] consists in determining, within a set of available
distributed computing resources, the nodes that should host and execute
each operator of a DSP application. Most of the existing works focus on
solving this problem (e.g., [14, 53, 174, 183, 196]). The approaches that aim
to minimize inter-node traffic (that are usually adopted in geographically
distributed environment) also solve the operator co-location [CL] problem,
which is special case of the operator placement problem. It deals with iden-
tifying a group of operators that can be placed on the same computing node
as to avoid the overhead of data serialization and transport [8, 57, 58, 107,
133, 183]. Indeed, sending data through the network introduces a not neg-
ligible latency that can be detrimental for the application performance. The
key challenge comes from the finite capacity of computing nodes, which re-
quires to wisely identify groups of operators to be allocated on distributed
nodes so that the overall amount of data exchanged using the network is
minimized.

Methodology. The methodology property of the how dimension inves-
tigates the class of algorithms used to determine what deployment actions
should be used and how, aiming to achieve the deployment goals. We clas-
sify the methodologies proposed so far in three main categories: mathe-
matical programming, approaches based on graph theory, and heuristics.
The latter is further specialized in subclasses that cover the most commonly
adopted approaches, namely greedy, local search, tabu search, genetic al-
gorithm, and simulated annealing.

Mathematical programming [MP] approaches focus mainly on the opera-
tor placement problem, which is formulated and solved using tools from
operational research. Arkian et al. [11] formulate the placement over Fog
computing resources as a non-linear integer programming problem, which
is then approximated and more efficiently solved through linearization (thus
obtaining an Mixed-Integer Linear Programming (MILP) problem — which
nevertheless does not scale well as the problem size increases [29]). Eiden-
benz and Locher [53] analyze the placement problem for a special kind of
DSP application topologies, i.e., serial-parallel decomposable graphs. This
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allows them to exploit strong theoretical foundations and propose an ap-
proximation algorithm, which, however, can allocate operators only on re-
sources with uniform capacity. A non-linear programming model is for-
mulated by Stanoi et al. [188], who also propose several heuristics to effi-
ciently cope with the problem resolution. The heuristics implement some
of the well-known meta-heuristics: greedy first-fit augmented with a local
search, tabu search, and simulated annealing. Aiming to satisfy require-
ments (and not to optimize an utility function), Thoma et al. [196] recur to a
Constraint Satisfaction Problem (CSP), which can be more efficiently solved
with respect to equivalent optimization problems. This happens because,
in a CSP, it suffices to find one solution among all the feasible ones (i.e., not
the best one). In general, mathematical programming approaches allow to
find the optimal deployment solution; nevertheless, their great limitation
is scalability. Indeed, the deployment problem is NP-hard and its resolu-
tion time can prohibitively grow for large problem instances. However, we
will show in Chapters 4 and 5 how these models can be used to develop
efficient model-based approaches that compute the application placement
without strongly compromising the solution quality.

The approaches based on graph theory [GRA] usually aim to partition
the application acyclic graph in a such a way that inter-node traffic is mini-
mized (this condition corresponds to minimize the sum of edge weights cut
by the partitioning). Li et al. [122] show that this approach finds the optimal
solution if the application can be represented as a tree. Fisher et al. [57, 58]
consider generic graphs and propose a solution that, together with the
minimization of inter-node traffic, aims at evenly distributing load across
computing nodes. Zhu and Agrawal [226] also exploit graph theory; they
model the placement problem as a graph isomorphism problem, where the
application graph has to be mapped on the graph of resources that mini-
mizes the application response time. Although very elegant, this approach
assumes that a resource node can host at most a single operator (which
might be a non-realistic hypothesis in today’s DSP systems). COLA [107]
is a operator co-location optimizer, used in System S, that works with het-
erogeneous computing nodes and allows the user to specify a number of
location constraints. Starting with all operators fused together into a sin-
gle group, the COLA algorithm iteratively splits large groups into separate
groups by solving a specially formulated graph partitioning scheme. Es-
kandari et al. [54] solve the operator placement problem for Apache Storm,
which needs to assign operators to worker nodes, and then, for each worker
node, operators to Java processes (i.e., worker processes). The authors solve
both the problems with a graph partitioning algorithm that aims to mini-
mize the inter-node and inter-process traffic. From the state of the art, we
can observe that the approaches based on graph theory can quickly find a
solution that minimizes some inter-node cost (e.g., traffic). Nevertheless,
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they might not be easily adopted to optimize other QoS metrics (e.g., net-
work usage) and multi-objective functions.

As shown in [29], the deployment problem is NP-hard, therefore many
research efforts propose heuristics to solve the problem in a feasible amount
of time. The most common meta-heuristic, which is then customized to ad-
dress the problem at hand, is the greedy [GR] heuristic (e.g., first-fit, best-fit);
it has been adopted in [14, 64, 124, 174, 180, 181, 183, 188]. This approach
explores the solution space and accepts the first configuration which satis-
fies (or optimizes) a given utility function. Backman et al. [14] model the
placement as a bin-packing problem, which is then solved with different
greedy approaches that differ in the amount of required system knowledge.
The solution by Rychly et al. [174], which works in heterogeneous clusters,
first benchmarks each pair of operator-computing node and then greedily
selects the configuration of nodes that maximizes the application through-
put. A greedy approach is also pursued by Schneider et al. [180, 181] to
identify groups of operators that can be replicated together: their heuris-
tic creates regions of operators from left-to-right (i.e., from data sources to
sinks), by adding operators to the same region until all the safety condi-
tions are satisfied. Greedy approaches are usually very fast, because they
terminate as soon as a local optimum is found. However, if the objective
function admits many local optimum points, other approaches should be
used to further explore the solution space so as to determine the global
optimum.

Approaches based on local search [LS] move from solution to solution by
greedily applying local changes [64, 124, 188]. For example, the heuristic
by Lakshmanan et al. [118], which focuses on parallelizing stateless oper-
ators, replicates every (predicted) bottleneck operator until no further per-
formance improvements can be achieved. Li et al. [124] use a regression
model to estimate the application performance resulting from the opera-
tors placement; then, starting from an initial configuration, the heuristic
keeps improving it by adjusting the placement solution according to the
predicted performance.

The drawback of methods with local improvements (e.g., greedy, local
search) is that they might find only a local optimum and miss the global
optimum configuration. Tabu search [TS] and simulated annealing [SN] in-
crease the chances to find a global optimum by moving, if needed, through
non-improving placement configurations [188]. Specifically, starting from
an initial configuration and a set of neighbor configurations, tabu search
only accepts improving configurations, till finding a local optimum. Then,
it continues to explore the search space by selecting the best non-improving
configuration found in the neighborhood of the local optimum. To avoid
accepting the already visited local optimum, tabu search uses a tabu list of
configurations that cannot be accepted anymore. When a stopping condi-
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tion is reached, it returns the best local optimum configuration. Simulated
annealing is another meta-heuristic conceived to escape from local min-
imum configurations. Differently from tabu search, simulated annealing
first aims to find the region with the global optimum configuration and
then move with small steps to the optimum. First, it has the flexibility
of taking steps in random directions; then, as time passes, it reduces the
probability to accept configurations that do not improve the objective func-
tion. Usually these meta-heuristics find high-quality deployment configu-
rations, even though they might take considerably longer time to compute
the best configuration. To the best of our knowledge, so far there are only
a few research works exploring these approaches to compute the deploy-
ment of DSP applications (e.g., [3, 188]).

An approach based on a genetic algorithm [GA] has been proposed by
Smirnov [186] to compute the operator placement. Initially, the genetic al-
gorithm generates a random population of chromosomes, which represent
deployment configurations. Then, it performs genetic operations such as
crossover and mutations to obtain successive generations of these chromo-
somes. A crossover operator takes a pair of parent chromosomes and gen-
erates an offspring chromosome by crossing over individual genes from
each parent. A mutation operator randomly alters some parts of a given
chromosome so to avoid to get stuck in a local optimum. Afterwards, the
genetic algorithm picks the best chromosomes from the entire population
based on their fitness values and eliminates the rest. This process is re-
peated until a stopping criterion is met. Smirnov et al. [186] use the min-
imization of the application throughput as fitness function; to compute its
value during the initial deployment, the fitness function relies on perfor-
mance models built on statistical data. A genetic algorithm works by ran-
domly moving through configurations that can improve the deployment
objectives. To the best of our understanding, this approach works well
when the number of possible deployment choices for a DSP operator is
limited, even though the total number of configurations (i.e., ways of de-
ploying the whole application) is high.

The taxonomy uses the heuristic [H] class to cover all the other ap-
proaches that adopt custom solutions to solve the operator replication and
placement problem. Most of the existing research efforts consider these two
problems as orthogonal, so they focus on one of them [5, 156, 175, 185, 197]
or solve them in two stages [180]. In [5], a DHT drives the operator place-
ment and load balancing among resources. Peng et al. [156] place comput-
ing nodes on a resource space; then, DSP operators are assigned to nodes
by minimizing a distance function in the resource space. The distance func-
tion considers the operators’ resource requirements and the available re-
sources. Shukla and Simmhan [185] propose a model-driven approach for
computing the replication degree of DSP operators. Their approach first
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computes a performance model relying on micro-benchmarks and then de-
termines the replication degree that supports a given input data rate. To
maximize the economic value generated by a fixed set of resources, Tian
and Chandy [197] treat the DSP placement problem as a commodities mar-
ket problem. Ghaderi et al. [66] propose a placement solution that revolves
around the idea of deployment templates, i.e., unique way of partition-
ing a graph and allocating each partition on a computing resource. Dif-
ferently, Pollner et al. [159] jointly compute the initial replication degree
of operators and their placement. First, they group operators in regions
using [180]. Then, greedy heuristics are proposed to assign each paralleliz-
able region to computing resources, by exploiting the alternative (network)
routes between processing nodes. Gu et al. [69] investigate the operator
placement problem for infrastructures having heterogeneous computing
and network resources. After providing a problem formulation, the au-
thors also present two heuristics. The first one minimizes the application
response time by recursively improving the placement of the operators in
the application critical path (which is expressed in terms of latency). The
second one maximizes the application throughput; it relies on a dynamic
programming procedure that identifies and optimizes the placement of the
bottleneck operators. Li et al. [121] focus on the time to recovery the appli-
cation execution after a failure. Indeed, in case of upstream backup, when
a computing node fails, the application experiences a recovery time to re-
store a previously stored application state and to reprocess new data (see
Section 2.3.6). The authors observe that, when dependent operators are lo-
cated on the same processor, failing together, they may introduce a longer
recovery time. This is due to the need of reprocessing lost data under the
constraint of sharing computing resources. Therefore, the authors design
an operator placement heuristic that limits the expected recovery time in
case of failures.

2.2.7 Wrap-up

In this section, we wrap-up the related works regarding the initial deploy-
ment of DSP applications and summarize the most common solutions con-
sidered along the five Ws one H dimensions.

Most solutions consider a single centralized authority which computes
the initial deployment of single applications at a time. As such, it does not
usually change the deployment of running applications to accommodate
new ones. A common deployment goal is the optimization of a single-
objective utility function, which accounts for a user-oriented metric (i.e.,
inter-node traffic, response time, or throughput). As regards the comput-
ing infrastructure, existing policies usually consider a cluster environment
where resources are locally distributed. In this setting, the most common
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deployment problem which has been investigated is the operator place-
ment problem. To solve this problem, heuristics are by far the most adopted
methodology, with a special preference for greedy approaches that consider
the operator placement problem as a bin-packing problem. Here, opera-
tors (or groups of operators), possibly sorted according to a specific criteria
(e.g., exchanged data rate), are assigned to the set of computing resources in
a first-fit or best-fit manner. These strategies can be easily used to increase
the operator co-location, which, in turn, reduces the application latency (or
increases the application throughput).

2.2.8 Thesis Contribution

The analysis included in this section has shown that the deployment solu-
tions existing in literature are characterized by different assumptions and
optimization goals (as also pointed out in [117]). Moreover, since there is
no general formulation of the deployment problem, it is not easy to analyze
and compare these solutions one another, e.g., to select the most suitable
one for the use case at hand. Today’s DSP applications are usually high de-
manding, and a solution to improve scalability and reduce network latency
lies in taking advantage of the ever increasing presence of near-edge/Fog
Cloud computing resources [23]. Nevertheless, the use of a diffused in-
frastructure poses new challenges that include network and system het-
erogeneity, geographic distribution, and non-negligible network latencies
among distinct nodes processing different parts of a DSP application. Con-
sidering this setting, we provide three main contributions that deal with
the initial application deployment.

First, in Chapter 4, we propose ODP, a unified general formulation of
the operator placement problem for distributed and networked DSP appli-
cations, which takes into account the heterogeneity of application require-
ments and infrastructural resources. Differently from [19, 53], we model the
placement of DSP applications that can be represented by a directed acyclic
graph, therefore we do not limit the formulation to special topologies. Un-
like all the approaches presented in this section (e.g., [53, 94, 196]), we
model the placement problem for DSP applications with a holistic vision of
both computing and networking resources (i.e., we explicitly model the im-
pact of the network on application performance). Furthermore, ODP con-
siders QoS attributes of applications and resources, and is flexible enough
to accommodate new QoS metrics. Thanks to the adjustment of suitable
knobs, it can adapt the meaning of “optimal placement” according to the
application context. As such, ODP also represents a general framework for
QoS optimization and comparison of different approaches.

Second, in Chapter 5, we build on ODP to design several new heuris-
tics. We divide them into two main groups. In the first one, we have
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model-based heuristics, which run ODP on a properly restricted solution
space. These heuristics propose different approaches for reducing the solu-
tion space so to enable a faster resolution of ODP. In the second group, we
have the model-free heuristics, which customize some well-known meta-
heuristics, namely greedy first-fit, local search, and the tabu search. All
of them optimize a multi-objective utility function that accounts for user-
oriented and system-oriented metrics. They consider heterogeneous re-
source, whose distribution is geographic. Differently from the approaches
proposed so far, we use ODP to thoroughly evaluate the designed heuris-
tics, aiming to assess their quality along two dimensions: processing speedup
and quality of the computed solution. These two dimensions allow to eval-
uate the heuristics behavior and identify those that achieve a good perfor-
mance trade-off (i.e., that do not sacrifice one dimension in favor of the
other). Chapter 5 will show that different trade-offs between reduced res-
olution time and high solution quality can be achieved. These trade-offs
depend on the deployment configurations, expressed in terms of applica-
tion type, infrastructure size, and deployment objectives. On average, the
local search heuristic shows the best trade-off between the two considered
dimensions.

These first two contributions address only the operator placement prob-
lem. Chapter 6 presents our third contribution, which considers the prob-
lem of determining the replication degree of the DSP operators and their
placement over a set of distributed computing nodes. We name the result-
ing model as ODRP; differently from the existing works (e.g., [53, 132, 145]),
it provides a unified formulation of the replication and placement prob-
lem. ODRP allows us to jointly optimize the placement and replication of
the DSP operators, while maximizing the QoS attributes of the application.
The proposed formulation considers several QoS attributes of applications
and resources, and is flexible enough to accommodate new QoS metrics.
Similarly to ODP, ODRP provides a general framework for QoS optimiza-
tion, that can be used as a benchmark against which existing approaches
that deal with operator replication and placement can be compared.

With respect to the taxonomy of Figure 2.2, our contributions address
the following region of the problem space:

• Why: optimization of a multi-objective function, which takes into ac-
count both user-oriented and system-oriented QoS metrics. As user-
oriented metrics, we model response time and availability; as system-
oriented metrics, we model several network-related metrics that have
been widely used in the literature (i.e., network usage, inter-node traf-
fic, and the so called elastic energy).

• What: control of a single application at a time, with granularity of a
single operator.



42 Chapter 2. DSP Application Deployment

• Who: since we compute the optimal deployment solution, which re-
quires the global view of the system, we rely on a single centralized
authority.

• When: ODP, the heuristics, and ODRP operate at deployment time; they
consider a synchronous approach for determining the application de-
ployment.

• Where: our contributions model a cluster of heterogeneous computing
and network resources, whose distribution is geographic.

• How: ODP and the heuristics determine the operator placement, whereas
ODRP jointly optimizes the operator replication and replica placement.
As regards the methodologies, ODP and ODRP rely on a mathematical
programming approach, defining the deployment problem as an Inte-
ger Linear Programming (ILP) problem.
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2.3 Runtime Deployment Adaptation

The computational requirements of DSP applications are usually unknown
a-priori and, most importantly, they can change continuously at runtime.
This, together with the long-running nature of DSP applications, requires
DSP systems to monitor the application at runtime and adapt its deploy-
ment in a proactive or reactive manner.

In this section, we present the existing approaches that deal with the
deployment adaptation of DSP applications at runtime. As we will see,
the different research efforts address a wide range of challenges that arise
when applications with stringent QoS requirements run in a dynamic envi-
ronment. To provide a good overview of the existing solutions for runtime
adaptation, we extend the taxonomy of Section 2.1 and discuss how the ex-
isting literature addresses the six questions. Figure 2.3 shows the resulting
taxonomy, whereas Table 2.3 positions the most relevant works with re-
spect to our taxonomy. The list of all the labels used to classify the existing
solutions is reported in Table 2.2.

2.3.1 Why: Deployment Goals

Similarly to the initial deployment of DSP applications (Section 2.2), their
runtime adaptation can be driven by optimization goals which can be dis-
tinguished into three main categories: constraint satisfaction [CS], single-
objective [S] optimization, and multi-objective [M] optimization. Moreover,
since DSP applications usually run under dynamic working conditions (e.g.,
changing incoming workload), several works optimize a single- or multi-
objective function while meeting requirements on another QoS metric. In
Table 2.3, we mark these solutions as [S; CS] (or [M; CS]) and indicate the
QoS metric to be satisfied in the Why: Metric column after the semicolon.
The existing solutions rely on QoS metrics that can be categorized in user-
oriented [UO] and system-oriented [SO] metrics.

User-oriented QoS metrics. Many solutions consider the same metrics
optimized for the initial deployment, such as response time [R] and through-
put [T]. As regards response time, most of the existing approaches model
the end-to-end application response time (e.g., [78, 127, 132, 167, 172]),
whereas other approaches consider only the response time of a single DSP
operator [61, 142, 178, 200]. As regards throughput, all the approaches con-
sider the output throughput, i.e., the number of tuples that can be pro-
cessed by the DSP application per unit of time [60, 65, 109, 111, 133, 47, 48,
179, 214, 215], whereas no one currently optimizes the input throughput.
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Runtime Deployment
Adaptation

Why?
(Goals)

Objective

Multiple [M]

Single [S]

Constraint Satisfaction [CS]

Metric

User-oriented [UO]

Adaptation Cost [AC]

Cost [CT]

Dependability [DE]

Response time [R]

Throughput [T]

System-oriented [SO]

Load Balancing [LB]

Resource Utilization [RU]

Inter-node Traffic [NT]

Network Usage [NU]

What?
(Controlled Entities)

Granularity

Tuple [TU]

Single Operator [O]

Group of Operators [G]

Topology [TO]

Span of Control [SoC]

Single Application [SA]

Multiple Applications

Cooperative [MA]

Non Cooperative [MN]

Who?
(Authority)

Centralized [C]

Decentralized

Flat [D]

Hierarchical [HD]

When?
(Time)

Trigger

Time-based [P]

Event-based [E]

Time Mode

Proactive [PR]

Reactive [RE]

Where?
(Computing Infrastructure)

Adaptation Level

Application [A]

Infrastructure [I]

Resource Heterogeneity

Homogeneous [HO]

Heterogeneous [HE]

System Distribution

Local [LO]

Geographic [GE]

Environment

Cluster [CU]

Cloud [CC]

Fog [FC]

How?
(Planning)

Action

Dynamic Batch Sizing
[DBS]
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Figure 2.3: Taxonomy of self-adaptation approaches for DSP applications.
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Table 2.3: State-of-the-art solutions for adapting the DSP application deployment at runtime.

WHY WHAT WHO WHEN WHERE HOW
Obj. Metric SoC Gra. Aut. Trig. Mode Lev. Heter. Distr. Env. Act. State Method.

Aniello et al. [9] S NT SA O C P RE A HE LO CU OP, CL L GR
Bellavista et al. [18] S; CS CT; UO SA O C P RE A HO LO CU FTM L MP, H

Caneill et al. [25] M NU, LB SA O C P RE A HO GE CU OP, CL F GRA
Castro Fernandez et al. [31] - DE SA O C P RE A, I HO LO CC OS F TB

Cheng et al. [35] S T SA O C P RE A HO LO CU OS L RL
Cerviño et al. [32] S RU MA - C P RE I HE GE CC LD L H

Chatzistergiou et al. [34] S; CS NT; RU SA G C P RE A HE GE CU OP, CL L H
Das et al. [44] S R SA TO C P RE A HO LO CU DBS L CTR

De Matteis et al. [47, 48] M UO, CT, AC SA O C P PR A HO LO CU OS, LD F CTR
Delimitrou et al. [50] S RU MA O D P RE A HE LO CU OP L LS

Floratou et al. [60] S LB SA O C P RE A HO LO CC OS, LD L H
Floratou et al. [60] S; CS LB; T SA O C P RE A HO LO CC OS, LD L H

Fu et al. [61] S R SA O C P RE A HE GE CC OP, OS L QT
Gedik et al. [65] S T SA G C P RE A HO LO CC OS F TB

Gulisano et al. [70, 71] S RU SA G C P RE A, I HO LO CC OS F TB
Han et al. [73] S RU SA O C P RE A HE LO CU OP L GR

Heintz et al. [75] M NT, R SA O D P RE A HO GE CU DBS L H
Heinze et al. [78] M RU, R, AC SA O C P RE A, I HE LO CC OS F TB6

Heinze et al. [79] S RU, (AC) MA O C E RE A, I HE LO CC OP F GR
Heinze et al. [80] S RU SA O C P RE A, I HO LO CC OP L TB, RL
Heinze et al. [82] M RU, DE, AC SA O C P RE A HO LO CC FTM L TB

Hidalgo et al. [83] S RU SA O C P PR, RE A HO LO CC OS L TB
Hochreiner et al. [87] S, CS CT, UO SA O D P RE A, I HE LO CC OS F TB
Hochreiner et al. [88] S CT SA O D P RE A, I HE LO CC OS F TB

(continued on next page)

6When a migration should be performed, this policy considers only the subset of migrations that introduces a latency spike smaller than a given
threshold.
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WHY WHAT WHO WHEN WHERE HOW
Obj. Metric SoC Gra. Aut. Trig. Mode Lev. Heter. Distr. Env. Act. State Method.

Hoseiny Farahabady et al. [90] M; CS RU; UO MA O C P PR A HO LO CU OP L CTR, H
Hoseiny Farahabady et al. [91] CS UO SA O C P PR A HO LO CU OP L LS

Huang et al. [94] S; CS NU; UO SA O C E RE A HE GE CU OP L GR
Hummer et al. [95] M NT, RU, AC MA O C P RE A, I HO LO CC OP, RS L MP, TB

Ishii et al. [97] S CT SA O C P PR I HE LO CU+CC OP L MP
Jiang et al. [100] S NT MA O C P RE A HE LO CU OP L GRA, GR

Kalyvianaki et al. [101] S SO MA O D P RE A - - - SH - CTR
Kalyvianaki et al. [102] S SO MA O D P RE A - - - SH - H
Kalyvianaki et al. [103] S RU MA O C P RE A HE LO CU OP, RS L MP

Khorlin et al. [108] S UO SA O C P RE A HO LO CU OP L QT
Khorlin et al. [108] S UO SA O D P RE A HO LO CU OP L CTR

Kleiminger et al. [109] M T, CT SA O C P RE A, I HO LO CU+CC LD L TB
Koliousis et al. [111] S T MA O C P RE A HE LO CU LD L H

Kombi et al. [112] S T SA O C P PR A HO LO CU OS - H
Kumar et al. [114] S UO SA O D E RE A HO GE CU OP L H, TB

Kumbhare et al. [115] S LB - O D E RE A, I HE LO CC LD F H, TB
Kumbhare et al. [116] M UO SA O C P RE A, I HE GE CC OP L GA, GR

Li et al. [123] S NT, (AC) SA O C P RE A, I HO LO CC OS F TB
Li et al. [125] S R SA TO C P RE A HO GE CU DBS L MP

Liu et al. [127] S; CS NT, RU; R SA O C P RE A, I HO LO CC OP, CL, OS L GR
Loesing et al. [131] S LB MA O C P RE A, I HE LO CC OS L TB

Lohrmann et al. [132] S; CS RU; R SA O C P RE A HO LO CC OS L MP, QT
Lohrmann et al. [133] S T SA O C P RE A HO LO CU DBS, CL - H
Lombardi et al. [134] S RU, (AC) MA O C P PR, RE A, I HO LO CC OS F TB, H

Madsen et al. [136, 139] S LB, NT, (AC) SA O,TO C - RE A HO LO CU GT, OP, CL F H
Madsen et al. [137] S AC SA O C P PR, RE A HO LO CU - F H
Madsen et al. [138] M; CS LB, NT; AC SA O C P RE A HO LO CU OP, CL F H, MP

Mayer et al. [142] CS R SA O D P PR A HE LO CU LD L GR
(continued on next page)



2.3.
R

untim
e

D
eploym

entA
daptation

47
(continued from previous page)

WHY WHAT WHO WHEN WHERE HOW
Obj. Metric SoC Gra. Aut. Trig. Mode Lev. Heter. Distr. Env. Act. State Method.

Mencagli [145] M T, CT MN O D P RE A HO LO CC OS F GAM
Mencagli et al. [146] S T SA O HD P RE A HO LO CU LD, OS L CTR, H
Pietzuch et al. [158] S NU SA O D P RE A HE GE CU OP L H

Pundir et al. [162] S LB, (AC) SA O C P RE A HO LO CU OS F H
Qian et al. [163] S LB MA O C P RE A HO LO CU OP L GR

Ravindra et al. [167] CS R SA O C P RE I HO LO CU+CC OP L TB
Repantis et al. [168] S; CS LB, R MA O D P RE A HE GE CU OP, RS L H

Rizou et al. [170, 172] CS R SA O D P RE A HE GE CU OP L H
Rizou et al. [171] S NU SA O D P RE A HE GE CU OP L MP

Saurez et al. [178] CS R MA O D P PR, RE A HE GE FC - F TB
Schneider et al. [179] S T SA O C P RE A HO LO CU OS L H
Schneider et al. [182] S SO SA G D P PR A HE LO CU LD F H

Sun et al. [191] CS R SA O C P RE A HE LO CU OP L TB
Sun et al. [192] S R MA O C E RE A HE LO CU OP, OS L H

Tudoran et al. [200] S R SA O C P RE A HE GE CC OP, CL, DBS L LS
Van der Veen et al. [202] M RU, LB SA O C P RE A, I HO LO CC OP, OS L TB

Wang et al. [205] S; CS RU; UO SA O C P RE A HE LO CU OP, OS L ML
Wolf et al. [209] S SO MA O C P RE A HE LO CU OP L MP, H
Xing et al. [212] S LB MA O C P RE A HO LO CU OP L GR

Xu et al. [213] S NT SA O C P RE A HE LO CU OP L GR
Xu et al. [214] S T SA O C P RE A HO LO CU OS L GR

Yang et al. [215] S T MA O C P RE A HO LO CC OP L GA
Zacheilas et al. [219] M UO, AC SA O C P PR A HO LO CU OS L MP

Zhang et al. [222] M NT, LB SA O C P RE A HE LO CU OP L H
Zhang et al. [223] S R SA O C P RE A HO LO CU DBS F H
Zhou et al. [224] S R7, LB SA O C P RE A HO LO CU OP L LS

(continued on next page)

7This solution optimizes response time only while computing the initial application deployment.
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WHY WHAT WHO WHEN WHERE HOW
Obj. Metric SoC Gra. Aut. Trig. Mode Lev. Heter. Distr. Env. Act. State Method.

Zhou et al. [225] S UO SA TP C P RE A HO LO CU TP L H
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Many solutions for runtime adaptation also consider other user-oriented
metrics, which aim to improve the application dependability, reduce the
execution cost or the adaptation cost. The long running nature of DSP
applications stresses the importance of fault tolerance, which allows to
preserve the working conditions even when failures occur in the execu-
tion environment. To tackle this problem and propose effective solutions,
the existing approaches improve a set of metrics (i.e., availability, reliabil-
ity, safety) that collectively determine the application dependability [DE]. In
general, the higher the dependability, the higher the probability that the ap-
plication performs the required function at any randomly chosen point in
time [18, 31, 82]. Dependability plays a key role in the approach by Heinze
et al. [82], which dynamically combines fault tolerance mechanisms, char-
acterized by different performance, with the aim to reduce costs while min-
imizing the number of violations of a user-defined recovery time threshold.
Interestingly, Bellavista et al. [18] consider a slightly different perspective;
they observe that, for a number of applications, perfect fault tolerance is
not always needed, therefore it can be sacrificed for effectively managing
temporary load variations.

Cloud computing enables to quickly acquire and release computing
resources when needed, and to pay only for the leased resources (i.e., a
pay-per-use pricing model is applied). These features perfectly fit with
the dynamic nature of DSP applications. Exploiting them, several poli-
cies have been developed to efficiently change the number of computing
resources used by the DSP application at runtime so to successfully han-
dle varying incoming workloads, while optimizing the cost [CT] of execu-
tion [18, 88, 97, 109]. Indeed, if on the one hand acquiring more resources
allows to better exploit data parallelism and quickly process huge incom-
ing workloads, on the other hand, it results in higher costs. Achieving the
optimal trade-off is not trivial. Even though cost is not explicitly consid-
ered in [32], Cerviño et al. propose a solution that improves resource uti-
lization in the Cloud (which yields to a reduced execution cost). This solu-
tion autonomously scales the number of computing resources in response
to workload variations, aiming to achieve low application response time,
while using resources at their maximum processing capacity.

Reconfiguring the application at runtime involves the execution of man-
agement operations that apply the deployment changes while preserving
the application integrity. The latter is a critical task especially when the
application includes stateful operators. Indeed, when a stateful operator is
relocated, besides distributing the operator code, the DSP system should
efficiently migrate its internal state before resuming the computation. Sim-
ilarly, when the replication degree of a stateful operators is changed, the
system should efficiently redistribute its internal state among all the ac-
tive replicas of the operator. Performing these operations can temporar-
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ily degrade the application performance, because, e.g., most existing DSP
frameworks require to restart the application to adapt its deployment (e.g.,
Apache Storm [199]), thus introducing a downtime. We refer to these penal-
ties as adaptation costs [AC] or reconfiguration costs. As regards adap-
tation costs, we can identify three main groups of works. The research
efforts belonging to the first group assume that the application contains
only stateless operators or, more generally, neglect the management over-
head to handle the operators internal state during reconfigurations, i.e.,
they do not consider reconfiguration costs (e.g., [9, 34, 83, 132]). In this
first group, there are also those approaches that deal with the state man-
agement but do not explicitly take into account the adaptation costs (e.g.,
[25, 65, 70, 145, 182, 223]). Zhou et al. [224] adopt a different perspective;
they explicitly neglect adaptation costs, because they value more the long
term benefits of (any kind of) reconfigurations. The second group indi-
rectly considers the reconfiguration overhead. A few solutions (marked
with (AD) in Table 2.3) indirectly minimize adaptation costs by limiting
the set of possible reconfigurations [123], by reducing the amount of state
to relocate during migrations [136, 139, 162], or by limiting the events that
trigger adaptation [79]. Specifically, Heinze et al. [79] allow to apply re-
configurations only when an application is removed (so to consolidate and
turn off virtual machines) and when a new application is added (so to re-
duce resource fragmentation) to the set of computing resources. Differently,
Madsen et al. [136, 139] exploit semantic information about the DSP appli-
cation to better support the management of window-based operators; this
enables to efficiently avoid (or reduce) the overhead of state migration at
runtime. The approaches belonging to the third group explicitly model the
adaptation cost (marked with AD in Table 2.3). Here, some works only
consider the number of deployment changes (i.e., migrations, scaling oper-
ations) [48, 47], whereas others predict the performance penalties for enact-
ing the changes (e.g., application downtime, latency spikes), with the aim
to enact only the less expensive reconfigurations [78, 95, 219] or to enforce
constraints on it [82, 138].

System-oriented QoS metrics. As regards the system-oriented met-
rics, the solutions working at runtime optimize the metrics already intro-
duced for the initial deployment, namely resource utilization, load balanc-
ing, inter-node traffic, and network usage.

Many research works consider the maximization of resource utilization
[RU], which allows to better exploit the available computing resources and
more efficiently run DSP operators [34, 50, 73, 103]. This metric is often
used to steer the elastic replication of DSP operators [83, 132, 205] or the
elastic allocation of computing resources [70, 71, 79, 80, 78, 82, 127, 202]. As
a consequence, since these approaches indirectly optimize costs, they are
usually employed in Cloud computing environments (e.g., [70, 78, 202]).
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Differently from the above cited works, Han et al. [73] and Kalyvianaki et
al. [103] do not consider replication, but rely on resource utilization to de-
termine an efficient placement of the application operators. The same idea
is exploited in [95], which, together with the operator placement, also aims
to maximize the operator reuse among multiple applications. Chatzister-
giou and Viglas [34] use the resource utilization metric to trigger reconfigu-
rations of the application deployment and keep resource utilization below
a given critical value at runtime.

A good number of approaches also optimize load balancing (LB) among
computing resources [131, 138, 163, 168, 202, 224, 162, 222]. This metric
is very important at runtime, because an even distribution of load among
resources allows to better accommodate incoming load fluctuations (basi-
cally, a balanced load reduces the presence of few highly loaded comput-
ing nodes). Observe that most of the approaches that enforce load balanc-
ing have been designed to work in clustered environment (all except [131,
202]). Interestingly, Xing et al. [212] propose a solution that not only bal-
ances the average load among computing resources, but also minimizes
the load variance among these resources. This deployment goal results in a
placement configuration more resilient to load variations and traffic bursts.
Some research results optimize load balancing among multiple replicas of
the same operator [25, 60, 115]; this is a key property to effectively take ad-
vantage of data parallelism and let data experience homogeneous perfor-
mance (e.g., waiting time) independently from the operator replica where
they are processed.

The inter-node traffic [NT] measures the overall amount of data exchanged
using the network per time unit. Since it does not explicitly account for
network latencies, it is usually adopted by those approaches designed to
work on a locally distributed pool of resources (as in [9, 95, 100, 123, 127,
138, 213, 222]). Chatzistergiou and Viglas [34] use this metric in settings
with significant inter-node transfer latencies, even though they (implicitly)
assume that network latencies are homogeneous among pairs of nodes.
Differently, Heintz et al. [75, 76] propose to use this metric in combina-
tion with the minimization of response time, so to control network laten-
cies in the geographically distributed setting. In these settings, many ap-
proaches are in favor of minimizing network usage [NT], which explicitly
accounts for latencies of network links involved in the transmission of data
streams [21, 25, 94, 158, 171].

Generic cost functions. A few other works recur to the definition of a
generic cost function to be minimized (or utility function to be maximized)
that can account for different QoS metrics (both user-oriented [91, 108, 116,
47, 145, 205, 219, 225] and system-oriented [102, 182, 209]). For example,
Khorlin and Chandy [108] and Mencagli [145] rely on a generic, high-level
formulation of a cost function to be minimized. A similar approach is also
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adopted in [91, 116, 205], where however the cost function is expected to
model application-related QoS metrics (i.e., throughput, response time).
Interestingly, De Matteis and Mencagli [47, 48] propose an energy-aware
deployment strategy tailored for multicore CPUs systems with frequency
scaling support; together with user-oriented metrics, the deployment strat-
egy considers energy consumption of computing resources. To conclude,
it is worth mentioning the work by Zhou et al. [225], which considers DSP
applications running on a single machine, where a deadline can be associ-
ated to each single tuple and all the operators may not run in parallel. The
devised approach allocates tuples to each operator aiming to maximize the
number of tuples that meet the deadline.

Deployment stages and deployment goals. Most of the existing works
consider the runtime deployment adaptation as tightly correlated with the
initial deployment of DSP applications. As such, these approaches opti-
mize the same objective function while computing the initial application
deployment and its runtime adaptation (e.g., [61, 75, 88, 158, 170, 215]). Al-
though this is by large the most commonly adopted approach, a small set of
solutions differentiates the goals of the two deployment tasks, thus recur-
ring to different policies and optimization functions (e.g., [213, 224]). For
example, the solution by Zhou et al. [224] computes the initial application
placement by minimizing the communication latency between data pro-
ducers and consumers, whereas, at runtime, it aims to maintain a good load
balance despite the changes in the execution environment. Xu et al. [213]
use a simple round robin strategy for determining the initial placement of
DSP operators, whereas the developed (greedy) heuristic relocates opera-
tors at runtime, so to minimize inter-node traffic.

2.3.2 What: Controlled Entities

Span of Control. The vast majority of the existing solutions control the de-
ployment of each single application independently from the other already
running. In this case, the scheduler controls the deployment of a single ap-
plication [SA] at a time. Most of the solutions existing in literature follow
this design choice (e.g., [9, 61, 83, 97, 133, 167, 170, 202]).

Differently from the initial application deployment, here several solu-
tions consider multiple applications in a cooperative [MA] or non-cooperative
[MN] environment, while computing the deployment. In this case, the
policies consider possible interactions among the applications that concur-
rently run on the same computing infrastructure. As regards the coopera-
tive environment, some solutions consider the possibility of sharing opera-
tors (or data) among multiple applications [95, 103, 168, 215], whereas some
others consider the possibility to control the deployment of multiple inde-
pendent applications [79, 100, 131, 163, 209]. Even though not designed
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for DSP applications, it is worth mentioning the approach by Delimitrou et
al. [50] that estimates interferences among applications by running a set of
micro-benchmarks before computing the application placement. Recently,
also Hoseiny Farahabady et al. [90] have proposed a resource allocation
strategy that explicitly quantifies the slowdown rate caused by multiple
DSP operators running on the same host.

Differently from the above cited works, Mencagli [145] investigates how
to implement elasticity when multiple applications run in a non coopera-
tive environment. Here, applications are managed by distributed agents,
where each agent independently optimizes the deployment goals of the
managed application.

Granularity of Control. The vast majority of existing works adapt
the application deployment at runtime by considering a single operator [O]
(e.g., [9, 65, 88, 138, 172]) or groups of operators [G] (as in [34, 65, 70, 71, 182])
as a whole entity. Zhou et al. [225] propose a solution that works at the level
of tuples [TP]; specifically, for each execution round, it schedules input tu-
ples to operators aiming to avoid violations of application deadlines. Nev-
ertheless, to reduce the scheduler overhead, the authors allow the sched-
uler to operate on batches of tuples. Among the approaches that consider
self-adaptation, the ones by Madsen et al. [136, 139] require to perform
some tasks before the application execution (i.e., at compile time). Specifi-
cally, exploiting the application semantics, it transforms stateful operators
in a combination of a stateless component and a stateful one, so to more
efficiently deal with migrations. To perform these operations, it works at
the topology level [TO].

2.3.3 Who: Management Authority

The who question helps us to characterize the existing approaches with re-
spect to the distribution of the management authority, i.e., the scheduler
that adapts the application deployment. We distinguish between central-
ized and decentralized authorities.

A centralized authority [C] has access to the entire system current state,
can potentially find a globally optimal deployment solution, but it may
suffer from scalability issues. The vast majority of the existing approaches
for runtime adaptation rely on a single centralized authority (e.g., [9, 82, 83,
138, 209, 223]).

Decentralized authorities [D] usually have a partial (or local) view of the
system, can overcome scalability issues, but may not guarantee globally op-
timal solutions. Many (flat) decentralized solutions have been proposed so
far [88, 108, 115, 142, 145, 158, 168, 170, 171, 172, 182]. For example, Kumb-
hare et al. [115] propose a solution with multiple infrastructure managers,
which are organized in a peer-ring. Exploiting this structure, these man-
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agers compute the operator deployment (i.e., placement and replication)
exploiting the concept of consistent hashing. Distributed authorities also
determine the placement in the work by Pietzuch et al. [158] and Rizou et
al. [170, 171, 172]. Interestingly, Rizou et al. [171] show how their approach,
although decentralized, can converge to a global optimum solution exploit-
ing some mathematical properties of the objective function (i.e., the con-
vexity of the network usage function). As such, if each operator iteratively
finds its local optimal placement, the optimal placement for the applica-
tion is achieved. Dealing with multiple applications in a non cooperative
environment, Mencagli [145] has designed a decentralized elasticity policy,
where agents manage applications and determine the best deployment re-
lying on a game-theoretic approach. Differently from the above solutions,
Hochreiner et al. [87, 88] propose to assign a manager to each DSP operator,
which is in charge of performing the operator reconfigurations (in this case,
horizontal scaling decisions). Kumar et al. [114] design a distributed oper-
ator placement algorithm that considers the infrastructure under different
levels of abstractions. In such a way, the algorithm can manage large clus-
ters while limiting its resolution time. First, it recursively aggregates the
computing resources in high level groups; then, it determines the applica-
tion deployment by proceeding from the highest abstraction level down to
the lowest one that comprises the computing resources.

To the best of our knowledge, only the research work in [146] uses an
architecture with hierarchical decentralized authorities [HD] for determining
the runtime adaptation of DSP applications. In general, a hierarchical de-
centralized architecture can achieve a suitable trade-off between limitations
and strengths of centralized and fully decentralized architectures. Within
the hierarchy, the management authorities can be organized with separa-
tion of concerns and time scale. In [146], Mencagli et al. study the problem
of parallelizing a special kind of windowed operators. By observing that
workload variabilities occur at different time-scales, the authors design a
two-level adaptation solution that controls load balancing across the op-
erator replicas (at the lower level) and resource allocation through vertical
elasticity (at the higher level). Since the proposed solution works in a single
multi-core computing node, the vertical elasticity deals with changing the
number of operator replicas at runtime.

Finally, we observe that some distributed deployment solutions rely on
a centralized authority, which uses a centralized version of the deployment
policy, so to determine the initial application deployment. This approach
is useful to determine a good initial placement, relying on a global view of
the system state [158, 170, 171, 172].
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2.3.4 When: Adaptation Triggers and Time Strategies

In this section, we describe when the deployment operations and optimiza-
tions, proposed by the existing approaches, are applied. We use the when
question to identify two main properties: triggering mode and time strat-
egy.

Trigger. The adaptation trigger launches the deployment policy, which
determines whether a reconfiguration is needed and, if so, plans the re-
configuration actions. To control adaptation, many solutions implicitly
or explicitly rely on the MAPE loop [106], which represents a prominent
and well-know reference model for organizing the autonomous control
of a software system. In a MAPE loop, four components (Monitor, Ana-
lyze, Plan, and Execute) are responsible for the primary functions of self-
adaptation. The Monitor component retrieves information about the ap-
plication execution, the system state, and relevant environmental changes.
By evaluating these data, the Analyze component is in charge of trigger-
ing the adaptation of the DSP application by running the Plan component.
The latter hosts the deployment policy that computes an adaptation plan
(e.g., [127, 202]). Finally, the Execute component accordingly runs the re-
configuration actions, so to enact the adaptation.

In general, the adaptation trigger can be either time-based or event-
based. A time-based [P] trigger periodically executes the deployment pol-
icy. This strategy is simpler to be implemented than the event-based one,
so it is by far the most diffused approach for executing the deployment
adaptation policy (e.g., [9, 34, 31, 60, 88, 138, 167, 170, 219]). Nonetheless,
determining the time interval between two consecutive executions of the
deployment policy is critical. On the one hand, executing the policy with
high frequency allows to quickly respond to system status changes; on the
other hand, it may introduce a considerable management overhead and it
might hide reconfiguration effects (this happens if the policy is faster than
the system transients due to the reconfiguration enactment). The existing
solutions consider a periodicity in the order of seconds or minutes. Most of
these approaches avoid to recompute the deployment if it is not necessary.
Specifically, in each round, they first check whether some QoS metrics have
been violated and, in positive case, run the deployment policy (see for ex-
ample [34, 61, 65, 71, 78, 82, 94, 115, 127, 133]). To increase stability after
the enactment of a reconfiguration, some solutions recur to a grace period
(or cool-down period), where the updated DSP operator cannot be further
reconfigured (e.g., [80]).

An event-based [E] trigger executes the deployment policy as soon as
an event is generated within the DSP system [79, 167]. Implementing this
approach is harder, so many solutions fall back to a time-based approach,
which periodically evaluates the generated events — as such, we classify
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these works as time-based [P] solutions. A pure event-based approach is
proposed by Heinze et al. [79], which recompute the applications deploy-
ment only when an application is added to or removed from the computing
infrastructure. Similarly, Ravindra et al. [167] propose to perform scale-in
operations to release virtual machines only when their billing time unit
ends.

Time Strategy. The vast majority of the approaches are reactive [RE], i.e.,
they determine how the application deployment should be updated relying
on the current system state (e.g., resource utilization, incoming data rate).
This is usually the case of DSP systems running in an environment with
unforeseeable incoming data rates, which should run deployment policies
that can quickly react to changes (e.g., [65, 71, 131, 171, 179, 224]).

A second set of solutions uses a proactive [PR] approach, i.e., they deter-
mine the reconfiguration actions relying on a prediction of the system evo-
lution. For example, these approaches try to exploit recurring patterns on
the incoming data rate or, in general, to predict the system evolution in the
near future [47, 48] (e.g., in term of incoming data rate [91, 97, 219], response
time [142, 219], or network congestion [182]). For example, Farahabady et
al. [91] propose a scheduler based on a Model Predictive Controller that
allocates resources so to minimize QoS violation with respect to the pre-
dicted arriving data rate and resource utilization in each worker node. De
Matteis and Mencagli [47, 48] rely on a control-theoretic method that takes
into account the system behavior over a future time horizon in order to
decide the best reconfiguration to execute (in terms of operators replica-
tion degree). Madsen et al. [137] have designed a checkpointing mecha-
nism that allows fast state migration when changing the operator replica-
tion degree. To speed up the migration, they allocate the checkpoints so to
maximize their probability to be used without relocation (i.e., they predict
where computation will be located in the next future). Finally, Schneider et
al. [182] consider the problem of distributing load among multiple opera-
tor replicas; to avoid congestion, they minimize the predicted blocking rate
per each TCP connection among communicating operators that reside on
different computing nodes.

Interestingly, some few works propose an approach that combine a re-
active strategy and a proactive one [83, 178]. The elasticity control algo-
rithm by Hidalgo et al. [83] includes a reactive and a proactive algorithm,
which work at two different time scales. The reactive short-term algorithm
evaluates the incoming data rate and changes the operator parallelism with
a fine granularity. The proactive mid-term algorithm uses a Markov chain
to predict the operator load in the next time window, so it can accordingly
adjust the operator parallelism with a coarse granularity.



2.3. Runtime Deployment Adaptation 57

2.3.5 Where: Computing Infrastructure

Relying on the taxonomy of Figure 2.3, we can describe in detail the com-
puting infrastructure used by the existing solutions in literature. Together
with the three main properties that describe the infrastructure (i.e., com-
puting environment, resource heterogeneity, and resource distribution), as
introduced for the initial deployment solutions, here we add a fourth prop-
erty, namely the adaptation level.

Adaptation Level. The adaptation level identifies whether the deploy-
ment solution operates at the application level, at the infrastructure level,
or uses a combination thereof.

A policy that computes application-level adaptations (referred as [A] in
Table 2.3) manipulates only the application (and its operators), but does not
change the set of available computing resources. In other words, it consid-
ers the pool of computing nodes to be statically defined (i.e., resources can-
not be acquired and released at runtime). Usually, the approaches designed
for clustered environments investigate only application-level adaptations.
For example, they can change the operator replication degree (e.g., [48, 179,
205]), the replica placement (e.g., [9, 34, 100]), load distribution (e.g., [25,
111, 222]), or fault-tolerance mechanisms [18] (as we will describe in Sec-
tion 2.3.6). We observe that, although several solutions investigate scaling
operations (i.e., how to change the operators replication degree), they work
at the application level and do not acquire or release computing nodes
(e.g., [60, 61, 65, 83, 132, 145, 162, 214, 219]).

A policy determines infrastructure-level adaptations (referred as [I]) when
it dynamically changes (e.g., resizes) the set of computing resources. Pure
infrastructure-level solutions do not necessarily change the application de-
ployment; indeed, they can postpone the utilization of new resources for
accommodating new upcoming applications. Investigating this kind of so-
lutions is out of the scope of this thesis work, however we mention a couple
of representative approaches. Cerviño et al. [32] proposed a solution that
autonomously resizes the number of virtual machines in response to vari-
ations of the input streams rates. Their approach aims to improve resource
utilization while running low latency applications. As soon as a new vir-
tual machine is acquired or released, the incoming workload is equally bal-
anced across the active virtual machines. Other solutions combine a local
cluster with a remote Cloud; the latter is used only when the incoming load
exceeds the cluster capacity. In such a case, the application deployment is
recomputed [97, 167].

A policy can also determine adaptation both at the application and at
the infrastructure level, thus changing the application deployment (e.g.,
operator replication, placement) on an elastic pool of computing resources.
We mark these solutions with the label [A, I]. Many existing solutions con-
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sider this setting and adapt the operators replication degree, while expand-
ing or shrinking the pool of computing resources so to accommodate the
incoming workload (e.g., [31, 71, 79, 80, 78, 88, 109, 131, 202]). These ap-
proaches are well suited to work in a Cloud computing environment.

Computing Infrastructure. We now analyze how the different research
efforts consider the computing infrastructures, in terms of heterogeneity,
distribution, and execution environment.

As regards resource heterogeneity, the currently existing approaches
are equally distributed among those that consider heterogeneous resources
[HE] (e.g., [61, 88, 111]) and those that consider homogeneous resources [HO]
(e.g., [25, 214, 202]). Observe that the approaches that deal with elasticity,
which horizontally scale DSP operators, usually work with homogeneous
resources (as we will see in the next section — e.g., [60, 65, 71, 83, 219]).

The vast majority of research works consider a locally distributed [LO]
infrastructure, where computing resources are co-located in the same data
center and are inter-connected with high-speed communication links (e.g.,
[123, 132, 65, 82]). As such, these approaches usually neglect the trans-
mission overhead (e.g., latency) introduced by the network. Conversely,
few works consider a geographically distributed [GE] infrastructure, thus ex-
plicitly modeling networks costs in terms of latency or bandwidth (e.g.,
[34, 61, 200, 158, 171]). For example, Saurez et al. [178] present Foglets,
a framework designed to work in a Fog computing environment, which
takes into account the heterogeneity of computing and network resources.
We point out that the work by Heintz et al. [75] considers homogeneous re-
sources, albeit it runs in a geographically distributed environment. Indeed,
it focuses on the optimization of windowed aggregations with the goal of
minimizing the exchanged traffic and response time (more precisely, the
staleness).

We consider three main categories of computing environment: cluster
[CU], Cloud computing [CC], and Fog computing [FC]. Each of them has spe-
cific features in terms of resource capabilities, dynamism, and elasticity.
Many solutions have been designed for cluster environments, even though
recently an ever increasing number of research efforts are tailored to exploit
the elasticity of Cloud computing (e.g., [31, 60, 78, 83, 88]). At present, so-
lutions that efficiently work in Fog computing (or, in general, distributed
Clouds) environment are, to the best of our knowledge, still largely unex-
plored.

The vast majority of existing solutions designed for a Cloud comput-
ing environment consider locally distributed infrastructures (with both ho-
mogeneous resources, e.g., [65, 71, 83, 123, 132, 145, 215] and heteroge-
neous resources [61, 79, 88, 131, 115, 116]). In this setting, Hochreiner
et al. [88] investigate the elasticity of DSP operators, whereas Floratou et
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al. [60] define a load balancing approach for distributing the computation
among replicas of the same operator. Differently, Heinze et al. [82] com-
bine multiple approaches for fault tolerance (i.e., active replication, up-
stream backup), while meeting requirements on recovery time. Relatively
few works for locally distributed Cloud computing environments investi-
gate the operator placement problem and the operator co-location problem,
e.g., [127, 215]. In this setting, the majority of the solutions investigate elas-
ticity. Conversely, we observe that approaches designed for geographically
distributed Clouds mainly focus on the operator placement problem and
explicitly model resource heterogeneity (as in [61, 116, 200]). In this case,
few works consider elasticity.

As regards the clustered environment, the approaches mainly consider
locally distributed infrastructures with both homogeneous (e.g., [48, 91,
108, 139, 163, 225]) and heterogeneous resources (e.g., [9, 50, 111, 142, 213,
222]). The approaches dealing with geographic distribution often consider
resource heterogeneity; this allows to efficiently utilize the available com-
puting and, most importantly, network resources while computing the ap-
plication placement (e.g., [34, 158, 170, 171, 172]).

Finally, some few approaches consider a hybrid architecture, where the
public Cloud extends a local cluster when the incoming load demands ca-
pacity is higher than the available cluster resources [97, 109, 167]. Most the
solutions propose a view of the Cloud as a set of infinite, homogeneous
resources interconnected to the cluster with negligible network latencies.

2.3.6 How: Actions and Methodologies

Actions. Actions represent the tool-set that can be used to change the ap-
plication deployment. The set of actions used at runtime extends those
adopted during the initial application deployment (presented in Section 2.2),
namely graph transformation, operator reuse, operator placement, and op-
erator co-location. Furthermore, at runtime, several research efforts use
the following additional actions: scaling the operator replication degree
(elasticity), adaptation of fault-tolerance mechanisms, dynamic batch siz-
ing when transferring data, load balancing, and load shedding.

Graph transformations [GT] are only considered in Enorm by Madsen et
al. [136, 139]. Enorm improves the runtime adaptation of window-based
stateful operators by exploiting instant and parallel track migrations. To
enable these enhanced techniques, at compile time, Enorm exploits the ap-
plication semantics and replaces the stateful operators with a combination
of stateless components and, if needed, lightweight stateful components.

Operator reuse [RS] (or redundancy elimination) avoids redundant com-
putations by reusing already deployed operators [95, 103, 168]; this opti-
mization can be applied when multiple applications use a predefined set of
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operators rather than UDFs. At runtime, if the current deployment cannot
satisfy the application requirements, a new instance of the operator can be
deployed on a new computing node. On the other hand, if many operator
instances lead to resource wastage, their number can be reduced, increas-
ing reuse by multiple applications. For example, Kalyvianaki et al. [103]
propose a query planner for CEP applications that allocates operators with
reuse. The planner relies on an optimization problem, tuned to maximize
the number of satisfied queries while minimizing resource utilization.

The operator placement [OP] is by large the most common action ex-
ploited by the existing solutions (especially for cluster environments, e.g., [9,
108, 138, 158, 171]). Changing the operator placement at runtime allows to
better exploit the available resources, e.g., by balancing load among com-
puting nodes or by moving operators to other nodes in order to consolidate
resources or avoid their overload. The operator migration is the mecha-
nism that allows to change the operator placement at runtime. Relocating a
stateless operator requires only to start a new operator instance on the new
location. Conversely, when a stateful operator should be relocated, the DSP
system should also efficiently migrate the operator internal state. Perform-
ing these migration operations may introduce adaptation costs that can be
expressed, e.g., in terms of application downtime [47, 48, 79, 136, 138, 139].
We further discuss about stateful operations later in this section. Similarly
to the initial deployment, several approaches solve the operator co-location
[CL] problem so to minimize the amount of data exchanged using the net-
work [9, 25, 34, 127, 133, 136, 139, 138, 200]. At runtime, the operators
forming a co-location group can be changed in order to keep satisfying the
deployment goals. Therefore, some approaches try to make groups (sta-
tistically) more resilient to execution condition variations, i.e., they aim to
reduce the number of member reassignments to groups over time [34].

The operator scaling [OS] allows to increase or reduce the amount of com-
puting resources to execute an operator; we can distinguish two main cat-
egories: horizontal and vertical scaling. The most popular approach relies
on horizontal scaling, which changes the number of operator replicas at
runtime, thus enabling to increase or reduce the amount of data that can be
processed in parallel on distributed nodes. Specifically, a scale out opera-
tion increases the number of operator replicas, whereas a scale in operation
reduces the number of replicas. When the application receives increasing
workloads, a higher number of operator replicas can exploit computing re-
sources available on different nodes — thus increasing the amoung of data
processed in parallel (e.g., [48, 61, 65, 71, 83, 179, 219]). Although a high
parallelism can appear to be always preferable, we observe that it may in-
troduce a management overhead, e.g., to preserve tuple ordering [65], and
result in higher execution cost, e.g., [88, 132, 145]. Vertical scaling keeps
the number of operator replicas constant, but adds resources to or removes
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resources from the operator (scale up and scale down actions, respectively).
Performing vertical scaling operations requires to control the amount of
resources assigned to each operator; e.g., this can be done using threads,
cgroups8, or other virtualization techniques. To the best of our knowl-
edge, only few works explore vertical scaling operations [140, 179, 210];
they leverage on a thread pool that can be scaled up/down at runtime.

The decisions about placing the operators of a DSP application and de-
termining their replication degree can be either taken as independent and
orthogonal decisions or can be jointly considered. Most works in literature
consider DSP operator placement and replication as independent and or-
thogonal decisions, where the placement is first carried out without deter-
mining the optimal number of replicas for each operator. Then, in response
to some performance deterioration, the operators to be replicated and their
new replication degree are identified (e.g., [78, 179]). This two-stage ap-
proach requires to reschedule the DSP application in order to enact the
new application configuration (thus possibly introducing downtime). To
the best of our knowledge, no work considers a joint optimization of op-
erator replication and placement (i.e., in a single stage). Nevertheless, an
interesting solution has been proposed by Madsen et al. [138]; in the same
optimization round, their approach first fixes co-location groups, and then
determines replication and load balancing among these co-location groups.

Another action is the on-line adaptation of fault-tolerance mechanisms
[FTM]. Two main mechanisms have been adopted so far: active replication
and upstream backup. With active replication9, the DSP system deploys
two (or more) identical instances of the same operator on different comput-
ing nodes, which process the same input in parallel and generate the same
results. In case of failure, the additional replica ensures an immediate take
over of the processing. Active replication can be expensive, because it re-
quires multiple resources to perform the same computation. Liu et al. [129]
present mechanisms to preserve the operator state in the case of failures for
Apache Storm; these mechanisms implement an active replication scheme.
After a failure, to restore the number of active replicas with a consistent op-
erator state, the authors propose an asynchronous recovery protocol, which
allows to reconstruct the replica state in parallel and in background. With
the idea that perfect fault tolerance is not always required (by most applica-
tions) while it is more important to effectively manage temporary load vari-
ations, Bellavita et al. [18] present a method that sacrifices fault tolerance
(through active replication) for increased capacity during load spikes. With

8https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
9We observe that the terms replication and replica are ambiguously used in literature.

They can refer to data parallelism, when each operator instance processes a subset of the
incoming data, but they can also refer to replication for fault tolerance, when multiple iden-
tical instances of the same operator process the same data and produce the same results.
Throughout this thesis, we use “replication” and “replica” meaning data parallelism.

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
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upstream backup, the DSP system periodically creates a checkpoint of the
current operator state. In case of failure, the checkpoint is used to restore
the operator and resume computation (spending a time interval known as
recovery time). Heinze et al. [82] consider a replication scheme that com-
bines active replication and upstream backup, with a twofold objective: to
minimize the number of violations of a user-defined recovery time thresh-
old and reduce resource utilization with respect to active replication. Cas-
tro Fernandez et al. [31] also use an upstream backup approach; their solu-
tion supports the explicit state management of stateful operators, allowing
the DSP system to checkpoint, backup, restore, and partition it as needed.
ChronoStream, by Wu et al. [210], introduces a distributed checkpoints pro-
tocol that works with reduced size slices (i.e., checkpoint segments), which
allow to perform data recovery, as well as stateful migrations, in parallel.

The remaining actions (i.e., dynamic batch sizing, load balancing, load
shedding) deal with the efficient management of data, so to reduce the com-
munication overhead, change data distribution, and discard data in case of
overload.

Dynamic batch sizing [DBS] allows to reduce the communication over-
head by sending multiple tuples as a single batch. The approaches that
investigate dynamic batch sizing deal with changing the window size at
runtime, so to maximize the application throughput [75, 133, 200, 223]. As
observed by Zhang et al. [223], determining the batch size needs to address
the following principle: the processing time of a batch increases with the
batch size, whereas the communication overhead decreases with the batch
size. The solution by Zhang et al. [223] finds a trade off between batch size
and operator replication so to optimize the application response time. Sim-
ilarly, JetStream [200] achieves high throughput using adaptive streams,
which dynamically change the batch size and the number of parallel com-
munication connections. Das et al. [44] investigate how to dynamically
adapt the batch size in micro-batched stream processing systems (e.g., in
Spark Streaming). Indeed, these systems require that the batch processing
time must not exceed the batch interval (i.e., each batch should be com-
pletely processed by the time next batch arrives). The same problem has
been also investigated in [204].

Load distribution [LD] actions enable to evenly distribute load among
multiple replicas of the same operator [60, 142, 150, 182], among heteroge-
neous resources [111], or among different computing environments [109].
When an operator is instantiated with multiple replicas, their upstream op-
erators need to accordingly route data towards the replicas. For stateless
operator, this routing can be accomplished in a round-robin fashion with-
out compromising the application semantics. Observe that more advanced
shuffle routing techniques also exist that dynamically adjust load distribu-
tion, with the aim to reduce the application response time (e.g., [169]). In
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case of stateful operators, only partitioned stateful operators are amenable
to data parallelism: each replica keeps a state on a sub-stream basis, where
each sub-stream is identified by a partitioning key. Importantly, for par-
titioned stateful operators, data of the same sub-stream must be handled
by the same operator replica; therefore, the routing cannot be performed
using a round-robin policy. To preserve the application integrity, usually a
consistent hash function on the partitioning key is used to route data to the
replica in charge of its sub-stream [181]. Dhalion [60] includes a policy that
evaluates the average number of packets waiting for processing, with the
aim to improve load distribution among multiple replicas of the same op-
erator. To this end, the policy updates a hash-based routing function. Nasir
et al. [150] propose partial key grouping, an elegant solution relying on two
hash functions where a key can be sent to two different replicas instead of
one. Although widely used in distributed systems, hash functions may not
distribute the workload evenly, due to the presence of heavy keys, i.e., keys
that appear with high frequency. Gedik [63] proposes to resolve the stateful
load balance problem with a small routing table. To preserve load balanc-
ing, this routing table is updated at runtime. A similar idea is also exploited
by Fang et al. [56]. They use a routing table of limited size, which only
maps highly frequent keys, together with a hash function, which is applied
to route all the other keys. To deal with short-term workload variations,
the routing table is updated at runtime. In some applications, we also need
to preserve data ordering also in face of parallelization [181]; therefore, the
application can experience aggregation costs which result from the effort
of combining results after a parallelized operator. Katsipoulakis et al. [105]
demonstrate the need to incorporate these aggregation costs in the parti-
tioning model, together with even load distribution. Differently, Mayer et
al. [142] propose to assign as many subsequent data windows as possible to
the same operator replica, until its operational latency reaches a threshold;
then, the next operator replicas (selected with a round robin strategy) is
considered. Considering the distribution among heterogeneous resources,
SABER [111] runs window-based streaming SQL queries on servers with
heterogeneous CPU and GPGPU processors. It assigns tasks to the het-
erogeneous processor that, based on past behavior, achieves the highest
throughput. To ensure ordering among batches processed by the different
processors, some coordinator operators are introduced. A combination of
a local cluster and the Cloud is considered by Kleiminger et al. [109], who
propose a solution to adaptively balance the DSP application workload be-
tween the two environments.

When the DSP system is overloaded and no new computing resource
can be acquired, load shedding [SH] helps to provide a best-effort service by
dropping a fraction of tuples from the input stream. Kalyvianaki et al. [102]
design a load shedder that randomly discard tuples so as to control the av-



64 Chapter 2. DSP Application Deployment

erage application response time in periods of resource overload. The same
research group also proposes, in [102], a load shedder that tries to fairly
preserve processing quality under overload conditions. The proposed so-
lution quantifies the perceived quality contribution of a tuple for each man-
aged application, so that, during overloading periods, the load shedder can
discard tuples by fairly degrading quality of all managed applications (i.e.,
without compromising the quality of only few applications).

State Management. Changing the operators deployment at runtime re-
quires to consider whether the operator is stateful, that is it maintains an
internal state to properly emit results. In such a case, when the deployment
changes, the operator internal state should be relocated (or redistributed)
accordingly. For example, while scaling or migrating stateless operators
can be achieved by just turning off/on or moving operator replicas, elastic-
ity of stateful operators requires state migration and repartitioning among
the replicas, because the system needs to preserve the consistency of the
operations [65]. State management in DSP systems is nicely surveyed by
To et al. [198].

Operator state migration is a challenging task, because it should be
application-transparent and with a minimal footprint (i.e., amount of mi-
grated state). The most common solutions are the pause-and-resume ap-
proach and the parallel track approach [78]. In the pause-and-resume ap-
proach, the current state is extracted from the old operator instance, which
is paused to ensure a semantically correct migration; then, the state is moved
to the new instance and the buffered tuples are rerouted and replayed
within the new instance. Its drawback is a peak in the application latency
during the migration. To identify the portion of state to migrate, Castro
Fernandez et al. [31] expose an API to let the user manually manage the
state, whereas Gedik et al. [65] automatically determine, on the basis of
a partitioning key, the optimal number of state partitions to be used and
to migrate. ChronoStream [210] natively supports stateful migrations and
uses a lightweight protocol that leverages on distributed checkpoints to
minimize the amount of state relocated during a migration. To improve the
efficiency of the pause-and-resume approach, some works [31, 137, 210] ex-
ploit the checkpoints that are already backed up for failure recovery. A
checkpoint allocation problem is defined by Madsen et al. [137] with the
goal to maximize the checkpoints reuse for migration.

To migrate in a more gradual fashion, in the parallel track approach,
the old and the new operator instances run concurrently until the state of
both is synchronized and the new instance can safely take over. While
this approach does not entail a latency peak, it requires enhanced mech-
anisms [31], e.g., to avoid incorrect results, which can increase the cost of
state migration. Furthermore, this approach is more suitable for window-
based operators (e.g., [139, 157]). This latter work also models the time cost
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of the two approaches for partitioned stateful operators.
To avoid the overhead of stateful migrations, some solutions rely on an

externalized state (e.g., [87, 88]). In this case, the operator state is stored in
a shared memory that is accessed by the operator replicas to perform the
state updates. Nevertheless, this approach is not viable in geo-distributed
environments.

Methodology. The methodology identifies the class of algorithms used
to plan how the deployment should be changed so to achieve the deploy-
ment goals. With respect to the initial deployment, here solutions rely
on a broader set of methodologies, that we classify in the following cat-
egories: mathematical programming, control theory, game theory, graph
theory, queuing theory, machine learning, and heuristics. The latter is fur-
ther specialized into classes of heuristics with similar properties, namely
greedy (e.g., first-fit, best-fit), local search, tabu search, genetic algorithm,
and threshold-based policies.

The mathematical programming [MP] approaches exploit tools from op-
erational research in order to compute the operator placement [95, 97, 103,
171, 209], to change the operator parallelism [132, 138], and to decide which
fault tolerance mechanisms should be adopted [18]. For example, Ishii and
Suzumura [97] recur to an ILP formulation to combine a local cluster with
a remote Cloud with the aim to reduce execution costs. Hummer et al. [95]
formalize the placement of CEP operators as a multi-objective optimization
problem that balances load distribution, minimizes inter-node traffic, and
maximizes operator reuse. To speedup the computation, they also propose
a heuristic based on a neighborhood search on the solution space. Simi-
larly, Kalyvianaki et al. [103] have developed a planner for CEP applica-
tions, modeled as an ILP problem, that also performs admission control; in
this case, the deployment objective is to maximize the number of admit-
ted applications. At runtime, it can re-allocate the applications whose re-
source consumption deviates from initial estimation; nevertheless, we ob-
serve that the reallocation is performed in a simple — and possibly not effi-
cient — manner, i.e., by removing and then re-adding the application to the
cluster of resources (which results in a new computation of its deployment).
An interesting solution has been proposed by Rizou et al. [171] for the op-
erator placement problem. They exploit the mathematical properties of the
network usage function (i.e., convexity) in order to find the global optimum
solution in a completely decentralized manner: if each operator iteratively
finds its local optimal placement, the optimal placement for the applica-
tion is achieved. As regards the runtime operator replication, Lohrmann et
al. [132] propose a strategy that aims to satisfy requirements on the applica-
tion response time while minimizing resource consumption. The proposed
approach first predicts operator response time relying on a queuing model
and then finds the replication degree relying on a gradient descent method
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with variable step size. Nevertheless, this solution manages only stateless
DSP applications. The state migration overhead is considered by Madsen
et al. [138], who formulate a MILP optimization problem to control load
balancing and horizontal scaling, with requirements on the maximum ad-
missible downtime for migrations. The optimization model works in com-
bination with a heuristic that computes co-location (so to reduce inter-node
traffic). This approach does not consider network delays among comput-
ing nodes. Bellavista et al. [18] present an optimization model that trades
fault tolerance for increased capacity during load spikes. To this end, it
can dynamically deactivate/activate redundant replicas of DSP operators
in order to claim/release resources and accommodate temporary load vari-
ations. In this setting, the optimization problem minimizes execution costs
while meeting fault-tolerance requirements. The main drawback of these
approaches, that rely on integer or non linear formulations, is scalability.
Indeed, as we have shown [29], the deployment problem is NP-hard and re-
solving the exact formulation may require prohibitive time when the prob-
lem size grows.

Few research works rely on control theory [CTR] to adjust the operator
placement [108] or the operator replication degree [47, 48]. In this case,
the policy usually identifies three main entities: disturbance, decision vari-
ables, system configuration. According to the existing solutions, the distur-
bances represent the events that cannot be controlled; nevertheless, their
future value can be predicted (at least in the short term), e.g., incoming data
rate, load distribution, and processing time. The decision variables identify
the placement or replication of each operator. By combining the decision
variables, alternative configurations of the application deployment can be
obtained, which result in different performances, e.g., in terms of applica-
tion latency or throughput. Das et al. [44] rely on a control algorithm for
dynamically adapting the batch size in micro-batched stream processing
systems. The control algorithm aims to maintain queuing delay low in face
of changing working conditions by reducing the batch size; in such a way,
the system improves its stable at high data rate. In micro-batched process-
ing systems, the stability condition requires that the batch processing time
must not exceed the batch interval. Khorlin and Chandy [108] propose a
decentralized policy that exploits concept of distributed feedback control
to adapt the operator placement at runtime, with the aim to maximize an
utility function (whose definition is generic). Differently, De Matteis and
Mencagli [47, 48] propose a proactive strategy for realizing elastic DSP ap-
plications. Their control-theoretic method takes into account the system
behavior over a limited future time horizon in order to choose the recon-
figurations. A similar approach is also proposed by Hoseiny Farahabady
et al. [90], who devised a resource allocator for DSP systems. Their solu-
tion is based on model predictive controller (from control theory) that aims
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to achieve a good utilization of computing resources and a reduced aver-
age response times, while satisfying the QoS application requirements. Re-
cently, Mencagli et al. [146] have proposed a hierarchical approach for par-
allelizing windowed operators so as to efficiently handle changing work-
loads. The lower level policy handles load burstiness by dynamically ad-
justing load balancing across the available CPU cores. It relies on a control
theoretic approach that operates on a short time scale. The higher level
policy handles slow workload variabilities by changing the parallelism de-
gree of the windowed operator. This policy uses the Fuzzy Logic Control
paradigm [120], which allows to design model-free controllers suitable for
systems with complex dynamics. The critical point of the control-theoretic
approaches is that, to be efficiently adopted, they require a good model
of the system, which nevertheless can be difficult to be formulated (e.g.,
when the decision variables inter-play in a complex manner). The liter-
ature review by Shevtsov et al. [184] shows that, although research on
control-theoretical software adaptation is still in a preliminary stage, in re-
cent years, an ever increasing number of solutions apply control theory to
realize self-adaptive software systems.

Mencagli [145] proposes a game-theoretic approach [GAM] for changing
the operator parallelism degree, when multiple applications work in a non
cooperative environment (i.e., they compete for resources). As such, dis-
tributed agents perform local control strategy so to pursuit their own in-
terests, but have to wisely interact so to maximize the social welfare. The
agreement among agents follows the concept of Nash equilibrium, which
aims to fairly maximize the utility function of every agent. Game theo-
retic approaches represent a nice solution for modeling settings with non
cooperative applications that ask for resources. Nevertheless, properly de-
signing a distributed policy that exploits results from game theory and con-
verges in a reasonable way is not an easy task and, so far, this methodology
is largely unexplored.

The approaches based on graph theory [GRA] are usually adopted to
determine the operators placement. Specifically, they partition the applica-
tion topology in groups of operators to be allocated on different computing
nodes, with the aim of reducing the inter-node traffic while balancing load
among nodes [25, 100]. An example of this solution has been proposed
by Jiang et al. [100]; it periodically recomputes the topology partitions and
reassigns operators if needed. Nonetheless, it considers only stateless op-
erators. Differently, Caneill et al. [25] improve stream locality for stateful
DSP applications: their solution uncovers correlations between the keys
used in successive routing operations and assigns these operators to the
same node (thus reducing inter-node traffic). As observed in Section 2.2.6,
this methodology can help in determining the operator placement, but it
cannot be easily employed when other actions should be determined (e.g.,
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replication).
Queuing theory [QT] is often used to predict the response time of an op-

erator with respect to its replication degree [61, 132] or its placement [108].
The key idea is to model the operator as a queuing system with inter-arrival
times and service times having general statistical distributions (this as-
sumption might require to approximate the system behavior). The mostly
used queuing models are M/M/1 [195], M/M/k [61], and G/G/1 [48]. For
example, Fu et al. [61] model the relation between the application response
time and the provisioned resources (and, in turn, the operator replication
degree) as an M/M/k queuing system, relying on the theory of Jackson
open queuing networks. After having defined the operators replication de-
gree with the queuing model, the policy assigns processors to replicas so to
minimize the application response time. Lohrmann et al. [132] use a mathe-
matical programming approach to elastically scale the operator replication
degree, which relies on a queuing model to predict the operator response
time (with respect to its parallelism degree). Moreover, Tesauro et al. [195],
who investigate the resource allocation problem, have proposed a solution
that combines on-line reinforcement learning and queuing models in a hy-
brid approach. While the learner exploits experience to improve the adap-
tation policy, the queuing model is used to determine the initial allocation
as well as to drive exploration by estimating the system performance. In
general, queuing theory is well suited to determine the replication degree
of DSP operators or predict operator performance. Nevertheless, it often
requires to approximate the system behavior so to apply models from the
established theory (e.g., in terms of incoming workload distribution, serv-
ing rate). Therefore, when the system is very complex or not stationary,
also the queuing theory becomes complex, discouraging its adoption.

OrientStream, by Wang et al. [205, 206], is a framework for dynamic re-
source allocation that relies on machine learning [ML]. Firstly, it uses differ-
ent workloads as training set to predict the operator demand for resources;
then it determines the best application deployment while taking into ac-
count the application requirements. In this work, the best deployment con-
figuration is the one that minimizes CPU and memory utilization while
meeting requirements on the application throughput and response time.
Although conceptually easy to design, machine learning techniques suffer
from two main drawbacks. First, they require reasonably big training sets.
Second, they cannot easily and rapidly address unforeseen configurations.

Reinforcement Learning [RL] is a special method belonging to the branch
of machine learning. It refers to a collection of trial-and-error methods by
which an agent can learn to make good decisions through a sequence of
interactions with a system or environment [80, 195]. In the context investi-
gated by this thesis, reinforcement learning techniques deal with the elastic
replication of DSP operators. These techniques learn from experience the
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adaptation policy, i.e., they learn the best scaling action to take with respect
to the system state through a trial-and-error process. The system state can
consider the amount of incoming workload, the current application de-
ployment, its performance, or a combination thereof. After executing an
action, the policy gets a response or reward from the system (e.g. perfor-
mance improvement), which indicates how good that action was. One of
the challenges that arise in reinforcement learning is the trade-off between
exploration and exploitation. To maximize the obtained reward, a reinforce-
ment learning agent must prefer actions that it has tried in the past and
found to be effective in producing reward (exploitation). However, in order
to discover such actions, it has to try actions that it has not selected before
(exploration). The dilemma is that neither exploration nor exploitation can
be pursued exclusively without failing at the task. The agent must try a va-
riety of actions and progressively favor those that appear to be best [193].
To the best of our knowledge, only a couple of works [35, 80] have so far
exploited reinforcement learning techniques to drive adaptation decisions
in DSP systems. Heinze et al. [80] propose a simple reinforcement learning
approach that learns from experience when to acquire and release comput-
ing nodes so to efficiently process the incoming workload. It populates a
lookup table that associates the node utilization with the best action to per-
form (i.e., scale in, scale out, or do nothing). The learner objective is to keep
the system utilization within a specific range. Similarly, Cheng et al. [35]
propose an adaptive scheduler for Spark Streaming, which dynamically
changes the execution parallelism of concurrent applications (i.e., jobs). A
larger number of works has exploited reinforcement learning techniques
to drive elasticity in the Cloud computing context, as surveyed in [135].
Tesauro et al. [195] observe that reinforcement learning approaches can suf-
fer from poor scalability in systems with a large state space, because the
lookup table has to store a separate value for every possible state-action
pair. Moreover, the performance obtained during on-line training may
be unacceptably poor, due to the absence of domain knowledge or good
heuristics. To overcome these issues, they combine reinforcement learning
with a model of the system, defined using queuing theory, which computes
the initial deployment decisions and drives the exploration actions. Rein-
forcement learning exposes a very interesting approach that is capable of
learning the best deployment actions, even when a precise model of the
system is not known (this property is very powerful). The main limitation
of this solution is the slow convergence time that is required to determine
acceptabily good decision policies [135].

A couple of solutions rely on genetic algorithms [GA] to compute the op-
erator placement and to switch the operators’ logic at runtime. Yang et
al. [215] consider mobile DSP applications and investigate the problem of
placing a subset of operators to the Cloud in a such a way that the resulting
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application throughput is maximized. In this solution, chromosomes rep-
resent the different ways of partitioning the application, whereas the result-
ing application throughput is the fitness function. Interestingly, Kumbhare
et al. [116] propose to define multiple alternative implementations for each
operator, so that each implementation has different performance character-
istics, e.g., in terms of resource requirements and result quality. At runtime,
only a single implementation can be up and running. In this solution, chro-
mosomes represent the deployment configurations in terms of operator im-
plementation, type and number of active virtual machines, and mapping of
operators to these virtual machines. Here, the fitness function depends on
whether the throughput requirement is violated and on the number of de-
ployment changes. We discussed in Section 2.2.6 about the critical points
of this approach and [116] nicely shows a suitable use case for it. We also
observe that this methodology cannot easily be used to decide about other
deployment actions (e.g., replication).

Most of the existing approaches are greedy [GR] heuristics that com-
pute the operator placement [9, 73, 79, 94, 100, 127, 163, 213] or distribute
load among replicas or resources [142]. For example, Aniello et al. [9] sort
pairs of communicating operators in decreasing order of exchanged data
rate and then assign each pair on the set of computing resources relying
on a greedy first-fit heuristic. Xu et al. [213] build on [9] by considering a
single operator at a time. Heinze et al. [79] consider the placement prob-
lem as a bin-packing problem, therefore they rely on a greedy first-fit ap-
proach whose goal is to minimize resource utilization. Jiang et al. [100]
assign groups of operators (i.e., topology partitions) on computing nodes
with the aim to reduce the resulting inter-node traffic. Huang et al. [94]
first model the relationship between the operator execution time and the
amount of residual computing capacity on a node, and then propose a best-
fit heuristic that aims at minimizing the network usage. At runtime, these
approaches recompute the placement from scratch and, if a new deploy-
ment is determined, it is enacted. A greedy approach is also followed in
S-Storm [163], which periodically moves groups of operators from over-
loaded to underloaded nodes, with the aim to balance load among cluster
resources. As regards load distribution, Mayer et al. [142] observe that pro-
cessing overlapping windows on multiple operator replicas increases com-
putation and communication overhead. Therefore, they propose to greed-
ily assign as many subsequent windows as possible to the same operator
instance until the operational latency reaches a critical value. Afterwards,
windows are routed to the next operator replica. Stela [214] supports scal-
ing operations when users request them. When the user requires a scale-
out with a given number of new machines, Stela identifies and replicas
the bottleneck operator that leads to the highest throughput improvement.
Similarly, when a scale-in operation is requested, Stela removes the ma-
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chine that hosts operator replicas which contribute less to the application
throughput (replicas are then re-assigned to the remaining machines in a
round robin fashion).

A few solutions rely on a local search [LS] on a subset of possible de-
ployment configurations [50, 91, 224]. For example, after having defined an
initial placement that minimizes communication cost between data sources
and consumers, Zhou et al. [224] focus on preserving load-balancing at run-
time. The latter is performed using a receiver-initiated strategy: periodi-
cally, a node greedily identifies the neighbor node with highest load and,
if needed, generates a workload distribution request so to balance load.
Interestingly, JetStream [200] combines dynamic batch sizing with another
optimization practice, which exploits multiple and parallel communication
links to transfer data among data centers. Since different combinations
of window size and parallel communication links yield different perfor-
mance, the proposed policy greedily explores the solution space by fixing
a dimension and exploring the other, until no improvement can be found.

Many solutions exploit best-effort threshold-based [TB] policies to change
the operator replication degree (e.g., [65, 83, 88, 109]) or to recompute the
operator placement at runtime (e.g., [167, 191]). The main idea is to in-
crease (or reduce) the operator parallelism degree or to change the op-
erator placement as soon as a QoS metric is above (or below) a critical
value. Several works use as QoS metric the utilization of either the system
nodes [115, 95, 167] or the operator replicas [31, 70, 71, 88, 123, 131, 202].
Gedik et al. [65] use the throughput and network congestion. Hidalgo et
al. [83] rely on a load metric, defined as the ratio between the number of
incoming events to all the operator replicas and the amount of events the
replicas can theoretically process. The policy by Heinze et al. [78] performs
scaling operations only if they result in a latency spike below a predefined
threshold. In [82], the same authors have designed a policy that combines
two fault tolerance mechanisms: the policy switches from upstream backup
to active replication so to not violate a user-defined recovery time thresh-
old; this approach aims to reduce resource utilization with respect to ac-
tive replication. Kleiminger et al. [109] activate Cloud computing resources
and maximize the application throughput as soon as the incoming queue
length of an operator reaches a critical value. The same metric is used by
Li et al. [123] to scale out an operator. Hochreiner et al. [88] combine queue
length and resource utilization so to elastically allocate resources to op-
erators. We also observe that different approaches can be identified for
the threshold definition. A single statically-defined threshold is used, e.g.,
in [71] to limit load unbalance among computing nodes. Multiple statically-
defined thresholds are used, e.g., in [88] to customize the behavior of each
individual DSP operator. A dynamically set threshold improves the system
adaptivity, and Heinze et al. [80] have shown how a reinforcement learn-
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ing approach can be used to dynamically adapt the thresholds. Threshold-
based policies are very popular for reassigning and scaling in/out DSP op-
erators at runtime. They can be easily implemented and very often they
work sufficiently well. Most of the Cloud service providers, e.g., Ama-
zon, Google, use this approach for driving elasticity. However, this is a
best-effort approach that provides no guarantees about the reconfiguration
optimality. Furthermore, it moves complexity from determining the recon-
figuration strategy to the selection of critical values that act as thresholds.

With heuristic [H], we cover all the other approaches that adopt custom
solutions to solve the deployment adaptation problem at runtime. Sev-
eral solutions adapt the operator placement [138, 136, 139, 158, 168, 170,
172, 200, 222], elastically scale the operator replication degree [179, 60], and
deal with the incoming load (performing load distribution [60, 111, 115,
182, 225], dynamic batch sizing [75, 133, 200, 223], or load shedding [102]).
For example, as regards the operator placement, Pietzuch et al. [158] repre-
sent the application as an equivalent system of springs: operators are mass-
less bodies tied together by springs that represent the exchanged streams.
The stream data rate and network latency determine the stretching of the
springs. The network usage is indirectly minimized by finding the as-
signment that minimizes the overall elastic energy of this equivalent sys-
tem. Zhang et al. [222] propose a scheduling policy for Apache Storm that
minimizes inter-node traffic and maximizes load balancing among worker
nodes. It proceeds in two steps: first, it uses the application topology and
the exchanged inter-node traffic to assign the operators instances in slots,
so to minimize the inter-slot traffic; then, it assigns slots to worker nodes,
starting from the lowest loaded ones. Pundir et al. [162] study elasticity
from another perspective: they investigate which operators should be mi-
grated when the user requests a scaling operation. The basic idea is to
organize computing resources on a peer-ring and allocate operators us-
ing a hash-based partitioning strategy; then, when resources are scaled
in/out, the policy determines which server within the peer-ring should
be removed/added so mitigate load imbalance. Enorm [136, 139] extends
Storm with the support for window management. Therefore, Enorm can
perform adaptations using an instant migration technique, which does not
involve state relocation, or a parallel track migration technique. Schnei-
der et al. [179] are among the first to propose an approach for elastically
scaling the operator replication degree. Their approach periodically in-
creases the number of threads associated to an operator, based on runtime
performance: specifically, the policy increases parallelism as long as there
are significant performance improvement. Liu et al. [128] propose a pro-
filing approach that benchmarks the application performance on a given
computing infrastructure; this solution allows to determine the operator
replication and placement while avoiding performance bottlenecks and re-
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source wastage. As regards load distribution, SABER [111] employs an
adaptive lookahead scheduling strategy: it assigns each operator instance
to the heterogeneous processor (either CPU or GPGPU) that, based on past
behavior, achieves the highest throughput for that task. Differently, Schnei-
der et al. [182] detect network congestion by analyzing the blocking rate of
TCP connections. Therefore, they propose a dynamic load balance among
computing nodes that minimizes the predicted blocking rate; considering
each TCP connection at a time, it does not require knowledge on the global
system state. The dynamic batch sizing allows to reduce the overhead
of transmission, but might introduce undesirable delay due to the time
needed to populate the batch. Focusing on geo-distributed DSP applica-
tions, Heintz et al. [75] model the problem of determining the batch size
as a caching problem where the cache size varies over time. Then, the au-
thors present different strategies for flushing the caches (i.e., transmitting
the batch), ranging from eager to lazy solutions.

When system is overloaded and no new computing resources can be ac-
quired (usually in a cluster environment), load shedding [SH] helps to pro-
vide a best-effort service by reducing the resource requirements of appli-
cation by dropping a fraction of tuples from the upcoming data streams.
Kalyvianaki et al. [102] propose a distributed load shedder for federated
DSP systems, that aims to achieve a globally fair processing quality un-
der overload conditions. When system is overloaded, it discards tuples so
to balance the quality degradation per application, which depends on the
amount of dropped tuples.

2.3.7 Wrap-up

We now summarize the most popular design choices used to adapt the
application deployment at runtime.

Similarly to the approaches for the initial deployment, also in this case
most solutions consist of a single centralized authority, which considers
applications as single and independent entities. Nevertheless, we observe
that, at runtime, a greater number of proposals deals with the concurrent
deployment of multiple applications. As regards the deployment goals,
many solutions optimize a single-objective utility function and/or aim to
satisfy some QoS requirements at runtime. Indeed, constraint satisfaction
is very important, because DSP applications are often exposed to changing
working conditions. So far, the proposed approaches evenly consider user-
oriented metrics (e.g., response time) and system-oriented metrics (e.g.,
inter-node traffic, resource utilization, load balance) while defining the de-
ployment goals. Interestingly, since reconfiguring the application deploy-
ment introduces penalties in performance, several solutions explicitly ac-
count for adaptation costs, with the aim of controlling or minimizing them.
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Along the time dimension, the most popular approach is that the DSP sys-
tem executes periodically the adaptation policy which is reactive: it recon-
figures the application deployment on the basis of the current system sta-
tus. As regards the computing infrastructure, many solutions have been
designed to work within a cluster, although more recent research efforts ex-
plore and exploit the interesting features of Cloud computing (e.g., elastic-
ity). Either way, resources are often considered to be locally distributed; we
also observe that there is not a strong preference on how to model resource
heterogeneity: an even number of solution uses homogeneous and hetero-
geneous resources. The adaptation policy mainly plays with two differ-
ent types of reconfigurations: the elastic replication of operators and their
placement adaptation. As discussed, these are often considered as two or-
thogonal problems that are solved using a two-stages approach. Best-effort
threshold-based policies are usually adopted to change the operator repli-
cation degree: when the utilization of system nodes or operator replicas
exceeds predefined a critical value, the number of replicas is changed ac-
cordingly. The relocation of operator (or of their replicas) is usually per-
formed using a greedy heuristic that, similarly to the initial deployment,
models this task as the resolution of a bin-packing problem. This approach
usually works sufficiently well also because most solutions work in a lo-
cally distributed environment.

2.3.8 Thesis Contribution

The analysis included in this section has shown that there are several inter-
esting issues regarding the runtime adaptations of DSP applications. Some
of them have been widely investigated, such as, e.g., performing adapta-
tion in locally distributed infrastructure: many solutions propose to scale
DSP operators using a threshold-based policy or to place DSP operators us-
ing a greedy first-fit heuristic that neglects network latencies. Nevertheless,
several other branches of the taxonomy in Figure 2.3 are still largely unex-
plored. For example, the jointly optimization of runtime operator place-
ment and replication should be further investigated, so to efficiently op-
erate in distributed environments. Similarly, we deem adaptation costs
to be very important and approaches that avoid greedy reconfigurations
(which can degrade the application performance) should be further inves-
tigated. This need is especially true for geo-distributed settings, where
relocating parts of DSP application can introduce significant downtime.
Another interesting direction is represented by the integration of differ-
ent policies. So far, few solutions combine reactive and proactive adapta-
tion policies, or exploit the presence of heterogeneous computing resources
(e.g., CPU/GPGPU). These solutions might help to understand and ad-
dress the key challenges of the emerging near-edge environment, which
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is characterized by heterogeneity and dynamism.
With respect to runtime adaptation of DSP applications, in this thesis

we provide the following two main contributions. First, we present Elastic
DSP Replication and Placement (for short, EDRP), a unified general for-
mulation of the elastic operator replication and placement problem (Chap-
ter 8). Second, we present a preliminary approach for managing elastic DSP
applications relying on a hierarchical distributed control (Chapter 9).

By taking into account the heterogeneity of infrastructural resources
and the QoS application requirements, EDRP determines the number of
replicas for each operator and where to deploy them on the geo-distributed
computing infrastructure. Moreover, EDRP models the reconfiguration
costs that arise when a migration or a scaling operation should be per-
formed, so to determine whether the application can be more conveniently
redeployed. Differently from most works in literature [95, 103, 132, 138,
145, 219], EDRP can jointly determine the operator replication and place-
ment, while optimizing the QoS attributes of the DSP application. Unlike
the solution by Madsen et al. [138], which is the most closely related to
ours, we explicitly model the impact of network latencies on the applica-
tion performance and on reconfigurations. With respect to the taxonomy of
Figure 2.3, EDRP populates the six dimensions as follows:

• Why: optimization of a multi-objective function, which takes into ac-
count the application response time, execution cost, and adaptation
costs (i.e., user-oriented QoS metrics).

• What: control of a single application at a time, with granularity of a
single operator.

• Who: being interested in computing the optimal deployment solution,
which requires a global view of the system, we rely on a single central-
ized authority.

• When: EDRP computes the initial application deployment and then pe-
riodically evaluates it, so to reactively adapt to changes of the working
environment.

• Where: our contributions model a cluster of heterogeneous computing
and network resources, whose distribution is geographic.

• How: EDRP formulates the operator replication and replica placement
as an ILP problem (i.e., it uses a mathematical programming approach
to jointly optimize operator replication and placement).

By analyzing the outcomes of our contributions and of most existing
works, we easily realize that scalability represents a key issue for deter-
mining the application deployment and, most importantly, for computing
its runtime adaptation. Scalability can be achieved by means of efficient
adaptation heuristics, but also by properly organizing the control authori-
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ties that monitor and oversee the application execution. Also in this case,
by looking at the existing literature, we can see that there are several largely
uncovered regions of the taxonomy. Specifically, there is only a single hier-
archical distributed control solution. However, this architecture is worthy
of further investigations, because it might overcome the limitation of fully
centralized approaches (e.g., scalability — as we will show in Section 4.6)
and fully decentralized approaches (e.g., lack of coordination — as we will
show in Section 3.5).

In Chapter 9, we present our hierarchical distributed approach for con-
trolling elastic DSP applications. The proposed solution, named Elastic and
Distributed DSP Framework (for short, EDF), organizes the control leverag-
ing on hierarchical decentralized MAPE feedback loops. Specifically, EDF
includes a high-level centralized MAPE-based Application Manager, which
coordinates the runtime adaptation of subordinated MAPE-based Opera-
tors Managers, which, in turn, locally control the adaptation of single DSP
operators. Differently from the existing solutions (e.g., [88, 158, 171]), we
add a centralized coordinator to steer the adaptation actions taken by de-
centralized agents. The latter can perform scaling operations and state-
ful migrations, whereas the centralized Application Manager identifies the
most effective reconfigurations so to control their number and the result-
ing adaptation costs. With respect to the taxonomy, EDF populates the six
dimensions as follows:

• Why: minimization of adaptation costs, while meeting requirements on
application response time.

• What: control of a single application at a time, with granularity of a
single operator.

• Who: hierarchical decentralized control authorities.

• When: EDF periodically evaluates the application deployment and re-
actively adapts it, if needed.

• Where: our contributions model a Fog-based environment, with hetero-
geneous and distributed computing resources.

• How: EDF uses a simple heuristics to control adaptation: the Opera-
tor Manager migrates and scales operators using a threshold-based pol-
icy; the Application Manager grants reconfiguration permissions using
a token-based policy.

2.4 DSP Frameworks

A number of DSP frameworks has been developed in academic, open source,
and industry communities, thus showing that, albeit challenging, DSP is of
key importance for data intensive applications [45, 77].
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De Matteis [45] and Cugola and Margara [41] nicely describe the histor-
ical evolution of stream processing frameworks. Data Stream Management
Systems (DSMSs) were born as an evolution of traditional Database Man-
agement Systems (DBMSs). Indeed, while DBMSs are built around a per-
sistent storage and optimize user-triggered queries, DSMSs natively work
with transient data and can execute continuous queries that provide up-
dated answers as soon as new data arrives. Moreover, DSMSs offer an SQL-
like declarative language to programmers as to define continuous queries.
Heinze et al. [77] classify these framework as the first generation of stream
processing systems, because they are built as stand-alone prototypes or as
extensions of existing database engines. Specifically, they offer a very lim-
ited support for operator types and functionalities (e.g., often UDFs are
not supported). Among the frameworks belonging to this category, we can
find TelegraphCQ [33], STREAM [10], Gigascope [39], Aurora [1], and Bore-
alis [2]. For example, Aurora adopts a visual programming language (i.e.,
Stream Query Language — also known as SQuAl), which defines opera-
tors able of processing single-tuples or windows of tuples at once; these
operators create an extended relational algebra. Borealis [2] has completely
redesigned Aurora so as to obtain a commercial stream processing product.
Differently from Aurora, Borealis works on distributed resources and pro-
vides advanced capabilities, such as dynamic query rewriting, load shed-
ding, and the runtime deployment adaption.

A second category of solutions is known as Complex Event Processing
(CEP) systems. These systems emerged as an evolution of Publish/Sub-
scribe systems [41]. Here, data items are notification of events, which an-
nounce a system status change. CEP systems allow to realize applica-
tions that combine primitive events coming from (possibly) multiple data
sources, with the aim to detect complex patterns (in time and space). As
soon as a pattern is detected, the system notifies the interested parties, who
previously subscribed to the system. According to Heinze et al. [77], we can
find CEP systems belonging to the second and third generation of stream
processing engines. Second generation systems include advanced features
such as fault tolerance [2], adaptive query processing [173], and enhanced
operator expressiveness [16]. Third generation systems are designed to
be elastic and highly scalable, exploiting Cloud computing resources (e.g.,
SEEP [147]). An emerging trend also explores the utilization of CEP sys-
tems in mobile environments, where data sources and consumers, such as
IoT devices, vehicles, and citizens, interact with the system while moving
around (e.g., [89, 153, 189]). Among the great number of existing CEP sys-
tems, we just name a few of them: T-Rex [40], Oracle CEP10, and Esper11.

10http://www.oracle.com/technetwork/middleware/complex-event-processing/
overview/index.html

11http://www.espertech.com/esper/

http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/index.html
http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/index.html
http://www.espertech.com/esper/
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CEP systems are incredibly good in detecting patterns; nevertheless, they
cannot modify incoming data and do not fully support complex data pro-
cessing (e.g., they cannot easily run machine learning tasks).

Data Stream Processing systems are often employed to overcome the above
limitations. Specifically, DSP systems work with generic data (i.e., not only
with events) and support the definition of complex application logic. As
such, they often represent a more flexible solution with respect to CEP sys-
tems. A great variety of DSP frameworks has been proposed so far; how-
ever, aside the specific functionalities, the most popular DSP frameworks
(e.g., Storm, Spark Streaming, Flink, and Heron) use directed graphs to
model DSP applications. They provide an abstraction layer where to exe-
cute DSP applications and allow their users to focus solely on the applica-
tion logic, being the tasks related to the application placement, distribution,
and execution managed by the frameworks themselves. Heinze et al. [77]
classify most of DSP systems in the third generation of stream processing
engines. In most cases these frameworks require their users to manually
tune the number of replica per operator. Since the user might over-/under-
estimate the expected load, this approach can lead to a sub-optimal provi-
sioning of resources. Furthermore, these frameworks are equipped with
elasticity mechanisms in an embryonic stage; indeed, they dynamically
scale the application in a disruptive manner, because they enact reconfigu-
rations by killing and restarting the whole application, thus introducing a
significant downtime.

Apache Storm [199] is one of the most popular open-source DSP frame-
work. Several research efforts have used Storm to either evaluate new oper-
ator placement algorithms in a real environment or to propose some archi-
tectural improvements (e.g., [9, 54, 72, 78, 123, 156, 199, 213]). Leveraging
on Trident12, Storm supports stateful applications. Differently from most
solution, Trident does not manage an operator-related state; Trident can
persist a state which is obtained by applying a sequence of Trident trans-
formations on the input data. However, this approach requires to play the
stream as a sequence of micro-batches, processed in a commit-like fashion,
thus causing a constant latency overhead.

It is worth observing that may research prototypes extend Storm so to
implement placement algorithms (e.g., [9, 25, 52, 61, 61, 73, 156, 186, 213,
222]) or introduce architectural changes and new features (e.g., [123, 137,
136, 139, 166, 175, 194, 214, 216]). For example, Yang ang Ma [216] pro-
pose different strategies for relocating stateless executors, achieving a re-
duction of the application downtime. Qin and Eichelberger [166] intro-
duce a runtime switching protocol that changes the operator logic with a
reduced adaptation cost (to this end, they exploit a parallel track strategy

12http://storm.apache.org/releases/current/Trident-API-Overview.html

http://storm.apache.org/releases/current/Trident-API-Overview.html
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which runs the active and target algorithms in parallel for a limited tran-
sient). Li et al. [123] propose an approach to support elastic scaling of DSP
applications; their solution reduces the interruption due to scaling opera-
tions by keeping the application running while scaling, instead of shutting
down the application operators and restarting them. However, their im-
proved version of Storm has not been released publicly. The recently pre-
sented SpanEdge [175] considers the execution of Storm in decentralized
data centers and, similarly to our works, places the application operators
so to minimize network latencies. Nevertheless, it does not support oper-
ator migrations. Although for a different application scenario than the one
investigated in this thesis, we mention the Storm extension by Basanta-Val
et al. [17]. In this system, streams are treated as real-time entities (i.e., with
explicit data generation rate and deadlines), so that they can be scheduled
using existing solutions from real-time scheduling theory.

Developed by Twitter as the successor of Storm, Heron [113] preserves
its abstraction layer while introducing some improvements and a multi-
layer architecture. Dhalion [60] is a newly presented framework on top of
Heron that provides elastic capabilities to the underlying streaming sys-
tem. It also addresses the overhead related to restarting the topology by
allowing its updating. However, at the time of writing Dhalion has not yet
been open-sourced and the elasticity policy simply adjusts the replication
degree of an operator so to satisfy its throughput; anyway, the investiga-
tion of reinforcement learning techniques in Dhalion is considered as an
exciting area for future research [59].

Apache S4 (Simple Scalable Streaming System) [151] is a DSP frame-
work designed to operate in large-scale clusters that are built with com-
modity hardware. To achieve scalability, S4 uses a decentralized architec-
ture, where all the processing nodes share the same functionalities and re-
sponsibilities (i.e., there is no central node with special functionalities).

Apache Samza [152] is a distributed system that supports stateful pro-
cessing of real-time streams, along with the fast reprocessing of entire data
streams. It uses Apache Kafka for messaging and Apache YARN [203] for
resource management [110]. To provide fault-tolerance and reduced re-
covery time, Samza uses a changelog capturing changes to the state in the
background. Maintaining the changelog is lightweight than periodically
performing checkpoints and, moreover, allows to manage very large state
in spite of limited memory.

Apache Spark [220] is a general-purpose framework for large-scale pro-
cessing. Spark Streaming [221] is a module of Apache Spark that enables
data stream processing. It is throughput-oriented, whereas Storm can mini-
mize the application latency and can thus be preferable in latency-sensitive
scenarios. From version 2.0, Spark Streaming supports elastic scaling using
the dynamic allocation feature. It uses a simple heuristic where the number
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of executors is scaled up when there are pending tasks and is scaled down
when executors have been idle for a specified time. Building on Spark,
Drizzle [204] enhances the Spark architecture along three main directions.
First, it reduces the control overhead in the micro-batched streaming model
(i.e., Spark Streaming); specifically, it performs the control operations be-
tween groups of processing tasks (i.e., not after every processing task).
Second, it removes the centralized coordination point, enabling the direct
communication among processing tasks. Third, it provides self-adaptation
capabilities, improving fault-tolerance and introducing elasticity.

Another emerging framework is Apache Flink [27], which traces its ori-
gin back to the Stratosphere project [8]. Flink provides a unified solution
for batch and stream processing (like also AJIRA does [201]). To this end,
it uses the idea of processing pipelines, i.e., series of data-centric transfor-
mations expressed in a functional programming API — as in the Google’s
Dataflow Model [7]. Flink allows to declare the application state, so that it
can be autonomously managed and persisted. Using a distributed check-
pointing procedure, Flink also guarantees consistency in case of failures
and reconfigurations (e.g., to change the execution parallelism). Flink does
not autonomously adapt the application deployment [26]; conversely, it
aims to adopt a stable and long-running allocation of tasks. However, it
supports the reconfiguration of pipelines on demand so as to change the
execution parallelism and re-allocate the application state.

IBM Infosphere Streams [15] is a commercial system by IBM, which has
been developed as a successor of IBM System S. This product includes a
data flow composition language (known as Streams Processing Language
or SPL), which allows to define and compose DSP operators. IBM Infos-
phere Streams has been mainly designed to work on a cluster of resources
and, to the best of our knowledge, does not yet support elasticity.

StreamScope [126] (or StreamS) is a system by Microsoft that has been
designed for business-critical applications. It processes data with exactly-
once guarantees, despite server failures and message losses. To this end,
StreamScope explicitly manages the operators internal state and supports
different failure recovery strategies, which are based on checkpoints (i.e.,
upstream backup), stream replay, and active replication.

Many other solutions have been developed especially from academia
(e.g. [74, 92, 164, 177]). Each one optimizes specific aspects of the process-
ing engine, although all of them share the same key conceptual abstrac-
tions regarding the definition of DSP applications. It is worth mentioning
that Foglets, by Saurez et al. [178], proposes a programming model specif-
ically designed for the Fog computing environment. Moreover, Foglets in-
cludes algorithms for controlling the execution of application operators,
simplifying communication among them, and supporting their stateful mi-
gration. Several solutions exploit features of Cloud computing to realize
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elastic and fault-tolerant systems (e.g., StreamCloud [70, 71], VISP [88],
Timestream [165], and Chronostream [210]). For example, Hochreiner et
al. [88] have developed VISP, a framework for distributed DSP applications
that natively supports elasticity. Differently from the above solutions, VISP
relies on decentralized controllers, one per each operator, that collectively
are in charge of managing the application deployment.

We observe that, despite the recent efforts towards elasticity in some
frameworks, most of those cited are not designed to efficiently operate in a
geo-distributed environment.

DSP systems are also offered as Cloud services. Google Cloud Dataflow13

provides a unified programming model to process batch and streaming
data [7]. It comes with an interesting processing model, which supports
different types of windows, distinguishing between event time and pro-
cessing time. The Dataflow processing model has been implemented on
top of MillWheel [6], a streaming processing system by Google explicitly
designed to be fault-tolerant and support Internet-scale processing. Ama-
zon offers Kinesis Streams14 to process near real-time streams of data. Both
of them abstract the underlying infrastructure and support dynamic scal-
ing of the computing resources. However, it appears that they execute in
a single data center, conversely to the geo-distributed environment we in-
vestigate in this thesis work. Microsoft offers Azure Stream Analytics15

(ASA), which allows to run queries over streams of data. This service offers
a SQL-like query language for performing transformations and computa-
tions over continuous streams of events.

Thesis Contribution. Most of the existing DSP frameworks have been
designed to run in a centralized cluster environment. Therefore, to evalu-
ate existing decentralized heuristics and develop new ones, we have devel-
oped a prototype DSP framework that can execute both centralized and
decentralized placement and adaptation strategies on a distributed and
heterogeneous infrastructure. The developed framework is named Dis-
tributed Storm and it has been designed as an extension of Apache Storm.
In Chapter 3, we provide details on its architecture and we show how it
can be used to evaluate different policies. Specifically, we use it to show
the critical issues of fully decentralized heuristics that should be taken into
account while designing new deployment policies.

Being interested in adapted at runtime the application deployment, we
also need a framework that can be used as testbed for evaluating elastic-
ity policies. Looking at the literature, we see that the most popular open-
source DSP frameworks, i.e., Storm, Spark Streaming, and Flink, do not
fully support elasticity. Therefore, we have developed Elastic Storm, a

13https://cloud.google.com/dataflow/
14https://aws.amazon.com/kinesis/
15https://azure.microsoft.com/en-us/services/stream-analytics/

https://cloud.google.com/dataflow/
https://aws.amazon.com/kinesis/
https://azure.microsoft.com/en- us/services/stream-analytics/
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second extension of Storm, which will be described in Chapter 7. Elas-
tic Storm introduces in Storm two mechanisms that support the runtime
adaptation of DSP applications: elasticity and stateful migration. An ap-
proach to support elastic scaling of DSP applications in Storm has been
also presented, at the same time, in [123]; interestingly, their proposal re-
duces the interruption due to scaling operations by keeping the application
running while scaling, instead of shutting down the application operators
and restarting them. However, they considered a clustered architecture and
their improved version of Storm has not been released publicly.



Chapter 3

Distributed Storm

Storm is a distributed stream processing system that has recently
gained increasing interest. We extend Storm to make it suitable to
operate in a geographically distributed and dynamic environment,
such as the one envisioned by the convergence of Fog computing,
Cloud computing, and Internet of Things.

With the advent of the Big Data era, DSP systems have received a re-
newed and increasing interest. To simplify the execution of DSP applica-
tions, several DSP systems (or DSP frameworks) have been proposed. Be-
sides the specific functionalities, they provide an abstraction layer where
DSP applications can be executed. Moreover, they oversee the applications
runtime by taking care of (at least) the following functionalities: computing
resource management, placement and replication of the application DSP
operators (computed using a scheduler component), code distribution, data
transfer, fault tolerance, and management interface. As presented in [77]
and briefly reviewed in Section 2.4, we can distinguish at least three gener-
ations of DSP systems, where the current one is driven by the trend towards
Cloud computing, where elasticity and fault tolerance are key architectural
features. Despite this, most DSP systems are still designed to run in lo-
cal clusters, where the often homogeneous nodes are interconnected with
negligible latencies (e.g., [151, 199, 201]). As such, these systems may not
perform well when executed on the emerging infrastructures that comprise
near-edge/Fog and Cloud computing resources.

Apache Storm [199] is an open source, scalable, and fault-tolerant DSP
system designed for locally distributed clusters. Its default operator place-
ment policy evenly distributes the processing elements on the computa-
tional nodes, aiming at load sharing in the cluster. Being among the first
open source solutions of modern DSP systems [77], Storm has attracted
increasing industrial and academic interests: several research efforts use
Storm to evaluate operator placement algorithms, self-adaptation policies,
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and architectural improvements (e.g., [9, 123, 156, 199, 213]). We are also
interested in using Storm as a testbed upon which we can implement and
evaluate new DSP deployment policies. Nevertheless, the current architec-
ture of Storm as well as the above cited Storm-based works, which adopt
a centralized scheduler, are not designed to process data streams in a dis-
tributed environment, such as the one envisioned by the convergence of
Fog computing, Cloud computing, and IoT. In this setting, DSP systems
should exploit both distant and proximate computing resources; therefore,
they are requested to scale on a wide-spread infrastructure with many run-
ning applications and distributed sources. To address these challenges, we
propose Distributed Storm, an extension of Storm that allows to run self-
adaptive distributed scheduling algorithms, making it suitable to operate
in geo-distributed environments. In the following chapters, we will use
Distributed Storm so to prototype and evaluate, on a real environment,
new deployment solutions for DSP applications.

In this chapter, we present the design and implementation of a dis-
tributed, QoS-aware, and self-adaptive scheduler for Storm by adding a
few key modules to the standard Storm architecture. Our scheduler can
scale as the number of applications and network resources increase since
it does not require a global knowledge of the system. Moreover, the self-
adaptive capability allows to automatically reconfigure the operator place-
ment in a distributed fashion when unpredictable environmental changes
occur. To demonstrate the effectiveness of the extended Storm, we imple-
mented a distributed scheduling algorithm that is aware of QoS attributes.
To this end, we adapt and implement in Storm the network-aware schedul-
ing algorithm by Pietzuch et al. [158]. The main contributions of our work
are as follows.

• We extend the Strom architecture by designing and implementing the
support for distributed QoS-aware scheduling and runtime adaptivity.

• To show the flexibility of the proposed extension, we implement and
evaluate the distributed network-aware scheduling algorithm proposed
by Pietzuch et al. [158].

• We present a thorough experimental evaluation of the proposed solu-
tion using a good variety of DSP applications, coming with different
processing requirements.

The rest of this chapter is organized as follows. We position our work
with respect to the state of the art in Section 3.1. In Section 3.2, we briefly
introduce the official release of the Storm framework and its DSP model.
Then, in Section 3.3 we present the design of our Storm extension that in-
troduces the distributed QoS-aware scheduler. Section 3.4 describes the
adopted proof-of-concept distributed scheduling policy. Then, we analyze
a wide set of experiments run on our Storm prototype in Section 3.5 and
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conclude with Section 3.6.

3.1 Related Work

Exploiting on-the-fly computation and several forms of parallelism, DSP
applications can constantly emit new results. As such, these applications
are usually adopted in scenarios with strict QoS requirements in terms of
throughput or response time. The literature analysis presented in Chapter 2
has shown that, to achieve high performance, DSP systems have to quickly
compute the application deployment and efficiently exploit features of the
computing infrastructure. Most DSP frameworks have been designed to
run in centralized data centers (see Section 2.4), where (cluster or Cloud)
computing resources are interconnected with high-speed communication
channel. In these settings, communication delays are negligible. Never-
theless, this property does not hold true in geographically distributed en-
vironments, where most of existing DSP frameworks may not experience
satisfying performance. As discussed by Heinze et al. [77], the next gener-
ation of DSP systems should explicitly take into account the features of the
computing infrastructure, so to improve performance and efficiently sat-
isfy the application requirements. Therefore, the existing DSP frameworks
natively designed for clustered environments should be conveniently en-
hanced to efficiently work in the emerging geo-distributed environment.

Storm has recently gained interest in academic research, where it is
used to evaluate operator placement algorithms (e.g., [9, 58, 156, 163, 213])
and architectural improvements (e.g., [123, 199, 216]). For example, Fis-
cher et al. [58] use existing graph partitioning algorithms to optimize the
amount of data sent between nodes. Aniello et al. [9] design two Storm
schedulers which reduce the inter-node traffic during the application ex-
ecution; one of them uses online information to improve system and ap-
plication performances. The same idea is also exploited by Xu et al. [213],
who propose a traffic-aware scheduler for dynamically assigning operators
and enabling fine-grained control over worker node consolidation. Differ-
ently from [9], their solution, as ours, is completely transparent to Storm
users. Besides minimizing inter-node traffic (as in [9, 213, 222]), the place-
ment solutions implemented in Storm aim to improve resource utilization
(e.g., [73, 156, 202]), maximize application throughput (e.g., [186]), or mini-
mize response time (e.g., [52, 194]). All these Storm-based works rely on a
centralized scheduler, which does not consider the network-related charac-
teristics of the computing infrastructure (e.g., network latency) and, more-
over, can suffer from scalability issues. Being Storm open source and very
popular in the research community, we decide to extend this framework
thus obtaining Distributed Storm, which makes Storm suitable to operate
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in geo-distributed environments. Moreover, Distributed Storm provides a
platform where decentralized and self-adaptive operator placement solu-
tions can be implemented and evaluated. We release the developed code
as open source1, so to provide the community with a new tool that can be
be used to develop new deployment policies.

Nowadays2, several DSP frameworks can oversee resources belong-
ing to infrastructures disseminated among multiple data centers, i.e., Fog-
like [175, 178]. Foglets [178] proposes a programming model specifically
designed for Fog computing environments. It includes algorithms for con-
trolling the execution of application operators, simplifying communication
among them, and supporting their stateful migration. SpanEdge [175] is a
Storm extension that, similarly to our extension, considers network laten-
cies. It allows programmers to specify where operators should be allocated
(e.g., close to data sources). Differently from our solution, their scheduler
is centralized and does not support the execution of decentralized policies.

To validate the functionalities introduced by Distributed Storm, we se-
lect, from the literature, a proof-of-concept placement policy that can be
adapted for running in Storm. The placement policy should be decentral-
ized, self-adaptive, and should be infrastructure-aware. Exploiting geo-
distributed resources, it should determine the operator placement with the
aim of reducing the amount of data exchanged using the network (which,
in turn, improves the application response time). Chatzistergiou et al. [34]
propose a scalable centralized solution, which efficiently co-locates opera-
tors using a group-based job representation and adapts to execution envi-
ronment changes. Zhou et al. in [224] investigate a fully decentralized algo-
rithm, which reduces the inter-node traffic while balancing the load among
the nodes. However, these research efforts neglect to address latency is-
sues because they assume a cluster-based deployment. A latency-aware
scheduler is presented by Backman et al. [14], whose centralized scheduler
parallelizes and executes workflows of stream operators to meet latency
objectives. Pietzuch et al. [158] propose an elegant and fully decentralized
placement algorithm that allocates the application operators with the aim
of minimizing network usage. Their approach exploits a latency space as
a search space to find the best placement solution. A similar idea has been
pursued by Rizou et al. [171]. Moreover, they exploit the mathematical
properties of the network usage function so to find the global optimum
solution in a completely decentralized manner. Besides these latter two
works (i.e., [158, 171]) that we exploit in this chapter, other network-aware
operator placement algorithms have been proposed in literature (see Chap-
ter 2). Among them, SAND [5] leverages knowledge of network character-

1Distributed Storm on GitHub: http://bit.ly/extstorm
2At the best of our knowledge, when we developed Distributed Storm in 2015, it was

the first Storm extension to introduce distributed monitoring and scheduling capabilities.

http://bit.ly/extstorm
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Figure 3.1: Storm abstractions

istics and can be implemented in a distributed manner using a DHT over-
lay. XFlow [154] is an Internet-scale monitoring framework. Similarly to
our approach, it relies on a cost model to drive the operators’ placement,
which is performed by an adaptive and fully distributed scheduler. How-
ever, XFlow focuses on monitoring applications, whereas our extended ver-
sion of Storm allows the execution of generic DSP applications.

Our proposal differs from the previous works because we extend Storm
to run self-adaptive distributed scheduling algorithms, preserving the trans-
parency of the framework to its users. Furthermore, we exploit a dis-
tributed QoS-aware scheduling algorithm that takes into account node state
information (i.e., node availability and utilization), besides the network
awareness considered in [5, 14, 158].

3.2 Apache Storm

Storm is an open source, real-time, and scalable DSP system maintained by
the Apache Software Foundation. It provides an abstraction layer where
DSP applications can be executed over a set of worker nodes interconnected
in an overlay network. A worker node is a generic computing resource (i.e.,
physical or virtual machine), whereas the overlay network comprises the
logical links among these nodes. In Storm, we can distinguish between an
abstract application model and an execution application model. In the ab-
stract model, an application is represented by its topology (see Figure 3.1a),
which is a DAG with spouts and bolts as vertices and streams as edges. A
spout is a data source that feeds data into the system through one or more
streams. A bolt is either a processing element, which generates new out-
going streams, or a final information consumer. A stream is an unbounded
sequence of tuples, which are key-value pairs. We refer to spouts and bolts
as operators. Figure 3.1a shows an example of a DSP application.

In the execution model, Storm transforms the topology by replacing
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each operator with its tasks. A task is an instance of an application operator
(i.e., spout or bolt), and it is in charge of a share of the incoming operator
stream. Therefore, if the operator has some internal state (i.e., it is a stateful
operator), a task handles a partition of it. In Storm, the number of tasks for
an operator is statically defined. Each task processes incoming data with an
at-least-once semantic, which can be turned into an exactly-once semantic
relying on the Trident API (not used in this work because of its processing
overhead). For the execution, one or more tasks of the same operator are
grouped into executors. An executor is the smallest schedulable unit; Storm
can process large data volumes in parallel by launching multiple executors
for each operator. The number of executors of an operator must always be
less than or equal to the number of tasks of the same operator. From an op-
erational perspective, Storm implements the executors as threads and also
introduces the worker process, that is a Java process, to run a subset of execu-
tors of the same topology. As represented in Figure 3.1b, there is an evident
hierarchy among the Storm entities: a group of tasks runs sequentially in
the executor, which is a thread within the worker process, that serves as
container on the worker node. The latter is a node of the Storm cluster that
offers the computing resources.

Besides the worker nodes, the architecture of Storm includes two addi-
tional components: Nimbus and ZooKeeper. Nimbus is a centralized com-
ponent in charge of coordinating the topology execution; it uses its scheduler
to define the placement of the application operators on the pool of avail-
able worker nodes. The assignment plan determined by the scheduler is
communicated to the worker nodes through ZooKeeper3, that is a shared
in-memory service for managing configuration information and enabling
distributed coordination. Since each worker node can execute one or more
worker processes, a Supervisor component, running on each node, starts
or terminates worker processes according to the Nimbus assignments. A
worker node can concurrently run a limited number of worker processes,
based on the number of available worker slots.

3.3 Distributed Scheduling in Storm

We extend the Storm architecture to run distributed QoS-aware schedul-
ing algorithms and enhance the system with adaptation capability. The
newly introduced components, illustrated in orange in Figure 3.2, are: the
AdaptiveScheduler, the QoSMonitor, and the WorkerMonitor. They realize a
fully decentralized MAPE loop [106, 208], where: the QoSMonitor and the
WorkerMonitor implement the distributed Monitor component; the Adap-

3http://zookeeper.apache.org/

http://zookeeper.apache.org/
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Figure 3.2: Extended Storm architecture (new components in orange):
AdaptiveScheduler is abbreviated as ASched, WorkerMonitor as WMon-
itor, and BootstrapScheduler as BSched

tiveScheduler implements the Analyze and Plan components; and the Su-
pervisor (natively present in Storm) implements the Execute component.

The QoSMonitor estimates the network latency among the system nodes
and monitors the QoS attributes of the worker node, namely the node avail-
ability and its resource utilization. A WorkerMonitor is executed for each
Storm worker process; it computes the data rate exchanged among the ap-
plication operators. The information collected by these monitors can be
used by the QoS-aware scheduling algorithm. The AdaptiveScheduler is lo-
cated on each worker node and executes the distributed scheduling policy.
Besides introducing the distributed scheduler on each worker node, we
also maintain a centralized scheduler, called BootstrapScheduler. It is exe-
cuted by Nimbus and is in charge of defining the initial placement of the
application operators and monitoring their execution. Furthermore, it can
reschedule the application when a worker process fails. Our extension is
completely user-transparent, meaning that applications can be executed us-
ing the new scheduling system without requiring any change. The source
code of our extension is available at http://bit.ly/extstorm.

3.3.1 Monitoring Components

QoSMonitor. The QoSMonitor provides the QoS awareness to each dis-
tributed scheduler, thus it is responsible of obtaining intra-node (i.e., uti-
lization and availability) and inter-node (i.e., network) node information.
For the latter, we resort to a network coordinates (NC) system that provides
an accurate estimate of the round-trip latency between any two network
locations, without the need of an exhaustive probing. The NC system is

http://bit.ly/extstorm
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maintained through the Vivaldi algorithm [43], a decentralized algorithm
with linear complexity with respect to the number of network locations. To
make each node be informed of all the QoS attributes of the other nodes,
we rely on a gossip-based dissemination protocol.

WorkerMonitor. The WorkerMonitor runs on a worker process. It is
responsible of obtaining the incoming and outgoing data rate for each ex-
ecutor running on the worker process. This information is stored in a local
database to be subsequently used by the distributed scheduler.

3.3.2 AdaptiveScheduler

The AdaptiveScheduler executes the Analyze and Plan components of the
MAPE loop on every worker node so as to adapt the application deploy-
ment at runtime. The behavior of these MAPE components can be cus-
tomized according to a distributed scheduling policy. In principle, any
policy can be implemented; in this chapter, as a proof of concept, we im-
plemented a known use case, relying on the Pietzuch et al. algorithm pre-
sented in Section 3.4. Since the architecture of our extended Storm is mod-
ular and low-coupled, the implementation of this algorithm is straightfor-
ward. The algorithm has been adjusted to account for the specific Storm
application model, where a processing operator can be instantiated in one
or more executors and pinned operators are not modeled. Only the execu-
tors assigned to the worker node can be managed by this scheduler, which
can reassign them to improve the application performance.

Analyze. During the Analyze phase the AdaptiveScheduler acquires the
information collected by the monitoring components and identifies the set
of local executors that could be moved. An executor is movable if it is not
pinned (i.e., without a fixed physical location) and not directly connected
to an operator which is going to be reassigned. For each movable executor,
the AdaptiveScheduler determines whether it will be effectively moved to
another position in a decentralized fashion. To this end, it resorts to the
elegant approach proposed by Pietzuch et al. [158] named as Virtual Place-
ment Algorithm, which will be described in Section 3.4.

Plan. If the Analyze phase finds that an executor ei needs to be moved
to a new position, it triggers the Plan phase. The Plan phase is responsible
of executing the second step of the placement algorithm, which, relying on
a cost space, determines the worker node that will host and execute the
executor ei. If no worker node is found, the MAPE iteration for executor
ei terminates; otherwise, the Plan phase performs two additional tests and
the executor ei is moved only if both of them are passed.

The first test is called relative distance: its goal is to avoid moving execu-
tors to a new candidate worker node if such change of position does not
improve the application performance. Indeed, moving an operator has a
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not negligible cost (i.e., downtime, network and computational cost, loss
of state information), which can negatively affect the application perfor-
mance. Formally, let dcand and dcur be respectively the distance of the can-
didate worker node wscand and of the current worker node wscur from the
operator position ~Pi in the cost space. The test is passed if the relative dis-
tance Drel(dcur, dcand) exceeds a given migration threshold thrmigr:

Drel(dcur, dcand) =
|dcur − dcand|
dcur + dcand

> thrmigr

where Drel, thrmigr ∈ [0, 1]. The second test is called look-ahead and it aims
to reduce placement oscillations: it simulates the migration of a local ex-
ecutor to the candidate worker node and checks if a next reassignment will
take the executor back to the current worker node. For example, consider
two pinned components {cpα, cpβ}, an unpinned component {cuγ} and two
nodes {A,B}; cpα and cuγ run on A, while {cpβ} runs on B. By evaluating the
network traffic between cuγ and cpβ , the decentralized placement policy may
decide to move cuγ on B. Nevertheless, the new configuration is similar to
that preceding the reassignment; hence, the decentralized policy may de-
cide to reassign cuγ to A once again. This ping-pong effect must be avoided
since it is useless and may impacts negatively on the performance; so the
test is passed only if the simulated “next move” does not take back the ex-
ecutor. This simple but effective test allows to solve the described problem
without storing additional operator-related information. After having se-
lected the worker node, the last step is to determine which worker slot on
the node will be used. The algorithm tries to reuse an existent slot, if there
is someone that already runs another executor of the same topology. Any-
way, a worker slot can be reused only if it holds less than a given number
of executors (#epsmax). If no reusable slot is found, a new one is used.

The AdaptiveScheduler moves only one executor at a time in order to
reduce the effect of multiple relocations, which can negatively affect the
application performance.

Execute. Finally, in the Execute phase, if a new assignment must take
place, the executor ei is moved to the new candidate node. The new assign-
ment decision is shared with the involved worker nodes through ZooKeeper.
To enact the placement, Storm stops the executor on the previous worker
node and starts it on the new one4.

Thanks to the adaptation cycle and the multi-dimensional cost space,
the AdaptiveScheduler can manage changes that may occur both in the
infrastructure layer (e.g., new worker nodes that appear or existing ones
that fail) and the application layer (e.g., increase in the source data rate).

4The initial version of Distributed Storm, presented in this chapter, did not support state-
ful migration. However, we introduced this feature later in time (see Chapters 7 and 8).
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3.3.3 BootstrapScheduler

Nimbus runs a centralized scheduler, that we called BootstrapScheduler, which
defines the initial assignment of the application, monitors its execution, and
restarts failed executors, when, for example, a worker node disappears.
The BootstrapScheduler is a centralized version of the QoS-aware schedul-
ing algorithm, which assigns executor pools (i.e., groups of executors), in-
stead of single executors, in order to efficiently use the system resources.

To retrieve the system state, the BootstrapScheduler uses Nimbus that,
in turn, communicates with the worker nodes using ZooKeeper as message
broker. Therefore, we should observe that ZooKeeper represents a bottle-
neck in scaling Storm and should be more conveniently replaced with a
more sophisticated system, such as PaceMaker [36]. PaceMaker provides
a new heartbeat and metrics service that will be fully integrated in Storm
since version 2.0. Distributed Storm can also benefit from this new and
scalable component; therefore, we plan its integration as future work.

3.4 A QoS-aware Heuristic

We implement a distributed scheduling algorithm that is aware of QoS at-
tributes, specifically latency, node utilization, and availability. To this end,
we adapt to Storm the network-aware scheduling algorithm proposed by
Pietzuch et al. [158]. It comprises a cost space, which models the placement
problem by transforming the performance metrics of interest into distances
in this space, and an operator placement algorithm, which places operators in
this cost space. It achieves good application performance by minimizing
the amount of data that transits the network at a given instant, blending to-
gether network delay and network resource consumption: the smaller the
link delays, the better the overall application delay; but, at the same time,
the larger the data rate between two operators, the closer they should be in
the network (possibly co-located in the same physical node). Along with
network usage, we consider two other metrics which capture the nodes
performance: utilization and availability. The former captures the node
processing latency, which is function of the node utilization level. The lat-
ter represents the fraction of time a node is up and able to execute operators
code.

3.4.1 Cost Space

A cost space is a metric space where distance between two points estimates
the cost of routing and processing data between two nodes placed in those
two points. We adopt a four-dimension cost space, where two dimensions
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Figure 3.3: High-level architecture of our solution: (a) pinned and un-
pinned operators; (b) Virtual Operator Placement; (c) Physical Operator
Placement

refer to the latency attribute, while the other two refer to node availabil-
ity and utilization, respectively. The two latency dimensions of the cost
space form a latency sub-space, where the distance between two nodes is
an estimate of their network latency. The cost space dynamically adapts to
changing network and node conditions as nodes continuously adjust their
coordinates through measurements.

3.4.2 Placement Algorithm

The placement policy comprises two phases: the virtual operator place-
ment and the physical operator mapping. The former determines the op-
erators placement in the cost space; the latter maps its decision back to
physical nodes (see Figure 3.3). To compute the placement, we need to
distinguish between two kind of operators: a pinned operator has a fixed
physical location (e.g., producers, consumers), whereas an unpinned one can
be conveniently instantiated on any node of the network. The placement
algorithm is fully decentralized and is periodically executed, so to adapt
the unpinned operators placement in face of changing working conditions.

Virtual Placement Algorithm. The idea behind the placement algo-
rithm is to regard the system of operators and links as a collection of mass-
less bodies connected by springs. In this mechanical analogy, the rest po-
sition of the springs represents the minimum potential energy configura-
tion; the system naturally converges to it, by simply letting each opera-
tor opi moves as the results of the force ~Fi applied to it by the systems of
springs. As observed in [158], by setting the spring extension equal to the
latency, sl = Lat(l), and the spring constant to the data rate over that link,
kl = DR(l), the minimum energy configuration of the spring system corre-
sponds to the minimum network usage configuration of the operators.

Physical Placement Algorithm. Once the Virtual Placement Algorithm
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terminates, the operator opi has associated a coordinate ~Pi in the latency
space. Since the virtual operator placement uses only the latency dimen-
sion, ~Pi has the coordinate associated to availability and utilization equal
to 1 and 0, respectively, i.e., ~Pi = (pl1i, pl2i, 1, 0). In the second stage of the
placement algorithm, we map the operator opi to an actual physical node
wsj . Ideally, the best candidate node is the one closest to the operator coor-
dinate ~Pi; thus, we choose the node wsj with coordinate ~Pj with minimal
Euclidean distance to ~Pi. Differently from the original work [158], we for-
malize how the metrics interact among them. First, being the distance a
trade-off among different dimensions, we need to normalize each coordi-
nate. Availability and utilization are both in the range [0, 1], thus we scale
the latency coordinates to the same interval, dividing them by the largest
observed delay. Second, since distinct applications can be differently af-
fected by the performance indices, we introduce the weights wl, wa and
wu, for the latency, availability and utilization coordinates, respectively, to
gauge the relative importance of the different performance indices. The
distance between ~Pi = (Pl1i, Pl2i, Pai, Pui) and ~Pj = (Pl1j , Pl2j , Paj , Puj) is
computed as follows:

d(~Pi, ~Pj) =

√
w2
l

[
(Pl1i − Pl1j)2 + (Pl2i − Pl2j)2

Lat2max

]
+ w2

a(Pai − Paj)2 + w2
u(Pui − Puj)2

3.5 Experimental Results

In this section, we present four sets of experiments aimed to investigate the
potentialities and critical points of the distributed scheduling approach.
First, we show how the distributed scheduler can optimize different QoS
metrics (Section 3.5.1). We show the impact of QoS-awareness in improv-
ing performance of two well known applications, namely Log Processing
and Word Count (Section 3.5.2). Then, we investigate how the QoS-aware
scheduler reacts to changes and can adapt the placement of applications,
when the application has different requirements in terms of resource de-
mand and replication degree (Section 3.5.3). Leveraging on the most chal-
lenging configuration of Section 3.5.3, we investigate the distribute sched-
uler behavior when it is equipped with another decentralized policy (Sec-
tion 3.5.4).

All the experiments have been performed on a Storm cluster composed
of 8 worker nodes, each with 2 worker slots, and 2 further nodes for Nim-
bus and ZooKeeper. Each node is a virtual machine with Ubuntu 14.04
LTS configured with one vCPU on an Intel Xeon E5504 Quad-code and 2
GB of RAM. We emulated wide-area network latencies among the Storm
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Table 3.1: Parameters of the Gaussian distributions used by netem (values
are in ms)

Storm node Mean µ Standard deviation σ
1 15 1
2 23 2
3 19 3
4 25 1
5 12 3
6 17 2
7 32 1
8 27 2

Table 3.2: Parameters of the QoS-aware scheduler

Parameter Description Value
Tas Time interval between two executions 30 s

of the AdaptiveScheduler
Tqm Time interval between two executions 30 s

of the QoSMonitor
Kcld Number of executions of the 5

AdaptiveScheduler to be skipped
for a cooling down topology

Ft Force threshold of the 1.0
VirtualOperatorPlacement algorithm

γ Damping factor of the 0.1
VirtualOperatorPlacement algorithm

#epsmax Maximum number of executors per 4
worker slot

thrmigr Migration threshold (relative distance) 0.15

nodes using netem5, which applies to outgoing packets a Gaussian delay
with mean and standard deviation reported in Table 3.1. Table 3.2 summa-
rizes the parameters’ setting of the distributed QoS-aware scheduler. The
values of γ and Ft correspond to those used in [158].

The reference application, named tag-and-count, tags and counts sen-
tences produced by a data source; its topology is represented in Figure 3.4
and is composed by a source, which generates 10 tuples/s, followed by a
sequence of 5 operators before reaching the final consumer6. The source
and the consumer are the pinned operators. The source can resend tuples
at most once.

5Network Emulator: http://www.linuxfoundation.org/collaborate/workgroups/
networking/netem

6Observe that, in our experimental setup, the presence of network delays and the once-
at-a-time stream processing model of Storm require to limit the source data rate; the network
is the system bottleneck.

http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
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Figure 3.4: Tag-and-count topology

3.5.1 Optimizing QoS Metrics

In this section, we present two experiments that show the self-adaptation
capabilities of the distributed QoS-aware scheduler (dQoS_la and dQoS_lu)
and the default EvenScheduler of Storm (cRR) during the application exe-
cution. The former places operators exploiting QoS attributes as described
in Section 3.4, whereas the latter uses a centralized round-robin policy.

Exploiting Availability Dimension. The first experiment investigates
dQoS_la, which uses network latency and node availability as QoS attributes.
We give more weight to availability by setting wa = 10 and wl = 1. Differ-
ent metrics for this experiment are reported in Figure 3.5. We start the ap-
plication with all nodes having 99.999% availability. After 600 s, the avail-
ability of an active node suddenly decreases to 85%; this event is repre-
sented with a vertical dotted line in Figure 3.5. Figure 3.5a shows the over-
all application availability, which is computed as

∏
i∈WNq ai being the ap-

plication q a sequence of operators, where WN q is the set of worker nodes
involved with the execution of q, and ai is the availability of node i. Since
the default scheduler is blind to this metric, when the node availability de-
creases, the overall availability decreases to 61.41%. As a consequence, the
application end-to-end latency increases, because tuples spend more time
in the upstream buffers and some of them are resent from the source (see
Figure 3.5b). On the contrary, our distributed scheduler reassigns the op-
erators to nodes with better availability; a new runtime reassignment per-
formed by some distributed scheduler is indicated with vertical dot-dash
lines in Figure 3.5. We can see that, after 1000 s, the application runs with
an overall availability of 99.993%, which reduces the median of the appli-
cation latency of about 72% with respect to that achieved by cRR. We can
see that after 600 s, with dQoS_la there is a transient period of about 400 s
(clearly visible in Figure 3.5c), where some distributed schedulers are exe-
cuted to improve the application availability and reduce the network usage
(Figure 3.5a). We also observe that during this experiment, the application
scheduled with dQoS_la resent 2.53% of the tuples, while such percentage
increases to 20.23% when scheduled with cRR.

Exploiting Utilization Dimension. The second experiment investigates
dQoS_lu, which uses network latency and node utilization as QoS attributes.
To make the placement decision resilient to minor fluctuations in the nodes’
utilization, we weigh twice the latency with respect to the utilization (wl =
1;wu = 0.5). We start the application and, after 1200 s, we artificially in-
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Figure 3.5: Comparison of dQoS_la with the default Storm scheduler (cRR)
when the nodes’ availability changes

crease the load on a subset of three nodes using the Linux tool stress. This
subset is composed by one worker node running three application execu-
tors and two free worker nodes. Figure 3.6 shows the minimum, average,
and maximum utilization of the subset of worker nodes that run the appli-
cation, while the beginning of the stress event is represented with a vertical
dotted line. Since dQoS_lu is aware of the execution environment, after
a transient period which ends at 1500 s, it moves all the application op-
erators on lightly loaded nodes (i.e., load balancing). Each new placement
decision of a dQoS_lu scheduler is represented with a vertical dot-dash line
in Figure 3.6b. On the contrary, as shown in Figure 3.6a, the default Storm
scheduler cannot react and change its scheduling decision.

3.5.2 Performance with Well-known Applications

In this section, we aim to show the importance of QoS-awareness, espe-
cially when computing resources are interconnected with not negligible
network latencies (see Table 3.1). We compare the performance of our
dQoS scheduler, which uses network latency and node utilization as QoS
attributes, against the centralized Storm scheduler (referred as cRR), which
assigns operators in a round robin fashion. Similarly to the previous exper-
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Figure 3.6: Comparison of dQoS_lu with the default Storm scheduler (cRR)
when the the nodes’ utilization changes
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Figure 3.7: Performance of the Word Count topology

iment, dQoS weighs twice the latency with respect to the utilization (i.e.,
wl = 1;wu = 0.5). For this experiment, we consider two well-known DSP
applications, namely Word Count and Log Processing (both as streaming
applications).

Word Count. The Word Count topology is composed by a sequence of a
source generating 1 tuple/s, two operators, and a consumer. The first oper-
ator splits the sentence into words and feeds the next one, which counts the
occurrence of each word; each update of the counters is notified to the con-
sumer. Source and consumer are pinned. We assign two executors to the
source and three executors to each other operator. dQoS and cRR schedule
the application on the same two worker nodes. As detailed in Section 3.4,
the QoS-aware scheduler relies on the pinned operators to drive the place-
ment of the executor pools. However, for the current topology the sched-
uler is constrained by the presence of at least a pinned operator for each
executor pool. Therefore, the application latency shown in Figure 3.7a is
comparable for the two scheduling strategies. Anyway, the dQoS scheduler
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Figure 3.8: Log Processing topology
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Figure 3.9: Performance of the Log Processing topology

minimizes the network usage by re-arranging the executors on the worker
nodes; the inter-node traffic is reduced of about 31% (see Figure 3.7b).

Log Processing. We have developed a log processing application based
on log-topology7, which relies on Redis as external caching service and
whose topology is illustrated in Figure 3.8. The data source emits 10 log
events/s that are filtered and sent to two different branches of the topol-
ogy. The first branch is made of one operator, which indexes log events on
Redis, while the latter is made of a sequence of two operators, which col-
lect statistics. Subsequently, both the branches are merged together on the
final consumer. The source and the consumer are pinned into the network.
We assign one executor to each pinned operator and two executors for un-
pinned ones. From Figure 3.9 we observe that the QoS-aware placement
improves the application performances, while reducing the network us-
age: the average application latency and the inter-node traffic are reduced
by about 18% and 63% respectively.
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Figure 3.10: Performance of the tag-and-count topology when the nodes’
utilization changes

3.5.3 On Adaptation Capabilities

In this section, we evaluate how the distributed QoS-aware scheduler reacts
to runtime changes when applications with different requirements are con-
sidered. Specifically, we rely on the tag-and-count application and propose
a baseline setting, a configuration where operators have a higher CPU de-
mand, and a configuration where operators are replicated. We compare the
two schedulers when the load experienced by the worker nodes changes
during the application execution due to same external noise event.

Baseline Case. We use the tag-and-count topology with a single executor
for each operator. Figure 3.10 shows the evolution of the observed metrics;
vertical dot-dash lines indicate a new runtime reassignment performed by
some dQoS scheduler, while, on the contrary, the cRR scheduler does not
intervene during the application execution. We start the application on an
idle cluster. As soon as the application metrics are collected by the QoS-
Monitor components, i.e., the exchanged data rate between operators and
the node utilization are available, the dQoS scheduler performs some ad-

7https://bitbucket.org/qanderson/log-topology/

https://bitbucket.org/qanderson/log-topology/
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Figure 3.11: Average latency of the “heavy” version of the tag-and-count
topology when the nodes’ utilization changes

justments to the initial placement decision. After 1200 s, we artificially in-
crease the load on a subset of three nodes using the Linux tool stress. This
subset is composed by one worker node running two application execu-
tors and two free worker nodes. This event is represented with a vertical
dotted line in Figure 3.10. Figure 3.10a shows the average utilization of
the subset of worker nodes that run the application as well as the average
utilization of the overall system. Soon after the event, the dQoS scheduler
moves the application operators on lightly loaded nodes. The effectiveness
of the decision is clearly visible in Figure 3.10a. Figure 3.10b shows that the
presence of a stressed node does not degrade the application latency; this
happens because the processing time of each operator is one order of mag-
nitude lower than the network latency between worker nodes. Overall,
the placement strategy of the dQoS scheduler reduces the application la-
tency of about 49% with respect to that achieved by cRR. Furthermore, the
inter-node traffic, reported in Figure 3.10c, shows a transient period for the
dQoS scheduler after 1200 s which lasts for about 300 s. This period length
depends on the number of reassigned operators and on the time interval
each distributed scheduler must wait between two consecutive placement
decisions (being Kcld = 5, this time interval is equal to 150 s).

Heavy Application. This second experiment investigates how the sched-
uler performs when a “heavy” application is submitted to the system. We
modify the unpinned operators of the tag-and-count topology in order to
waste some CPU time so that each operator completes its execution in
about 14 ms, which is one order of magnitude larger than the baseline case.
The load stress event is launched at 2450 s. Similarly to the previous experi-
ment, the dQoS scheduler reacts to the load surge by reassigning operators,
which impacts positively on the utilization (not shown for space reasons).
However, in this case (see Figure 3.11) the degradation of the application
latency for cRR is clearly visible, because the processing time is negatively
influenced by the load stress event. On the other hand, dQoS allows to
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Figure 3.12: Performance of the tag-and-count topology with replicated un-
pinned operators when the nodes’ utilization changes

keep the latency low after a transient period. Between 1000 s and 2000 s,
the average application latency experienced with dQoS is reduced by 35%,
while between 4000 s and 5000 s it is reduced by 43%. We also observe that
the BootstrapScheduler intervenes at 2100 s, because a worker process is
erroneously terminated by the system.

Replicated Operators. This third experiment, reported in Figure 3.12, in-
vestigates the adaptation capabilities of the system when the unpinned op-
erators of the tag-and-count application are replicated (i.e., two executors
are assigned to each unpinned operator). The stress event is launched at
3200 s, and the distributed scheduler reacts to it improving the observed
metrics: after the final placement, the application latency is reduced by
about 25%. However, this experiment provides us a different insight on the
distributed scheduler. First, we observe that the two transient periods (the
initial one after the start and that after the load stress event) increase their
length, because dQoS must deal with a larger number of operators, which,
in turn, are more connected among them. Indeed, the number of logical
links between pairs of operators grows from 6 to 20. A decentralized reas-
signment decision independently taken by one distributed scheduler pro-
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Figure 3.13: Performance of the tag-and-count topology when the nodes’
utilization changes

vokes chain reactions in the other schedulers and the lack of coordination
among them can thus originate some instability in the placement decisions.
Even if the final application placement can improve the performance in
terms of the observed metrics, the more frequent and larger number of op-
erator reassignments and related stop-and-replay of the involved operators
can negatively impact on the application availability during the transient
periods. Second, the application latency obtained by the cRR scheduler is
lower than that measured in the previous experiments. By comparing Fig-
ures 3.10c and 3.12b we can understand the reason: when the number of
executors increases while keeping the number of worker process constant,
the probability that the executors of two consecutive operators are on the
same worker process increases as well. Therefore, data spend on average
less time to traverse the topology.

3.5.4 Comparison with Another Distributed Policy

Starting from the outcomes of the previous section, here we evaluate a sec-
ond distributed QoS-aware scheduling policy, which has been proposed by
Rizou et al. [171]. Specifically, we investigate the adaptation capabilities
of our distributed scheduler when it is equipped with the Rizou’s place-
ment policy (named as dRizou). We compare dRizou against the central-
ized Storm scheduler (named as cRR) and dQoS, that is our distributed
scheduler equipped with the Pietzuch’s algorithm. dRizou and dQoS as-
sign operators to computing nodes by exploiting QoS attributes (i.e., la-
tency, utilization), whereas cRR uses a round-robin policy.

The DSP application is tag-and-count, where the unpinned operators
are replicated twice (as in the previous section). Figure 3.13 shows the evo-
lution of the application end-to-end latency; on its bottom, we indicate the
runtime reassignments performed by the distributed schedulers (cRR does
not intervene during the execution). We start the application and, after
3240 s, we artificially increase the load on a subset of three nodes using
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the Linux tool stress. The subset is composed by one worker node run-
ning some application executors and two free worker nodes. This event is
represented in Figure 3.13 with a vertical dotted line. As the distributed
scheduler (both dQoS and dRizou) perceives the change, it moves the ap-
plication operators on lightly loaded nodes. dRizou reduces the application
latency with respect to cRR of about 12.6 % (measured between 5000 s and
the end of the experiment). Furthermore, differently from dQoS, dRizou
converges with a lower number of reassignments, increasing the applica-
tion availability.

3.6 Summary

We designed and implemented a distributed QoS-aware scheduler for DSP
systems based on Storm, which is able of operating in a geographically
distributed and dynamic environment. The experimental results provide
many interesting information. First, we have shown that, when the com-
puting environment comprises nodes with not negligible delays, our QoS-
aware scheduler outperforms the default Storm scheduler (i.e., a central-
ized round-robin solution). Second, our extension enhances Storm with
adaptation capabilities, which allow to react to changes in a distributed
fashion. Moreover, our investigation also pointed out a weakness of fully
decentralized scheduling algorithms: since each placement decision is taken
in a reactive, distributed, and independent manner, for complex topologies
involving many operators, they can determine some instability that affects
negatively the application availability. This behavior fosters the design of
lightweight coordination mechanisms that can improve performance of de-
centralized schedulers (as we will see in Chapter 9).

Since in recent years Storm has been widely adopted, we believe that
Distributed Storm may represent a useful tool for the DSP-related com-
munity. Therefore, we have publicly released its code, which is available
as an open source project on GitHub (http://bit.ly/extstorm). In the
next chapters of this thesis, we will prototype our deployment solutions by
leveraging on Distributed Storm.

http://bit.ly/extstorm


Chapter 4

Optimal Operator Placement

Several operator placement policies have been proposed in the lit-
erature, but they are based on different assumptions and optimiza-
tion goals and, as such, they are not completely comparable with
one another. We provide a general formulation of the optimal DSP
placement, which takes explicitly into account the heterogeneity of
computing and networking resources.

The operator placement problem consists in determining, within a set
of available distributed computing nodes, the nodes that should host and
execute each operator of a DSP application, with the goal of optimizing the
QoS attributes of the application. From the previous chapters, we have seen
that existing placement solutions are characterized by different modeling
assumptions and optimization goals (e.g., [9, 158, 171, 213, 224]). As such,
they are not completely comparable with one another. Moreover, there is
no general formulation of the placement problem, which makes difficult
to analyze and compare the different solutions. As a consequence, even
though the state of the art proposes a wide set of solutions (see Chapter 2),
we cannot easily select the most suitable one to be used in the emerging
near-edge/Fog computing environment. Indeed, in a geographically dis-
tributed environment where network latencies are not negligible, the oper-
ator placement problem should explicitly take into account the heterogene-
ity of computing and network resources.

In this chapter, we propose Optimal DSP Placement (for short, ODP),
a unified general formulation of the operator placement problem for dis-
tributed and networked DSP applications, which takes into account the het-
erogeneity of application requirements and infrastructural resources. Dif-
ferently from prior approaches (e.g., [53, 94, 196, 226]), ODP provides a gen-
eral modeling framework that can be easily extended to include new con-
straints and QoS attributes. At the same time, ODP provides a benchmark
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against which other centralized and decentralized placement algorithms
can be compared. The main contributions of this chapter are as follows.

• We model the ODP problem as an ILP problem (Sections 4.2 and 4.3),
which can be used to optimize different QoS metrics. We first propose a
basic formulation that considers only user-oriented metrics, i.e., the ap-
plication end-to-end latency and availability. Then, to show how easily
ODP can be extended, we include network-related QoS metrics, con-
sidering the exchanged data rate between the application operators as
additional metric (Section 4.4). Similarly, other metrics (e.g., monetary
cost, memory) can be considered.

• Leveraging on Distributed Storm (presented in Chapter 3), we develop
a prototype scheduler that allocates the DSP application operators ac-
cording to the ODP solution (Section 4.5).

• Using Storm, we show how ODP can optimize different user-oriented
QoS metrics (Section 4.6.1) and compare the performance achieved by
some centralized and decentralized placement policies (i.e., [158, 171,
213]) to that obtained by ODP (Section 4.6.2). To this end, we have also
implemented into Storm the centralized placement policy in [213] and
the decentralized one in [171].

• We extensively evaluate the computational cost of solving ODP, under
different configurations of application requirements and resource capa-
bilities, and examine two simple strategies to reduce the resolution time
(Section 4.6.3).

4.1 Related Work

As extensively discussed in Chapter 2, several works provide a formulation
of the operator placement problem; however, differently from our work,
they consider homogeneous nodes, neglect network latencies, or focus on
topologies with special properties.

Among the first proposals, Zhu et al. [226] study a placement prob-
lem which accounts for computational and communicational delays. How-
ever, they assume that a resource node can host at most a single operator;
we consider this hypothesis not realistic in today’s DSP systems, therefore
our formulation enables the co-location of operators on a resource node,
according to the node computational capacity. Eidenbenz et al. [53] ana-
lyze the placement problem for a subset of DSP application topologies, i.e.,
serial-parallel decomposable graphs. This allows them to exploit strong
theoretical foundations and propose an approximation algorithm, which,
however, can allocate operators only on resources with uniform capacity.
Similarly to our approach, Benoit et al. [19] use an ILP problem to rep-
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resent the placement problem for in-network stream-processing applica-
tions, which are a slightly different kind of applications, with the topology
restricted to a binary tree of operators.

Thoma et al. [196] model the relationship between operators and re-
sources, improving the expressiveness of the user constraints to include
co-location, upstream/downstream, and attribute or tag-based constraints.
We focus only on global QoS metrics and do not investigate this issue, how-
ever the related user constraints can be easily integrated within our place-
ment model. It is worth mentioning the work by Huang et al. [93], where
the authors elegantly rearrange the Multi-Constrained Optimal Path prob-
lem to model and solve the service composition problem. Nevertheless,
their model allows only to express constraints on communication links but
not on computing resources.

Stanoi et al. [188] focus on maximizing the rate of the input streams that
the DSP system can support, acting on both the order of operators and the
placement on the resource nodes. We do not consider operator re-ordering
as possible.

Unlike all the above approaches, we provide a general formulation of
the placement problem. On the one hand, it models composite and net-
worked applications that, as DSP applications, can be represented by a di-
rected acyclic graph. On the other hand, it models the heterogeneity of
both computing and networking resources. Therefore, the proposed for-
mulation can find the optimal placement by taking into account the QoS
attributes of applications and resources, and is flexible enough to accom-
modate new QoS metrics. Thanks to the adjustment of suitable knobs, the
meaning of “optimal placement” can change according to the application
context. As a consequence, ODP provides a general framework for QoS
optimization and comparison of different placement heuristics.

4.2 System Model and Problem Statement

Devising an optimal application deployment strongly depends on the as-
sumptions made about the domain it will be applied to. A suitable model
grasps these relevant assumptions, taking into account the heterogeneity
of represented entities, i.e., application requirements and resource capabil-
ities. Therefore, before going into the details of our placement model, we
provide a formal description of the involved entities. For the sake of clarity,
in Table 4.1 we summarize the notation used throughout the chapter.
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Table 4.1: Main notation adopted in this chapter.

Symbol Description
Gdsp Graph representing a DSP application
Vdsp Set of vertices (operators) of Gdsp
Edsp Set of edges (streams) of Gdsp
Ci Resources required to execute i ∈ Vdsp
Ri Execution time per data unit of i ∈ Vdsp

on a reference processor
Gres Graph representing computing and

network resources
Vres Set of vertices (computing nodes) of Gres
Eres Set of edges (logical links) of Gres
Cu Amount of resources available on u ∈ Vres
Su Processing speed-up of u ∈ Vres
Au Availability of node u ∈ Vres
d(u,v) Network delay on (u, v) ∈ Eres
A(u,v) Availability of (u, v) ∈ Eres
V i
res ⊆ Vres Subset of nodes where i ∈ Vdsp can be placed
xi,u Placement of i ∈ Vdsp on u ∈ V i

res

y(i,j),(u,v) Placement of (i, j) ∈ Edsp on (u, v) ∈ Eres

4.2.1 DSP Model

From an operational perspective, a DSP application is made of a network of
operators connected by streams. An operator is a self-contained processing
element that can execute a generic user-defined code, whether it is a pre-
defined operation (e.g., filtering, aggregation, merging) or something more
complex (e.g., POS-tagging), whereas a stream is an unbounded sequence
of data (e.g., packet, tuple, file chunk).

A DSP application can be represented as a labeled directed acyclic graph
(DAG) Gdsp = (Vdsp, Edsp), where the nodes in Vdsp represent the applica-
tion operators as well as the data stream sources (i.e., nodes with no incom-
ing links) and sinks (i.e., nodes with no outgoing link), and the links inEdsp
represent the streams, i.e., data flows, between nodes. Due to the difficul-
ties of formalizing a generic relationship between the operator code and its
non-functional attributes, we consider each operator as a black-box com-
ponent, assuming that its attributes, if not known a-priori, can be obtained
thanks to empirical measurements or benchmarks. Each node i ∈ Vdsp has
the following attributes: Ci, the amount of resources required for its exe-
cution; and Ri, its execution time per unit of data on a reference processor.
We assume, without loss of generality, that Ci is a scalar value, but our
placement model can be easily extended to consider Ci as a vector of re-
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Figure 4.1: Placement of the application operators on the computing and
network resources

quired resources. Furthermore, to avoid binding together applications and
resources, we require Ri to be measured on a reference processor.

4.2.2 Resource Model

Computing and network resources can be represented as a labeled fully
connected directed graph Gres = (Vres, Eres), where the set of nodes Vres
represents the distributed computing resources, and the set of links Eres
represents the logical connectivity between nodes. Observe that, at this level,
links represent the logical link across the networks which results by the un-
derlying physical network paths and routing strategies. The label associ-
ated with each node u ∈ Vres specifies the following QoS attributes: Cu,
the amount of resources available at node u; Su, the processing speed-up
on a reference processor; and Au, its availability, i.e., the probability that u
is up and running. The label associated with each link (u, v) ∈ Eres, with
u, v ∈ Vres, specifies: d(u,v), the network delay between node u and v; and
A(u,v), the link availability, i.e., the probability that the link between u and
v is active. This model considers also loop links, i.e., edge of the type (u, u);
they capture network connectivity between operators placed in the same
node u, and are considered as perfect links, i.e., always active with no net-
work delay. We assume that the considered QoS attributes can be obtained
by means of either active/passive measurements or with some network
support (e.g., Software Defined Networking — SDN).

4.2.3 Operator Placement Problem

The DSP placement problem consists in determining a suitable mapping
between the DSP graph Gdsp and the resource graph Gres in a such a way
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that all constraints are fulfilled. Figure 4.1 represents a simple instance of
the problem. Observe that a DSP operator cannot be usually placed on
every node in Vres, because of physical (i.e., pinned operator) or other moti-
vations (e.g., security, political). This observation allows us to consider for
each operator i ∈ Vdsp a subset of candidate resources V i

res ⊆ Vres where it
can be deployed. For example, if sources and sinks (I ⊂ Vdsp) are external
applications, their placement is fixed, that is ∀i ∈ I, |V i

res| = 1.
We can conveniently model the DSP placement with binary variables

xi,u, i ∈ Vdsp, u ∈ V i
res: xi,u = 1 if operator i is deployed on node u and

xi,u = 0 otherwise. A correct placement must deploy an operator on one
and only one computing node; this condition can be guaranteed requiring
that

∑
u xi,u = 1, with u ∈ V i

res, i ∈ Vdsp. We also find convenient to con-
sider binary variables associated to links, namely y(i,j),(u,v), (i, j) ∈ Edsp,
(u, v) ∈ Eres, which denotes whether the data stream flowing from oper-
ator i to operator j traverses the network path from node u to node v. By
definition, we have y(i,j),(u,v) = xi,u ∧ xj,v = xi,u · xj,v. For short, in the fol-
lowing we denote by x and y the placement vectors for nodes and edges,
respectively, where x = 〈xi,u〉, ∀i ∈ Vdsp, ∀u ∈ V i

res and y =
〈
y(i,j),(u,v)

〉
,

∀xi,u, xj,v ∈ x.

4.3 Optimal Placement Model

There are several strategies to determine the deployment of a DSP applica-
tion on a set of computing resources, as reviewed in Chapter 2. Each strat-
egy has been developed following a specific objective, which, ultimately,
can be generalized in the optimization of a specific utility function, such
as the exchanged traffic, user-perceived latency, and resource utilization.
In this section, exploiting tools provided by the optimization theory, we
propose a model for the optimal operator placement problem that can be
adjusted to satisfy different utility functions. First, we present a simple
version of the model, which allows to better argument the design choices.
Then, in Section 4.4, we illustrate the challenges of modeling other QoS
constraints and attributes.

4.3.1 QoS Metrics

We first consider the application response time and availability, which are
primarily user-oriented rather than system-oriented QoS metrics.

Response Time For a DSP application, with data flowing from several
sources to several destinations, there is no unique definition of response
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time. For any placement vector x (and resulting y), we consider as re-
sponse time R(x,y) the critical path average delay. We define the critical
path of the DSP application as the set of nodes and edges, forming a path
from a data source to a sink, for which the sum of the operator computa-
tional latency and network delays is maximal. Therefore, the critical path
average delay is the expected traversal time of the critical path. Given this
definition, we have that:

R(x,y) = max
π∈Πdsp

Rπ(x,y) (4.1)

where Rπ(x,y) is the end-to-end delay along path π and Πdsp the set of all
source-sink paths in Gdsp. For any path π = (i1, i2, . . . , inπ) ∈ Πdsp, where
ip and nπ denote the pth operator and the number of operators in the path
π, respectively, we obtain:

Rπ(x,y) =

nπ∑
p=1

Rip(x) +

nπ−1∑
p=1

D(ip,ip+1)(y) (4.2)

where for any i ∈ Vdsp and (i, j) ∈ Edsp

Ri(x) =
∑
u∈V ires

Ri
Su
xi,u (4.3)

D(i,j)(y) =
∑

(u,v)∈V ires×V
j
res

d(u,v)y(i,j),(u,v) (4.4)

denote respectively the execution time of operator iwhen mapped on node
u and the network delay for transferring data from i to j when mapped on
the path from u to v, where i, j ∈ Vdsp and u, v ∈ Vres.

Availability We define the application availability A as the availability
of all the nodes and paths involved in the processing and transmission of
the application data streams. For the sake of simplicity, we assume the
availability of the different components to be independent. We acknowl-
edge that independence does not hold true in general and that a more de-
tailed model is needed to capture the possibly complex dependency rela-
tionship among logical components sharing physical nodes and networks
links. This will be subject of future work.

With the independence assumption, we readily have:

A(x,y) =
∏

i∈Vdsp

Ai(x) ·
∏

(i,j)∈Edsp

A(i,j)(y) (4.5)
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where

Ai(x) =
∑
u∈V ires

Auxi,u (4.6)

A(i,j)(y) =
∑

(u,v)∈V ires×V
j
res

A(u,v)y(i,j),(u,v) (4.7)

denote respectively the availability of the operator i ∈ Vdsp and of the data
stream from i to j, (i, j) ∈ Edsp. To avoid dealing with multiplication, we
consider the logarithm of the availability, obtaining:

logA(x,y) =
∑
i∈Vdsp

∑
u∈V ires

auxi,u+

+
∑

(i,j)∈Edsp

∑
(u,v)∈V ires×V

j
res

a(u,v)y(i,j),(u,v) (4.8)

where au = logAu and a(u,v) = logA(u,v). Expression (4.8) deserves some
comments. Let us focus on the first term and observe that the logarithm of
the first factor of A(x,y), that is

∏
i∈Vdsp Ai(x) =

∏
i∈Vdsp

(∑
u∈V ires Auxi,u

)
,

is actually
∑

i∈Vdsp log
(∑

u∈V ires Auxi,u

)
. In general, log

(∑
u∈V ires Auxi,u

)
6=∑

u∈V ires (logAu)xi,u; however, we observe that only one term of the sum in

the expression log
(∑

u∈V ires Auxi,u

)
can be different from zero, because an

operator is assigned to exactly one node (which implies that only variable
in the set {xi,u}u∈V ires is equal to 1). It follows that for any application place-

ment x, log
(∑

u∈V ires Auxi,u

)
=
∑

u∈V ires (logAu)xi,u, from which the first
term in (4.8) directly follows. Similar arguments apply to the second term.

4.3.2 Optimal Placement Formulation

In a feasible assignment x (and associated y), the computing resources
u ∈ Vres execute the application operators i ∈ Vdsp with respect to their ca-
pabilities (i.e., Cu). Nevertheless, not all feasible assignments produce de-
sirable application performances, thus we introduce a utility function that
analytically defines an order relationship among all feasible solutions. The
optimal placement results from the maximization of a given utility func-
tion. Depending on the utilization scenario, the utility function could be
aimed at optimizing specific QoS attributes. These different optimization
goals could be possibly conflicting, thus leading to a multi-objective opti-
mization problem, which can be transformed into a single objective prob-
lem, using the SAW technique [218]. Therefore, we define the utility func-
tion F (x,y) as a weighted sum of the normalized QoS attributes of the
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application, as follows:

F (x,y) = wr
Rmax −R(x,y)

Rmax −Rmin
+ wa

logA(x,y)− logAmin

logAmax − logAmin
(4.9)

where wr, wa ≥ 0, wr + wa = 1, are weights for the different QoS at-
tributes. Rmax (Rmin) and Amax (Amin) denote, respectively, the maximum
(minimum) value for the overall expected response time and availability.
Observe that after normalization, each metric ranges in the interval [0, 1],
where the value 1 corresponding to the best possible case, that is R(x,y) =
Rmin, logA(x,y) = logAmax, and 0 to the worst case, R(x,y) = Rmax,
logA(x,y) = logAmin.

The Optimal DSP Placement (ODP) can be formulated as an ILP model
as follows:

max
x,y,r

F ′(x,y, r)

where

F ′(x,y, r) = wr
Rmax − r

Rmax −Rmin
+ wa

logA(x,y)− logAmin

logAmax − logAmin

subject to:

r ≥
nπ∑
p=1

∑
u∈V ipres

Rip
Su

xip,u+

nπ−1∑
p=1

∑
(u,v)∈V ipres×V

ip+1
res

d(u,v)y(ip,ip+1),(u,v) ∀π ∈ Πdsp (4.10)

∑
i∈Vdsp

Cixi,u ≤ Cu ∀u ∈ Vres (4.11)

∑
u∈V ires

xi,u = 1 ∀i ∈ Vdsp (4.12)

xi,u =
∑
v∈V jres

y(i,j),(u,v) ∀(i, j) ∈ Edsp, u ∈ V i
res (4.13)

xj,v =
∑
u∈V ires

y(i,j),(u,v) ∀(i, j) ∈ Edsp, v ∈ V j
res (4.14)

xi,u ∈ {0, 1} ∀i ∈ Vdsp, u ∈ V i
res (4.15)

y(i,j),(u,v) ∈ {0, 1} ∀(i, j) ∈ Edsp, (u, v) ∈ V i
res × V j

res (4.16)

In the problem formulation we replaced the utility function F (x,y) with
the objective function F ′(x,y, r) which is obtained from F (x,y) by replac-
ing R(x,y) with the auxiliary variable r, which represents the application
response time in the optimization problem, in order to obtain a linear ob-
jective function. Observe that, indeed, while F is not linear in x, y since
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R(x,y) = maxπ∈Πdsp Rπ(x,y) is a not linear term, F ′ is linear in r as well
as in x and y.

Equation (4.10) follows from (4.1)–(4.4). Since r must be larger or equal
than the response time of any path and, at the optimum, r is minimized,
r = maxπ∈Πdsp Rπ(x,y) = R(x,y). The constraint (4.11) limits the place-
ment of operators on a node u ∈ Vres according to its available resources;
Equation (4.12) guarantees that each operator i ∈ Vdsp is placed on one and
only one node u ∈ V i

res. Finally, constraints (4.13)–(4.14) model the logi-
cal AND between the placement variables, that is, y(i,j),(u,v) = xi,u ∧ xj,v. It
is worth observing that the proposed AND constraints formulation is moti-
vated by recent work in [55] which, albeit in a different context, provides
empirical evidence that this specific AND formulation leads to reduced com-
putational time with respect to alternative formulations1. For the sake of
comparison, we compared this formulation to the alternatives (also taken
from [55]) and, interestingly, we experienced - on average - a tenfold speed-
up.

Theorem 4.1. The Optimal DSP Placement problem is an NP-hard problem.

Proof. In order to verify the NP-hardness of the Optimal DSP Placement
problem, it suffices to prove that the corresponding decision problem is
NP-hard. The decision problem can be formulated as follows: For a given
DSP application and a set of computing and network resources, is there a
feasible placement of the application? To prove the NP-hardness of this
decision problem, let us consider the special case where: the resources re-
quired by the DSP application Cik are integers, where k = {1, . . . , n} and n
is the number of operators; the network has only two nodes, Vres = {u, v},
with capacity Cu = Cv = (

∑n
k=1Cik)/2; there are no network delays, that

is du,v = dv,u = 0, which allows us to ignore the variables y; and operators
can be placed on both nodes, V ik

res = Vres, k = {1, . . . , n}. It is easy to realize
that the resulting problem is the well known Partition problem [62] which
is known to be NP-hard. Since this special case is NP-hard, the general
decision problem is NP-hard as well. And since the original optimization
problem is at least as hard as the decision problem, it follows that Optimal
DSP Placement problem is NP-hard as well.

4.4 Network-related Extension and QoS Metrics

The ODP model can be easily extended to account for other constraints
and user- and/or system-oriented QoS metrics, such as energy consump-

1In [55], the authors provide experimental evidence that the constraints (4.13)–(4.14)
yields better lower bounds with respect to alternative constraints formulations. This re-
sults in more aggressive bounding in the bound phase of the branch and bound algorithm of
ILP solvers and thus less iterations and faster convergence to the optimal solution.
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tion, bandwidth constraints, monetary cost, privacy. In this section, with-
out lack of generality, we include network-related QoS metrics that have
been widely used in the literature to assess the quality of the DSP place-
ment algorithms, such as network usage [171], inter-node traffic [9, 213],
and the so called elastic energy [158].

Bandwidth constraint. In the ODP formulation, we made the implicit
assumption that the data streams traffic between operators does not sat-
urate the logical link bandwidth. Since this assumptions might not hold
true in practice, we can explicitly account for the limited logical link capac-
ity in ODP as follows. For each pair of communicating operators i and j,
(i, j) ∈ Edsp, let λ(i,j) denote the average data traffic rate and, for each logi-
cal link (u, v) ∈ Eres, let B(u,v) denote available bandwidth. Then, similarly
to the node computing resource constraints (4.11), we have the following
network link available bandwidth constraints:∑

(i,j)∈Edsp

λ(i,j)y(i,j),(u,v) ≤ B(u,v) ∀u, v ∈ Vres (4.17)

It is important to observe that, while the amount of available node
computing capacity Cu in (4.11) is a known quantity, the amount of avail-
able bandwidth B(u,v) in (4.17) needs to be estimated since it depends on
the (typically unknown) network traffic which traverses the physical links
comprising the network path between node u and v2. Unfortunately, band-
width estimation is known to be a non straightforward process as it re-
quires active — and rather traffic intensive — end-to-end measurements
techniques [161]. Nevertheless, the situation dramatically changes if we
consider networks with advanced capabilities, e.g., SDN. In these networks,
it becomes possible to have access to network information and/or allocate
resources so as to reserve the desired amount of bandwidth on each logical
link [42].

Network-related QoS metrics. Following the network-aware DSP place-
ment policies in the literature [9, 158, 171, 213], we define the following met-
rics: the inter-node traffic T , the network usage N , and an approximation
of the elastic energy EE. Let Z(y), Z = T |N |EE, denote the QoS attribute
of the DSP application under the DSP placement policy y, we have:

Z(y) =
∑

(i,j)∈Edsp

Z(i,j)(y) (4.18)

where Z(i,j)(y) is defined as follows.

2Actually, since two different logical links could share some physical links, the con-
straints (4.17) should be expressed in terms of the physical and not logical links capacity.
This is, in general, not feasible since it would require complete knowledge of: 1) the physi-
cal network topology, 2) the links characteristics, and 3) the routing tables.
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The inter-node traffic T is the overall amount of data exchanged per time
unit between operators placed on different nodes. Therefore, using the
placement policy y, the stream (i, j) ∈ Edsp generates an inter-node traf-
fic equals to:

T(i,j)(y) =
∑

(u,v)∈V ires×V
j
res:u6=v

λ(i,j)y(i,j),(u,v) (4.19)

where λ(i,j) is the data rate of the stream.
The network usage N is the amount of data that traverses the network at

a given time; therefore, the stream (i, j) ∈ Edsp imposes a load expressed
by:

N(i,j)(y) =
∑

(u,v)∈V ires×V
j
res:u6=v

λ(i,j)d(u,v)y(i,j),(u,v) (4.20)

where d(u,v) is the network delay among nodes u, v ∈ Vres, with u 6= v.
In their paper [158], Pietzuch et al. indirectly minimize the network us-

age through the minimization of the elastic energy, which results from the
equivalent system of springs that represents the application. Basically, their
solution minimizes the amount of data that traverses each link weighted by
the latency of the link itself. Hence, the stream (i, j) ∈ Edsp contributes to
the elastic energy of the system with:

EE(i,j)(y) =
∑

(u,v)∈V ires×V
j
res:u6=v

λ(i,j)d
2
(u,v)y(i,j),(u,v) (4.21)

Observe that, in all cases, Z(y) is a linear function of y.
Network-related utility function. The utility function F (x,y), previ-

ously defined in Equation (4.9), can be readily re-written to include the
network-related QoS metric as follows:

Fnet(x,y) = F (x,y) + wz
Zmax − Z(y)

Zmax − Zmin
(4.22)

where wz ≥ 0 weighs the network-related attribute, wr + wa + wz = 1,
Z = T |N |EE, and Zmax and Zmin denote respectively the maximum and
the minimum value for the network term.

For sake of clarity, we report the new formulation of the placement
problem that considers the bandwidth constrains and the network-related
metrics:

max
x,y,r

F ′net(x,y, r)

where

F ′net(x,y, r) = F ′(x,y, r) + wz
Zmax − Z(y)

Zmax − Zmin
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subject to:

r ≥
nπ∑
p=1

∑
u∈V ipres

Rip
Su

xip,u+

nπ−1∑
p=1

∑
(u,v)∈V ipres×V

ip+1
res

d(u,v)y(ip,ip+1),(u,v) ∀π ∈ Πdsp

B(u,v) ≥
∑

(i,j)∈Edsp

λ(i,j)y(i,j),(u,v) ∀u ∈ Vres, v ∈ Vres (4.23)

∑
i∈Vdsp

Cixi,u ≤ Cu ∀u ∈ Vres

∑
u∈V ires

xi,u = 1 ∀i ∈ Vdsp

xi,u =
∑
v∈V jres

y(i,j),(u,v) ∀(i, j) ∈ Edsp, u ∈ V i
res

xj,v =
∑
u∈V ires

y(i,j),(u,v) ∀(i, j) ∈ Edsp, v ∈ V j
res

xi,u ∈ {0, 1} ∀i ∈ Vdsp, u ∈ V i
res

y(i,j),(u,v) ∈ {0, 1} ∀(i, j) ∈ Edsp, (u, v) ∈ V i
res × V j

res

where Equation (4.23) limits the amount of data that flows on the logical
link (u, v) ∈ Eres, according to its available bandwidth B(u,v).

4.5 Storm Integration: S-ODP

We develop a new scheduler for Storm, named S-ODP, whose core is the
model presented in Section 4.4, where we consider the data rate exchanged
among the application operators. We refer the reader to Section 3.2 for a
description of the Storm architecture and of its execution model. In or-
der to design S-ODP, we have to address two issues: (1) how to adapt the
ODP formulation to the specific execution entities of Storm, and (2) how
to instantiate the ODP model with the proper QoS information about com-
puting and networking resources.

As regards the first issue, we have to model the fact that the Storm
scheduler places the application executors on the available worker slots,
considering that at most EPSmax executors can be co-located on the same
slot. Hence, S-ODP defines Gdsp = (Vdsp, Edsp), with Vdsp as the set of
executors and Edsp as the set of streams exchanged between the execu-
tors. Since in Storm an executor is considered as a black box element,
we conveniently assume unitary its attributes, i.e., Ci = 1 and Ri = 1,
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∀i ∈ Vdsp. The resource model Gres = (Vres, Eres) must take into ac-
count that a worker node u ∈ Vres offers some worker slots WS(u), and
each worker slot can host at most EPSmax executors. For simplicity, S-
ODP considers the amount of available resources Cu on a worker node
u ∈ Vres equals to the maximum number of executors it can host, i.e.,
Cu = WS(u)× EPSmax.

As regards the second issue, Storm allows to easily develop new cen-
tralized schedulers with the pluggable scheduler APIs. However, Storm
is not aware of the QoS attributes of its networking and computing re-
sources, except for the number of available worker slots. Since we need to
know these QoS attributes to apply the ODP model, we rely on the Storm
extension we presented in Chapter 3, that enables the QoS awareness of
the scheduling system by providing intra-node (i.e., availability) and inter-
node (i.e., network delay and exchanged data rate) information. This exten-
sion estimates network latencies using a network coordinate system, which
is built through the Vivaldi algorithm [43], a decentralized algorithm hav-
ing linear complexity with respect to the number of network locations. S-
ODP retrieves, from the monitoring components of the extended Storm,
the information needed to parametrize the nodes and edges in Gdsp and
Gres. Specifically, it considers: the average data rate exchanged between
communicating executors (i.e., λ(i,j),∀(i, j) ∈ Edsp), the node availability
(Au, u ∈ Vres), and the network latencies (d(u,v), ∀u, v ∈ Vres). Once built
the ODP model, S-ODP relies on CPLEX c© (version 12.6.2) for solving the
placement problem.

From an operative prospective, Nimbus uses S-ODP to compute the op-
timal placement when a new application is submitted to Storm and when
a failure of the worker process compromises the application execution. In
the latter case, S-ODP invalidates the existing assignment and computes
the new optimal placement. When information on the exchanged data rate
is unknown (e.g., first run), S-ODP defines an early assignment and mon-
itors the application execution to harvest the needed information. Then,
S-ODP reassigns the application, solving the updated ODP model with the
network-related QoS attributes.

4.6 Results

We analyze an extensive set of experimental results that aim at demonstrat-
ing the flexibility of the ODP formulation and investigating its scalability.
Specifically, using S-ODP, we first analyze in Section 4.6.1 how the ODP
formulation allows us to consider the optimization of user-oriented QoS
metrics, such as response time and availability. Then, in Section 4.6.2 using
S-ODP we demonstrate how our formulation represents a general frame-
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Figure 4.2: Tag-and-Count application

work and a benchmark for DSP placement optimization. To this end, we
compare the performance achieved by some centralized and decentralized
placement heuristics to that obtained by their corresponding optimal for-
mulation based on ODP. Finally, since ODP is formulated as an ILP prob-
lem, we investigate through numerical experiments its scalability, analyz-
ing the relationship between the solver resolution time and some model
parameters, such as the application size and the number of resources. We
close this section evaluating two simple approaches that can reduce the
solver resolution time with a trade-off on the quality of the computed solu-
tion.

4.6.1 Optimizing User-oriented QoS Metrics

The ODP model we presented in Section 4.3 allows us to define the place-
ment by optimizing different QoS attributes, whose importance depends
on the utilization scenario. In this experiment, we use the S-ODP proto-
type to optimize different user-oriented QoS metrics, namely application
response time and availability.

We perform the experiments using Apache Storm 0.9.3 on a cluster of
8 worker nodes, each with 2 worker slots, and 2 further nodes for Nimbus
and ZooKeeper. A worker slot can host at most 4 executors, i.e., EPSmax =
4. Each node is a virtual machine with one vCPU and 2 GB of RAM. We
emulate wide-area network latencies among the Storm nodes using netem,
which applies to outgoing packets a Gaussian delay with mean and stan-
dard deviation in the ranges [12, 32] ms and [1, 3] ms, respectively. Further-
more, half of the worker nodes has an availability of 99 % and the other
of 100 %, whereas the links are always available. As test-case application
we use Tag-and-Count, which tags and counts the sentences produced by
a data source. Its topology is represented in Figure 4.2 and is composed
by a source, which generates 10 tuples/s, followed by a sequence of 5 op-
erators before reaching the final consumer. We also used this application
in Chapter 3; however, here we consider a higher replication degree for its
operators. More precisely, the source and the consumer, which are pinned
operators, are instantiated with a single executor each, whereas all the oth-
ers are instantiated with two executors each.
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Figure 4.3: Application performance when ODP optimizes different user-
oriented QoS metrics: response time (S-ODP_R) and availability (S-
ODP_A)

We evaluate the effects on the application performance of two different
configurations of S-ODP, namely S-ODP_R and S-ODP_A. S-ODP_R com-
putes the placement by optimizing, as QoS metric, the response timeR (we
recall that R is the worst end-to-end delay on the source-sink path), i.e., it
solves the ODP model with the utility function parametrized with weights
wr = 1 and wa = wz = 0. S-ODP_A maximizes the application availability
A, by solving ODP with weights wa = 1 and wr = wz = 0. Figure 4.3 shows
the effects of the two utility functions on the application performance, ex-
pressed in terms of response time R. S-ODP_A places all the executors
on the most available nodes, therefore the resulting application availabil-
ity is 100%. However, since the scheduler does not consider the network
latencies, the application experiences a response time that is, on average,
1.8 times higher than that achieved with S-ODP_R. The latter obtains the
lowest response time, but, on the other hand, places 8 of 12 executors on
worker nodes with 99% of availability. The resulting application availabil-
ity is 92.27%, which is perceived with an increment of the tuple loss rate
(3.37% during the experiment).

4.6.2 Evaluating Placement Heuristics

In this set of experiments we use the S-ODP prototype to evaluate some
placement heuristics proposed in literature, namely the Pietzuch’s, Rizou’s,
and Xu’s algorithms (i.e., [158, 171, 213]). Since each solution has its own
optimization goal, we conveniently adapt the ODP model as presented in
Section 4.4. We use the same execution environment and application de-
scribed in Section 4.6.1, except for 100% availability of all the nodes and
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(a) Elastic energy
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(b) Inter-node traffic
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(c) Application latency

Figure 4.4: Comparison of placement decisions: Pietzuch’s solution and
optimal assignment (S-ODP_EE)

links. Furthermore, since network links have high available bandwidth, S-
ODP omits the bandwidth constraints expressed in Equation (4.17). This
setting allows for a fair comparison with the other placement solutions,
here investigated, which do not take these QoS attributes into account.

Since the objective function of S-ODP needs the exchanged data rate in-
formation known only at runtime, S-ODP computes the placement in two
steps, as described in Section 4.5. First, the scheduler defines the place-
ment using weights wr = wz = 0 and wa = 1. Then, it solves again the
ODP model with weights wr = wa = 0 and wz = 1, and reassigns the appli-
cation. This rescheduling event happens at 100 s, and is represented with a
vertical full line in the following figures. Also the schedulers under inves-
tigation can perform runtime reassignments; these events are represented
with vertical dot-dash lines.

In this first experiment, we compare the performance of the decentral-
ized Pietzuch’s algorithm [158] with respect to the optimal placement com-
puted by S-ODP_EE. The latter is the centralized S-ODP scheduler set up
so to minimize the elastic energy of the spring system that represents the
application, see Equation (4.21). Figure 4.4 reports the optimized metric
(i.e., elastic energy), the average inter-node traffic, and the average appli-
cation latency (i.e., the end-to-end delay of the tuples). We compute the
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(a) Network usage
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(b) Inter-node traffic
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(c) Application latency

Figure 4.5: Comparison of placement decisions: Rizou’s solution and opti-
mal assignment (S-ODP_N)

elastic energy (Figure 4.4a) relying on real network latencies, because this
allows to evaluate the behaviour of the Pietzuch’s solution, neglecting the
noise introduced by the network latency estimation system. The Pietzuch’s
algorithm finds a sub-optimal solution: considering the interval from 800 s
to 2000 s, the inter-node traffic is on average 1.84 times higher than that
achieved with the optimal placement, and the application latency is 1.15
times higher. The fluctuations introduced by the network latency estima-
tion system are detrimental for this scheduling solution, which is very sus-
ceptible to this metric. As a consequence, even if no real environmental or
application changes occur, the Pietzuch’s algorithm can trigger some reas-
signments; see, for example, the behaviour of the system after 2000 s. The
large number of reassignments required to reach a stable configuration (16
in this experiment) and the related stop-and-replay of the involved oper-
ators can negatively impact the application. Indeed, during the transient
periods the application experiences unavailability, tuple loss, and peaks in
traffic (Figure 4.4b) and latency (Figure 4.4c).

With the second experiment, we evaluate the decentralized Rizou’s al-
gorithm [171] with respect to the optimal placement determined by S-ODP_N,
that is S-ODP configured to minimize the network usage, see Equation (4.20).
Rizou et al. evaluated their proposal only through simulation. We have im-
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plemented their algorithm in Storm in order to effectively compare its per-
formance against the optimal placement achieved by S-ODP_N. Figure 4.5
reports the optimized metric (i.e., network usage), the inter-node traffic,
and the overall application latency. Differently from the Pietzuch’s solu-
tion, the Rizou’s one directly minimizes the network usage. Comparing
the Rizou’s scheduling policy with the optimal one, we make the following
observations. First, Rizou’s shows good convergence, better than the Piet-
zuch’s solution: a stable assignment is found in less than 300 s, after only 5
reassignments, thus confirming the simulation results presented by Rizou
et al. in [171]. Second, latency weighs less on the scheduler’s reassignment
decisions, which makes the system less susceptible to fluctuations in its es-
timation. Lastly, in this specific, although simple, experimental scenario,
the Rizou’s algorithm finds the optimal placement for the application, ef-
fectively minimizing the network usage.

In the third experiment we evaluate the centralized scheduling policy
proposed by Xu et al. [213] with respect to S-ODP_T, i.e., S-ODP that min-
imizes the inter-node traffic T , see Equation (4.19). In this case, no latency
information is needed. Although the authors developed their solution for
Storm, its code is not publicly available, so we re-implemented it adher-
ing to the description in [213]. Differently from the previous heuristics,
the Xu’s scheduler is a centralized solution with a complete knowledge of
the network, thus it can determine the placement relying on global infor-
mation. Similarly to S-ODP, this scheduler needs a preliminary run of the
application in order to extract bandwidth-related information. Hence, it
initially places the application using a round-robin strategy; then, as soon
as data rate information is available, it reassigns the operators using a best-
fit heuristic. The latter tries to co-locate operators in decreasing order of
exchanged data rate. Figure 4.6 compares the inter-node traffic achieved
by the Xu’s scheduler and our S-ODP_T. The Xu’s algorithm performs a
first reassignment at 100 s, which produces a sub-optimal configuration. In
particular, there is a sequence of 3 executors that run on two nodes and
exchange data using two network links instead of one. However, the Xu’s
scheduler detects the problem and fixes the application placement at 750 s,
achieving the optimal solution computed by S-ODP_T.

In all these experiments, S-ODP computes the optimal solution in less
than 420 ms.

4.6.3 Scalability Analysis

We now focus on the scalability analysis of ODP. To evaluate its compu-
tational cost, we solve the ILP problem on randomly generated problem
instances, using an Amazon EC2 virtual machine (c4.xlarge with 4 vCPU
and 7.5 Gb RAM). As computational cost metric, we use the resolution time



124 Chapter 4. Optimal Operator Placement

 0

 10

 20

 30

 40

 50

 0  500  1000  1500  2000  2500  3000

In
te

r-
n

o
d

e
 t

ra
ff

ic
 (

tu
p

le
/s

)

Time (s)

S-ODP_T
Xu et al.

Figure 4.6: Comparison of placement decisions: Xu’s solution and optimal
assignment (S-ODP_T)

Figure 4.7: Sequential (left) and fat (right) applications

experienced by CPLEX. To avoid interferences among the model parame-
ters, we use a baseline scenario and change a single factor at a time. The
baseline scenario defines applications, computing and network resources
with homogeneous characteristics. This represents the worst-case scenario
for the CPLEX solver that, using a branch-and-cut resolution strategy, has
to explore the whole solution space in order to find the optimum. If not oth-
erwise specified, applications and resources are parametrized as reported
in Table 4.2.

We consider two alternatives of layered topology for Gdsp, represent-
ing sequential and fat DSP applications, where each layer has one or more
operators. The first and last layer contain the sources and sinks of the ap-
plication, respectively. The DAGs of sequential (also known as pipelined)
and fat applications are shown in Figure 4.7.

In the following experiments, Gres models a geographically distributed
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Table 4.2: Parameters of application and resource models.

Model Parameter Value
Application size of Vdsp 20

Ri 1.0 s
Ci 1

Resource size of Vres 20
Au 100%
Cu 4
Su 1.0
d(u,v) max{x ∈ Gaussian N (22, 5), 1}ms
A(u,v) 100%

infrastructure, where computing nodes are interconnected with not-negligible
network delays. We also assume that Gres is a fully connected graph, i.e.,
there always exists a logical link (u, v) ∈ Eres between any two comput-
ing resources u, v ∈ Vres. We evaluate the ODP resolution time in relation
to: a) the number of application operators, b) the number of computing
resources, c) the percentage of available resources required by the applica-
tion, and d) the capacity of each computing node.

In the first experiment, we consider the ODP resolution time when the
number of operators in the application increases from 10 to 50. Figure 4.8a
shows the results. Note that, with 50 operators, the placement vectors x
and y contain 1000 and 19600 or 38400 variables for the sequential and fat
applications, respectively.

The second experiment, depicted in Figure 4.8b, evaluates the resolu-
tion time when the number of computing resources ranges from 10 to 100
and the number of application operators is fixed to 20. With 100 computing
resources, the placement vectors x and y contain 2000 and 190K or 360K
variables for the sequential and fat applications, respectively. It is worth
observing that the ODP resolution time is more sensible to the increment in
the number of application operators rather than the number of computing
resources. For example, consider the scenarios Sc1 = {Vres = 20, Vdsp = 50}
and Sc2 = {Vres = 50, Vdsp = 20}. Both of them generate a placement vec-
tor x with 1000 variables; however, in Sc2 (where the number of computing
resources is increased), the resolution time decreases from 2 to 36 times for
sequential and fat applications respectively, although the placement vector
y is 2.38 times larger. The complexity of CPLEX does not easily reveal the
motivations behind this behaviour.

In the last experiment we investigate the impact of the amount of re-
sources available on each computing node (Cu). We execute the applica-
tions with 20 operators on a network of 20 computing nodes, where the
number of available resources Cu for each node u ∈ Vres increases from 2
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Figure 4.8: Computational cost of solving the ODP model in different set-
tings

to 10. Figure 4.8c shows the results. The decreasing trend is readily moti-
vated observing the objective function in Equation (4.9): since it penalizes
network delays, the optimal placement is trivially determined when there
is enough residual capacity on an already selected node, because operators
are co-located on the same node. In an additional experiment not reported
for the sake of space, we found that the load measured in terms of resources
required by the application does not affect the resolution time.

As expected, the scalability experiments show that, when the problem
cardinality increases significantly, solving analytically the ODP model is
not feasible, even if CPLEX is very efficient. Even if efficient heuristics are
required to solve large scale problems, we can consider two simple strate-
gies to reduce the model resolution time: a) sampling the set of candidate
computing nodes, and b) fixing an upper bound on the resolution time.

The benefits and drawbacks of reducing through sampling the set of
candidate computing resources V i

res where each operator i can be placed,
are illustrated in Figures 4.9a and 4.9b, respectively. We define as perfor-
mance degradation (Figure 4.9b) the ratio between the value of the objec-
tive function when the placement occurs only on a subset of candidate re-
sources and the optimal value when all the resources can be used. We use



4.6. Results 127

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

20% 30% 40% 50% 60% 70% 80% 90% 100%

R
e
s
o
lu

ti
o
n
 T

im
e
 (

s
)

Relative Size of the Candidate Resource Set for each DSP Operator

Fat Application
Sequential Application

(a) Resolution time using a randomly sam-
pled set of resources

1.0

1.5

2.0

2.5

3.0

20% 30% 40% 50% 60% 70% 80% 90% 100%

P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti
o
n

Relative Size of the Candidate Resource Set for each DSP Operator

Fat Application
Sequential Application

(b) Performance degradation using a ran-
domly sampled set of resources

0%

5%

10%

15%

20%

25%

30%

35%

40%

10
1

10
2

10
3

10
4

10
5

O
p
ti
m

a
lit

y
 G

a
p

Resolution Time (s)

Fat Application
Sequential Application

(c) Feasible solutions and advances on the
optimality gap

Figure 4.9: Effects of simple heuristic approaches on the ODP resolution
time

a simple random sampling to identify the candidate resource subset for
each operator. We run the experiment with 20 computing nodes and 50
operators for both the types of application topology. We observe from Fig-
ure 4.9a that the resolution time decreases tremendously (i.e., contracting
up to about 5 orders of magnitude), when each operator has a subset of can-
didates that is less than 40% of all the available resources. Figure 4.9b points
out that the solution quality strictly depends on the application topology:
with only 20% of computing nodes, the fat application experiences a per-
formance degradation only of 1.02, whereas the resolution time of the se-
quential application is about 3 times higher than the optimal one.

When we define an upper bound for the resolution time, CPLEX tries
to find the optimal solution until the time interval is not exceeded. Then,
the solver returns the best known feasible and sub-optimal solution. An
appropriate upper bound strictly depends on the problem instance, but in
this experiment we want to show how CPLEX closes the optimality gap
during the resolution time. The optimality gap is a metric used by CPLEX
to represent the relative gap between the objective function of the best in-
teger solution and the best feasible solution that results from the lineariza-
tion of the model (branch-and-cut strategy). We use the configuration that
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reported the longest resolution time in the previous experiments: 100 com-
puting nodes and 20 application operators. Figure 4.9c shows the trend
of the optimality gap. Depending on the application topology, the solver
behaves differently. For the sequential application, a near-optimal solu-
tion (i.e., with an optimality gap lower than 10%) is found in the first 500 s
of computation. For the fat application, this convergence takes place just
before the execution conclusion, thus it is harder to find a suitable upper
bound for the resolution time. On the other hand, as shown in Figure 4.9b,
the sampling technique seems to be a more effective strategy for the fat
application.

4.7 Summary

In this chapter, we have presented a general formulation of the optimal
placement problem (ODP) for data stream processing applications, which
takes into account the heterogeneity of computing and network resources.
ODP can optimize different QoS requirements of the applications and we
have considered the end-to-end latency, availability, and exchanged data-
rate among operators. The optimal placement provided by the ODP so-
lution can be used as a benchmark framework against which to compare
other centralized and decentralized placement algorithms. To this end, we
have developed an ODP-based prototype scheduler for Storm and have
compared some well-known placement solutions proposed in the litera-
ture. As the placement problem is NP-hard, a heuristic approach is needed
to solve it in a feasible amount of time. However, the extensive scalabil-
ity analysis of ODP has shown that, with particular application topolo-
gies, simple strategies can be successfully used. We will discuss extensively
about heuristics in the next chapter.



Chapter 5

Heuristics for DSP Operator
Placement

To solve the placement problem in a feasible amount of time, effi-
cient heuristics are needed. To reduce the resolution time, the latter
usually sacrifice the quality of the computed placement solution,
thus leading to sub-optimal application performance. Neverthe-
less, when the application exposes stringent QoS requirements, the
quality of the placement solution is of key importance. We design
several new heuristics and show how they can achieve different
trade-offs between resolution time and solution quality.

In the previous chapter, we have modeled the optimal placement for
DSP applications, obtaining ODP. Then, we have shown that, being the
placement problem NP-hard, ODP cannot be directly adopted in large-
scale DSP systems, because it does not scale well as the problem size in-
creases. However, it provides useful insights on the application place-
ment and can be used to evaluate centralized and decentralized placement
heuristics as well as to develop new placement solutions.

Due to the problem complexity, DSP systems usually adopt heuristics
to determine the DSP application placement in a feasible amount of time.
We are interested in considering geographically distributed environments,
where the ever increasing presence of near-edge/Fog computing resources
can be exploited so to improve scalability and reduce latency of DSP ap-
plications. Nevertheless, in this environment, we need to explicitly take
into account the heterogeneity of computing and network resources, which,
e.g., introduce not negligible communication latencies (see Chapter 1). As
discussed in Chapter 2, several approaches have been already proposed
in literature (e.g., [9, 14, 124, 158, 171, 226]). However, most of them have
been designed to work in a clustered environment with negligible network

129
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latencies (e.g., [64, 118, 174]), whereas others lack of flexibility and can-
not easily optimize new placement goals (e.g., [158, 171]). Furthermore,
a systematic analysis of the existing heuristics’ performance, under differ-
ent deployment configurations and with respect to the (theoretic) optimal
solution, is almost always missing.

In this chapter, we present several heuristics aimed to solve the operator
placement problem while considering the application QoS requirements as
well as the heterogeneity of computing and network resources. While de-
veloping the heuristics, we have adopted guidelines focusing on the fol-
lowing three main aspects: flexibility, optimal model awareness, and quality
of the computed placement solution. As regards flexibility, we have ob-
served that many solutions are specifically crafted for optiming specific
QoS metrics and cannot be easily customized or extended to account for
new metrics (e.g., [34, 122, 158, 171]). Conversely, we aim to provide a gen-
eral framework that can be easily tuned to optimize different QoS metrics
(e.g., response time, availability, network usage) or a combination thereof.
As regards optimal model awareness, we want to explore the possibility of
using the ODP model in an efficient manner, aiming to determine high-
quality placement solutions (as also proposed in [11, 188]). As regards
quality, most of the existing heuristics usually determine best-effort solu-
tions, meaning that they do not provide guarantees, quantitative, or qual-
itative information regarding their ability to compute near-optimal solu-
tions. For example, many placement approaches rely on greedy strategies
(e.g., [9, 14, 64, 174, 124, 213]) that, by moving through local improvements,
can get stuck in locally optimal configurations, thus missing the identifica-
tion of globally optimum ones. Together with the reduced resolution time,
we aim to qualitatively evaluate the heuristics’ ability to compute place-
ment solutions which are as close as possible to the theoretically optimal
ones. This is relevant when applications with stringent requirements run
over heterogeneous and distributed infrastructures, where the inefficient
utilization of the available resources can strongly penalize the application
performance.

We design several heuristics for solving the operator placement prob-
lem and assess their quality using the optimal DSP placement model (i.e.,
ODP). The main contributions of this chapter are as follows.

• We design several heuristics, divided in two main groups: model-based
and model-free. The model-based heuristics, presented in Section 5.4,
revolve around the ODP model. They employ different strategies for
identifying a set of candidate computing resources, which is then used
to solve the placement problem using ODP. The very idea is to execute
ODP on a suitable but limited set of computing nodes, thus reducing
the problem size and, consequently, the resolution time. The model-free
heuristics, presented in Section 5.5, implement the greedy first-fit, lo-



5.1. Related Work 131

cal search, and tabu search approaches for the problem at hand. All
the proposed heuristics rely on a penalty function that captures the cost
of using any given resource of the computing infrastructure with re-
spect to an ideal resource, characterized by infinity capacity, infinity
computing speed and no network delay. Such function helps in driving
the heuristics behavior towards the penalty minimization and allows to
easily deal with single an multi-dimensional QoS attributes.

• We evaluate, through an extensive set of numerical experiments, the
proposed heuristics under different configurations of infrastructure size,
application topology, and optimization objective (Section 5.6). For each
configuration, we use ODP as benchmark in order to investigate the
heuristic performance in terms of resolution time and degradation of
the computed solution. Unfortunately, there is not a one-size-fits-all heuris-
tic, therefore we discuss how the deployment configuration changes the
problem complexity and, in turn, the heuristic performance. Further-
more, by using empirical evidences, we identify the heuristic that, in
general, achieves the best trade-off between resolution time and quality
of the computed placement solution.

The ODP model plays an important role in this chapter. It drives the design
of new heuristics and, most importantly, allows to assess the heuristic qual-
ity by providing, as benchmark, the optimal placement solution as well as
the time needed to its computation.

5.1 Related Work

As extensively discussed in Chapter 2, the DSP placement problem has
been widely investigated in literature under different modeling assump-
tions and optimization goals. The existing solutions aim at optimizing a
diversity of utility functions, such as to minimize the application response
time (e.g., [14, 34, 118, 174]), the inter-node traffic (e.g., [9, 66, 213, 224]), the
network usage (e.g., [158, 171]), or a generic cost function that can comprise
different QoS metrics (e.g., [11, 53, 160, 175, 197]). Inheriting the flexibility
of ODP, our heuristics can optimize several QoS metrics, such as applica-
tion response time, availability, network usage, or a combination thereof.

Furthermore, most of the existing solutions have been designed to work
in a clustered environment, where network latencies are almost zero (e.g. [64,
118, 174]). Although interesting, these approaches might not be suitable
for geo-distributed environments, where network latencies are not negli-
gible and have a negative impact on the application performance. Some
other works, although do not explicitly model the network, indirectly take
into account the network contribution by minimizing the amount of data
exchanged using the network (e.g., [9, 53, 58, 100, 213]). For example, Ei-
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denbenz et al. [53] consider a special type of DSP application topologies
(i.e., serial-parallel decomposable graphs) and propose a heuristic that min-
imizes a processing and a transfer cost. Nevertheless, the proposed solu-
tion works only on resources with uniform capacity. Fischer et al. [58] use a
graph partitioning technique to optimize the amount of data sent between
nodes. Relying on the best-fit meta-heuristic, Aniello et al. [9] and Xu et
al. [213] propose centralized algorithms that assign operators with the goal
of reducing the inter-node traffic exchanged on the network during the ap-
plication execution. Specifically, the solution in [9] co-locates on the same
node the pairs of operators that communicate with high data rate, whereas
the proposal in [213] assigns each operator in descending order of incom-
ing and outgoing traffic, minimizing the inter-node traffic. The same QoS
metric is considered by the decentralized solution presented by Zhou et
al. [224], which finds the placement while balancing the load among com-
puting nodes.

Other works, e.g., [14, 34, 94, 158, 171], explicitly account for network
latencies, thus representing more suitable solutions to operate in a geo-
distributed DSP system. Pietzuch et al. [158] and Rizou et al. [171] min-
imize the network usage, that is the amount of data that traverses the
network at a given instant. Both the solutions propose a decentralized
placement algorithm that exploits a latency space as a search space to find
the best placement solution in a completely distributed way (see Chap-
ters 2 and 3 for further details). Backman et al. [14] and Chatzistergiou
et al. [34] propose two different heuristic approaches to partition and as-
sign group of operators while minimizing the application latency. Huang
et al. [94] model the relationship between the operator execution time and
the amount of residual computing capacity on a resource node and pro-
pose a best-fit heuristic that aims at minimizing the network usage. Also
the solution by Zhu et al. [226] explicitly accounts for computational and
communicational delays; however, they assume that a resource node can
host at most a single operator. We consider this hypothesis not realistic in
today’s DSP systems, therefore our formulation enables the co-location of
operators on a resource node, according to the node computational capac-
ity. Similarly to this last group of works, we explicitly model the impact of
network heterogeneity, in terms of latency, but also in terms of availability.
Relying on ODP, our heuristics can easily account for other QoS metrics
of computing and network resources, such as cost, bandwidth, or energy
capacity.

So far, only few research efforts propose solutions specifically designed
for Fog computing environments. SpanEdge [175] allows to specify which
operators should be placed close to the data sources; exploiting this infor-
mation, a heuristic defines the placement so to minimize a distance func-
tion. Differently, Arkian et al. [11] propose a non-linear formulation for de-
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termining the placement of IoT applications over Fog computing resources,
aiming to minimize a network-related cost function while guaranteeing the
required applications response time. To reduce the resolution time, the au-
thors recur to the problem linearization; nevertheless, in the previous chap-
ter, we have shown that also linear formulations suffer from scalability is-
sues. In this chapter, we provide new heuristics to solve the problem as
so to efficiently deal with large instances of the placement problem. Using
ODP as a benchmark, we also compare the resolution time of the heuristics
against the one to solve the linear integer formulation.

As we discussed in Chapter 5, most of the existing approaches for solv-
ing the operator placement problem rely on mathematical programming
(e.g. [11, 53, 171, 188]), graph theoretic (e.g., [58, 122, 226]), or greedy ap-
proaches (e.g., [9, 14, 64, 174, 124, 213]) as well as custom heuristics (e.g., [34,
158, 175]). We propose different approaches whose core is the optimal
placement problem formulation, i.e., ODP. These approaches explore dif-
ferent strategies for selecting a suitable subset of computing resources, so
to speed-up the resolution time of ODP. Moreover, we also implement sev-
eral other approaches based on the most popular heuristics, namely greedy
first-fit, local search, and tabu search. The work most closely related to ours
has been proposed by Stanoi et al. [188]. Their solution focuses on maximiz-
ing the rate of the input streams that the DSP system can support, acting on
both the order of operators and the placement on the resource nodes. We do
not consider operator re-ordering as possible. Together with the (nonlinear)
problem formulation, the authors propose different heuristics, which rely
on local search, tabu search, and simulated annealing. Differently from all
the above mentioned works, we use the optimal placement model ODP as
a benchmark against which we can compute the heuristics performances
in terms of resolution time and quality of the computed solution. There-
fore, we thoroughly evaluate the proposed heuristics under different con-
figurations of application type, network configuration, and optimization
objective.

A final remark regards the runtime adaptation of the application place-
ment. In this chapter, we explicitly target the initial deployment. A com-
mon and simple approach to perform runtime adaptation relies on peri-
odically solving the placement problem, so to accordingly update the ap-
plication deployment (e.g., [103, 213]). Nevertheless, this approach does
not consider the adaptation costs, which can be detrimental for the appli-
cation performance (as shown in Chapter 3). We postpone the study of the
runtime adaptation problem in Chapters 7–9.



134 Chapter 5. Heuristics for DSP Operator Placement

5.2 Heuristics: Overview

As demonstrated in Chapter 4, ODP is NP-hard. For supporting online op-
erations, we develop several new heuristics for solving the operator place-
ment problem. We present them as belonging to two main groups: model-
based and model-free heuristics.

All of them aim to solve the ODP problem while minimizing the objec-
tive function F , defined as follows1:

F (x,y) = wr
R(x,y)−Rmin

Rmax −Rmin
+ wa

logAmax − logA(x,y)

logAmax − logAmin
+ wz

Z(y)− Zmin

Zmax − Zmin

The termsR(x,y), logA(x,y), andZ(y) represent the application response
time (4.1), its availability (4.8), and the network-related QoS metric (4.18),
respectively. The terms wr, wa, wz ≥ 0, with wr +wa+wz = 1, are weights
for the different QoS attributes. The minimization of this objective function
can be achieved by conveniently selecting the computing resources that
will host and execute the DSP operators. To this end, the heuristics use a
special penalty function, that defines an order relationship among resources,
with respect to their ability in minimizing the objective function F .

The model-based heuristics are named Hierarchical ODP, ODP-PS, and
RES-ODP. They try to restrict the set of candidate computing resources,
before solving the ODP problem. Hierarchical ODP represents the com-
puting infrastructure as organized in a hierarchy of virtual data centers
(VDCs). Then, starting from the hierarchy root, this strategy recursively
explores subsets of VDCs, until identifying the computing resources that
will execute the application operators. Instead of aggregating resources in
VDCs, ODP on a Pruned Space (ODP-PS) works directly with computing
nodes. First, it runs a pruning algorithm so to identify a reduced subset of
computing nodes, i.e., the best candidates for hosting the DSP operators.
Then, it solves ODP by considering only this set of candidate computing
resources. Differently, Relax, Expand and Solve ODP (RES-ODP) exploits the
linear relaxation of ODP so as to identify a first set of candidates comput-
ing resources, which is then augmented by including some neighbor nodes
of the candidates. Ultimately, RES-ODP solves the placement problem by
considering only the set of candidate computing nodes. Sections from 5.4.1
to 5.4.3 present in detail the model-based heuristics.

The model-free heuristics implement some of the well-known meta-
heuristics to solve the ODP problem. Greedy First-fit is one of the most
popular approaches used to solve the bin-packing problem. Our imple-
mentation considers the DSP operators as elements to be (greedily) allo-
cated in bins of finite capacity, which represent the computing resources.

1Observe that, differently from Chapter 4, we here define ODP as a minimization prob-
lem; therefore, the objective function F slightly differs from (4.22).
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Local Search is an algorithm that, starting from an initial placement, greed-
ily moves through the configurations that reduce the objective function
F , until a stopping criterion is met (e.g., no further improvement can be
achieved). Since it only accepts local improvements, it can get stuck in local
optima, missing the identification of a global optimum solution. Tabu Search
uses a simple strategy to escape from local optima and further explore the
solution space, thus improving the probability of finding a globally opti-
mal solution. Starting from an initial placement, through a set of iterations,
it finds a local optimum; then, it explores the search space by selecting the
best non-improving placement configuration, which can be found in the
neighborhood of the local optimum. To avoid cycles back to an already vis-
ited configuration, the procedure uses a limited tabu list of previous moves
that cannot be further explored. Sections from 5.5.1 to 5.5.3 present in detail
the model-free heuristics.

The optimal placement depends on the location of data sources and
sinks; all these heuristics assume that their placement is fixed a priori. If
their location is not defined, we can conveniently pin them before solving
the heuristics.

5.3 Resource Penalty Function

The heuristics involve, at different stages, the selection of suitable nodes
and/or links to guide the placement decisions. To this purpose, we need
to adopt a metric which captures the cost (in terms of objective function F
and application QoS metrics) of using any given node/link resources for
the application deployment and which can be used to efficiently compare
different alternatives.

The problem would be trivial in an ideal setting where we could have
access to a node with infinite capacity, infinite computing speed, and 100%
availability, to which also the data sources ad data sink could be pinned:
in such a case, we would just place all the operators on this single node.
However, in real use cases, because of the limited capacity of a single node
and the data sources and sinks distribution, we need to possibly deploy the
application operators on several computing nodes. This placement intro-
duces network delays and network traffic, and can also suffer from non-
ideal node/link availability. To this end, it becomes natural to associate
to any node/link resource a metric which captures the relative measure
of degradation with respect to an ideal node/link resource, characterized
by infinity capacity, infinite computing speed, and no network delay: the
lower the penalty, the better the resource.

For our heuristics, it is sufficient to associate a metric to links. For each
link (u, v) ∈ Eres we introduce a link penalty function δ(u, v) ∈ [0, 1], which
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assigns to a link (u, v) ∈ Eres a penalty as a measure of degradation with re-
spect to the ideal performance. Given a network link (u, v) ∈ Eres, we
define the link penalty function δ(u, v) as the weighted combination of the
QoS attributes of the link (u, v) and the associated upstream and down-
stream nodes u, v ∈ Vres, respectively. We have:

δ(u, v) = wrδR(u, v) + waδA(u, v) + wzδZ(u, v)

wherewr, wa, wz ∈ [0, 1] are the same weights used inF . The terms δR(u, v),
δA(u, v), and δZ(u, v) model the penalty with respect to the single QoS met-
rics, i.e., application response time, availability, and network usage, respec-
tively. These terms are defined as follows:

δR(u, v) =
R̃(u, v)− R̃min

R̃max − R̃min

δA(u, v) =
log Ãmax − log Ã(u, v)

log Ãmax − log Ãmin

δZ(u, v) =
Z̃(u, v)− Z̃min

Z̃max − Z̃min

where R̃(u, v), log Ã(u, v), and Z̃(u, v) capture the effects of using the link
(u, v) on the application placement, in terms of the specific QoS metric.
We compute these terms by considering the placement of two reference
operators on u and v, respectively; the reference operators allow to neglect
the application-specific contributions. The maximum and minimum values
of R̃(u, v), Ã(u, v), and Z̃(u, v) are respectively M̃max and M̃min, with M̃ =
R̃|Ã|Z̃.

The response time R̃(u, v) on the link (u, v) depends on the network
delay d(u,v) and on the execution time of the reference operators on u and
v, respectively. We have:

R̃(u, v) =


d(u,v) +

R1

Su
+
R1

Sv
if u 6= v

2
R1

Su
if u = v

where R1 is the (unitary) execution time of the reference operators and
Su and Sv are the processing speed-up of u and v, respectively. The term
log Ã(u, v) gauges the probability that the link (u, v) and the nodes u and v
are up and running; it is computed as:

log Ã(u, v) =

{
logA(u,v) + logAu + logAv if u 6= v

logAu if u = v

where A(u,v), Au, and Av are the availability of (u, v), u, and v, respectively.
The network usage Z̃(u, v) models the amount of data that traverses the
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network at a given time. Given the unitary data rate λ1 exchanged between
the reference operators, we define Z̃(u, v) as follows:

Z̃(u, v) =

{
λ1d(u,v) if u 6= v

0 if u = v

5.4 Model-based Heuristics

In this section, we present in detail the model-based heuristics, namely Hi-
erarchical ODP, ODP-PS, and RES-ODP.

5.4.1 Hierarchical ODP

Hierarchical ODP represents the underlying infrastructure as organized in
a limited number of entities, named virtual data centers2 (VDCs). A VDC
abstracts a group of computing nodes and related network links, which
are exposed as an aggregated and more powerful computing element. If
the computing infrastructure contains a very large number of resources,
grouping them in VDCs may also result in a large number of VDCs. To
further reduce the number of entities that represent the infrastructure, af-
ter having created a first level of VDCs, the heuristic can further aggregate
the VDCs in a higher level of VDCs. This process results in a hierarchi-
cal representation of the computing infrastructure, where the number of
resources decreases from bottom up. Hierarchical ODP exploits this struc-
tural property to iteratively solves ODP and filter out the VDCs (i.e., groups
of resources) not suitable for running the DSP operators.

Specifically, Hierarchical ODP determines the application placement as
presented in Algorithm 1 (see the SCHEDULE function). First, it represents
the computing infrastructure as a hierarchy of VDCs, and stores each level
of the hierarchy in Hres, an array of resource graphs (line 5). Soon after, it
explores the infrastructure by navigating the hierarchy from the root down
to the leaves: Hres[l], with l from 0 to length(Hres). At level l, the heuristic
determines the application placement on the available VDCs. If the place-
ment solution S contains only computing resources in Gres (i.e., it does not
contain any VDCs), the placement solution has been found (line 13). If the
placement solution S includes any VDC, the heuristic updates the graph of
resources at Hres[l + 1] by discarding every resource which is not included
in any VDCs of Hres[l] belonging to S (line 11). This operation filters out
the computing resources that are not good candidates for hosting the ap-

2We use the term virtual data center without any correlation with the concept of physical
data centers managed by service providers.
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Algorithm 1 Hierarchical ODP
1: function HIERARCHICALODP(Gdsp, Gres, g)
2: Input: Gdsp, DSP application graph
3: Input: Gres, computing resource graph
4: Input: g, grouping factor
5: Hres ← CREATEHIERARCHY(Gres, g)
6: for l in [0, . . . , length(Hres)] do
7: S ← solve ODP (Gdsp, Hres[l])
8: if the placement S is on VDCs then
9: remove from Hres[l] the VDCs not in S

10: Tres ← inner resources of VDCs in Hres[l]
11: remove from Hres[l + 1] nodes not in Tres
12: else
13: return S . The placement S is on Gres
14: end if
15: end for
16: end function
17: function CREATEHIERARCHY(Gres, g)
18: l← blogg(|Gres|)e − 1
19: Hres[l]← Gres . Hres is an array of graphs
20: while l ≥ 0 do
21: k ← gl

22: C ← createClustersUsingKMeans(k, Hres[l])
23: l← l − 1
24: Hres[l]← createVDCfromClusters(C);
25: end while
26: return Hres

27: end function

plication operators. Afterwards, the heuristic solves ODP on the resource
graph in Hres[l + 1]; this process is repeated until line 13 is reached.

Observe that the hierarchical representation of the computing infras-
tructure makes the exploration of the solution space faster, thus improving
the heuristic scalability. Indeed, although ODP is solved multiple times,
each problem instance deals with a limited number of computing resources
(either VDCs or resources in Gres).

On Resource Aggregation. CREATEHIERARCHY creates the hierarchi-
cal representation of the infrastructure (see Algorithm 1). First of all, it
identifies the number of hierarchical levels l to be created, by consider-
ing the number of computing resources |Gres| and a groupingFactor g: see
line 18, where we use bae to indicate the rounding of a ∈ R to the closest in-
teger in N. Then, the heuristic creates the hierarchical structure by proceed-
ing in a bottom-up manner (lines 20–25). At level l, it uses k-Means [130]
to determine k = gl groups of nodes, so as to minimize the average link
penalty δ(u, v) between every pair of nodes u and v belonging to the same
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group. Each group of resources will create a new VDC of the l-th level
of the hierarchy (line 24). Each VDC is characterized by non-functional at-
tributes that result from the inner computing and network resources. Let Cα
be the set of computing resources grouped around the same centroid α by
k-Means, and let U be the VDC to be created. The availability of U , AU , and
the processing speed-up of U , SU , are defined as the average availability
and speed-up of the computing resources in Cα, respectively. Conversely,
the amount of available resources, ResU , is the overall number of resources
available in Cα. We have:

AU =

∑
u∈Cα Au

|Cα|

SU =

∑
u∈Cα Su

|Cα|
ResU =

∑
u∈Cα

Resu

At level l, the VDCs are interconnected by logical links that result from
the connectivity between the computing resources at level (l − 1) of the
hierarchy. We define Cα ./ Cβ as the set of links that connect an element
in Cα to an element in Cβ , where Cα and Cβ are two groups identified by
k-Means: Cα ./ Cβ

.
= {(u, v)|u ∈ Cα, v ∈ Cβ}. Let U and V be the VDCs

created by Cα and Cβ , respectively. The logical link (U ,V) has availability
A(U ,V) and network delay d(U ,V) defined as the average availability and the
average network delay of the links in Cα ./ Cβ , respectively. We have:

A(U ,V) =

∑
(u,v)∈Cα./Cβ A(u,v)

|Cα ./ Cβ|

d(U ,V) =

∑
(u,v)∈Cα./Cβ d(u,v)

|Cα ./ Cβ|

5.4.2 ODP-PS: ODP on a Pruned Space

ODP on a Pruned Space (ODP-PS) computes the operator placement in two
steps. First, it identifies a suitable subset of computing resources that can
possibly host the application operators. Then, it executes ODP only on the
candidate resources so to determine the operators placement. If the set of
candidates leads to an unfeasible placement, the heuristic tries to expand
this set before solving again ODP.

Algorithm 2 describes how ODP-PS works. To identify a subset of re-
sources that can be shrunk or expanded as needed (line 4), the heuristic
proceeds as follows. First, it combines resources in pairs (u, v) ∈ Eres that
minimize the penalty function δ(u, v). Then, as represented in Figure 5.1,
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Algorithm 2 ODP-PS
1: function ODP-PS(Gdsp, Gres)
2: Input: Gdsp, DSP application graph
3: Input: Gres, computing resource graph
4: Hres ← create tree-like structure of subsets of resources
5: P ← resources hosting the pinned operators of Gdsp
6: Tres ← smallest set in Hres that strictly contains P
7: do
8: S ← solve ODP (Gdsp, Tres)
9: if placement S not found and Tres equals Gres then

10: return NOT_FEASIBLE
11: end if
12: Tres ← smallest set in Hres that strictly contains Tres
13: while (placement S not found)
14: return S
15: end function

the heuristic further combines pairs in sets, so that the summation of the
penalty function δ(u, v) over every pair of resources within the same set is
minimized. By leveraging on this representation (referred as Hres), ODP-
PS can quickly prune the solution space and limit the number of computing
nodes to be considered as candidates for solving ODP (lines 6 and 12). To
define the application placement, ODP-PS first solves ODP on the small-
est set of resources that host the pinned operators (i.e., data sources, sinks),
named Tres in Algorithm 2. If this set of resources cannot execute the whole
DSP application, the heuristic expands Tres, by considering the smallest set
in Hres that strictly contains Tres (line 12); then, it solves again ODP on
the updated resource set Tres (line 8). If the infrastructure does not contain
enough computing resources (line 9), the heuristic terminates by assert-
ing that a placement cannot be found. Differently from Hierarchical-ODP,
ODP-PS computes the application placement directly on a subset of com-
puting resources in Gres, whose cardinality can increase, in the worst case,
up to the whole infrastructure size.

computing resources

Figure 5.1: ODP-PS organizes the computing infrastructure in subsets of
resources, so that the penalty function within each set is minimized.
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Algorithm 3 RES-ODP
1: function RES-ODP(Gdsp, Gres, k)
2: Input: Gdsp, DSP application graph
3: Input: Gres, computing resource graph
4: Input: k, number of new neighbors to include
5: S ← solve ODP (Gdsp, Gres), no integrality constraints
6: Gres ← candidate resources used in S
7: Gres ← add k neighbor for each resource in Gres
8: S ← solve ODP (Gdsp, Gres), with integrality constraints
9: return S

10: end function

5.4.3 RES-ODP: Relax, Expand, and Solve ODP

Relax, Expand, and Solve ODP (for short, RES-ODP) uses the linear relaxation
of ODP to identify an initial set of candidate computing nodes upon which
ODP will be solved. As summarized in Algorithm 3, RES-ODP proceeds
in three steps. First, it solves ODP by relaxing the integrality constraint
for the placement variables x (line 5). Then, the computed placement so-
lution is used to identify an initial set of candidates nodes (referred as Gres
in line 6). While doing this, if the relaxed placement assigns an operator
to multiple computing resources (i.e., for i ∈ Vdsp, ∃u, v ∈ Vres, u 6= v such
that xi,u, xi,v > 0), RES-ODP selects one of them as candidate node with a
uniform probability. Afterwards, RES-ODP expands the set of candidates
by adding k neighbors for each candidate (line 7). The best neighbors are
identified exploiting the link penalty function and, to increase diversifica-
tion, they are selected in a probabilistic manner: the lower the link penalty,
the higher the probability to select the neighbor. We need to extend the
set of candidate resources with respect to the one identified by the linear
relaxation of ODP, because the latter can use a lower number of resources:
indeed, by neglecting the integrality constraints, it can assign fractions of
operators to resources, thus reducing resource wastage and fragmentation.
Nevertheless, in our setting, a placement solution cannot fragment the op-
erators. Finally, RES-ODP determines the application placement by solv-
ing ODP (with integrality constraints) on the extended set of candidate re-
sources (line 8).

5.5 Model-free Heuristics

In this section, we present in detail the model-free heuristics, namely Greedy
First-fit, Local Search, and Tabu Search.
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Algorithm 4 Local Search
1: function LOCALSEARCH(Gdsp, Gres)
2: Input: Gdsp, DSP application graph
3: Input: Gres, computing resource graph
4: P ← resources hosting the pinned operators of Gdsp
5: L← resources of Gdsp, sorted by the cumulative
6: link penalty with respect to nodes in P
7: S ← solve GREEDYFIRST-FIT(Gdsp, L)
8: do . local search
9: F ← value of the objective function for S

10: S ← improve S by co-locating operators
11: S ← improve S by swapping resources
12: S ← improve S by relocating a single operator
13: F ′ ← value of the objective function for S
14: while F ′ < F . placement solution is improved
15: return S
16: end function

5.5.1 Greedy First-fit

The Greedy First-fit heuristic determines the placement solution using a
greedy approach [38]. For each DSP operator, this heuristic selects the
computing resource from a sorted list L in a first-fit manner. Specifically,
let P be the set of computing nodes that host the pinned operators (e.g.,
data sources, sinks). The heuristic adds to a list L the available resources
u ∈ Vres, and sorts them in ascending order of overall link penalty; the lat-
ter is the summation of the link penalty between the node u in L and every
resource in P , i.e.,

∑
v∈P δ(u, v). Then, by navigating Gdsp in a breadth-first

manner, the heuristic defines the placement of every DSP operator on the
computing resources, which are selected from L in a first-fit manner.

5.5.2 Local Search

Local Search explores the solution space by moving from a placement con-
figuration to the next one using a greedy approach. We summarize its be-
havior in Algorithm 4.

As first step, the heuristic creates L, a list of computing resources sorted
in ascending order of cumulative penalty with respect to nodes hosting the
pinned operators (see Section 5.5.1). Then, the heuristic computes the ini-
tial application placement using Greedy First-fit (line 7) and starts the local
search. Specifically, it iterates to discover new placement configurations
with lower value of the objective function F , until no further improve-
ment can be achieved (lines 8–14). At each iteration, neighbor configu-
rations of the current placement are explored, and the best one is chosen
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as current configuration. Three exploration strategies are used, namely co-
locate operators (line 10), swap resources (line 11), and move single opera-
tor (line 12).

Co-locate operators tries to assign two communicating operators on the
same computing resource. Considering the initial configuration where i ∈
Vdsp runs on u ∈ Vres and j ∈ Vdsp on v ∈ Vres, this strategy tries to co-locate
i and j either on u or on v. Swap resources replaces an active computing
resource u with a new one v from L; as a consequence, all the operators
hosted on u are relocated on v. Move single operator relocates a single oper-
ator i from its location u to a new computing resource v, selected from L.
Differently from the previous strategy, all other operators in u are not relo-
cated. Observe that we run the local search until no further improvement
can be found (line 14); however, a more stringent stopping condition can
be used so as to limit the resolution time.

5.5.3 Tabu Search

The drawback of methods with local improvements (i.e., Greedy First-fit,
Local Search) is that they might only find local optima, which nevertheless
depend on the initial configuration, and miss the identification of global
optima. Tabu Search increases the chances of finding a global optimum by
moving, if needed, through non-improving placement configurations.

Algorithm 5 describes Tabu Search. It starts from an initial placement
configuration, which is determined using Greedy First-fit. Then, it com-
putes the neighbor configurations using the exploration strategies presented
in Section 5.5.2 (i.e., co-locate operators, swap resources, and move single oper-
ator) and accepts the best improving placement (line 6). As soon as a lo-
cal optimum is found, the heuristic continues to explore the search space
by selecting the best non-improving configuration found in the neighbor-
hood of the local optimum (line 12). This process increases the possibility
of escaping from the local optimum and finding a new configuration that
further decreases the objective function F (lines 17 and 24). To improve
exploration and avoid cycles, the heuristic uses a tabu list (referred as tl),
which contains the latest tlmax visited solutions which cannot be further
explored. The heuristic terminates when no further improvement can be
achieved (line 23). When the tabu search ends, the heuristic returns the
overall best solution (line 24). Similarly to Local Search, although we run
the heuristic until no further improvement can be found, a more stringent
stopping condition can be used.
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Algorithm 5 Tabu Search
1: function TABUSEARCH(Gdsp, Gres)
2: Input: Gdsp, DSP application graph
3: Input: Gres, computing resource graph
4: S∗ ← NOT_DEFINED . best placement
5: F ∗ ←∞
6: S′ ← LOCALSEARCH(Gdsp, Gres) . local optimum
7: F ′ ← objective function value for S′

8: S ← S′

9: tl← create new tabu list and append S
10: do
11: improvement← false
12: S ← local search from S, excluding solutions in tl
13: F ← objective function value for S
14: if F = F ∗ and S /∈ tl then
15: tl.append(S)
16: end if
17: if F < F ∗ and S /∈ tl then
18: S∗ ← S; F ∗ ← F
19: tl.append(S)
20: improvement← true
21: end if
22: limit tl to the latest tlmax placement configurations
23: while (improvement)
24: if F ′ < F ∗ then
25: S∗ ← S′

26: end if
27: return S∗

28: end function

5.6 Experimental Results

Relying on ODP as benchmark, we evaluate the efficacy and efficiency of
the proposed heuristics under different utilization scenarios. We describe
the experimental setup in Section 5.6.1. Then, in Section 5.6.2, we analyze
the heuristics performance for different application topologies and com-
puting infrastructures. Then, in Section 5.6.3, we discuss the impact of
different objective functions on the heuristics performance, by evaluating
single- and multi-objective optimization functions. Finally, in Section 5.6.4,
we summarize the results and identify the heuristic that achieves, on aver-
age, a good trade-off between resolution time and quality of the placement
solution.
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(a) Smallest network, |Vres| = 36 (b) Largest network, |Vres| = 100

Figure 5.2: BRITE-generated reference networks. The size of nodes and
links is proportional respectively to their connectivity degree and network
delay, respectively

5.6.1 Experimental Setup

We run the experiments on a virtual machine with 4 vCPU and 8 GB RAM;
CPLEX c© (version 12.6.3), the state-of-the-art solver for ILP problems, is
used to resolve ODP.

We consider several geographically distributed infrastructures, where
computing nodes are interconnected with non-negligible network delays.
We use BRITE [144] to generate infrastructures with n2 = {36, 49, 64, 81, 100}
computing nodes, where the latter are interconnected in a two-layered top-
down network: in the top-level, n autonomous systems (AS) communicate
with high-speed links, whereas, within each AS, routers use slower links3.
Each level is generated as a Waxman random graph [207]. The QoS at-
tributes of computing and network resources, together with the random
graph generation parameters, are summarized in Table 5.1. Figure 5.2 pro-
poses a graphical representation of the smallest and the largest computing
infrastructure. The size of nodes is proportional to their connectivity de-
gree, whereas the size of (physical) links is proportional to their network
delay. We assume that a logical link (u, v) ∈ Eres between any pair of re-

3In BRITE, HS and LS specify the dimensions of the plane that will contain the generated
topology. The plane is a square with side HS and it is internally subdivided into smaller
squares with side LS.
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sinkoperatorsource

2l

l

Figure 5.3: Sequential, replicated, and diamond applications

sources u, v ∈ Vres always exists; it results by the underlying physical net-
work paths and a shortest-path routing strategy.

We consider three alternatives of layered topology, representing sequen-
tial, replicated, and diamond DSP applications, where each layer has one or
more operators. The first and last layer contain the sources and sinks of
the application, respectively. The DAGs of sequential, replicated, and dia-
mond applications are shown in Figure 5.3. The replicated application has
one operator in the first and in the last layer, 2l operators in the second
layer, and l in the third one. All the topologies contain the same number of
operators. We assume that source and sink are pinned on the same node.

The baseline scenario defines applications, computing and network re-
sources with homogeneous characteristics. This represents the worst-case
scenario for the CPLEX solver that, using a branch-and-cut resolution strat-
egy, has to explore the whole solution space in order to find and certificate
the optimum. Applications and resources are parametrized as reported in
Table 5.1. The latter also reports the normalization factors used by ODP,
which have been computed using ODP with different optimization objec-
tives4.

Together with the model-based and model-free heuristics presented in
Sections 5.4 and 5.5, we also consider two additional baseline approaches:
ODP+T and Greedy First-fit (no δ). ODP+T limits the time interval granted
to CPLEX for solving ODP through a timeout, that we set to 300 s: if the
optimal solution has not been identified within this time interval, ODP+T
returns the best solution it has computed. Greedy First-fit (no δ) determines

4Different normalization factors should be used for each combination of application and
network topologies. However, in our experimental setting, the different network topologies
have a limited impact on these factors, so we only consider different normalization factors
for the different application topologies.
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the placement by assigning DSP operators to the computing resources us-
ing a first-fit approach; differently from Greedy First-fit, this heuristic does
not rely on the penalty function δ to sort resources inL (as other solutions in
literature usually do, e.g., [9, 213]). We parametrize the different heuristics
after preliminary experiments, aimed to minimize the quality degradation
of the computed placement solutions: Hierarchical ODP uses a grouping
factor g = 2; RES-ODP includes at most k = 5 neighbors for each candidate
node; and Tabu Search limits the tabu list to tlmax = 1000 configurations.
Furthermore, every heuristic uses a timeout on the resolution time equal to
24 hours (value defined for practical reasons).

We compare the proposed heuristics against ODP in terms of resolution
time and performance degradation. The resolution time (rt) represents the
time needed to compute the placement solution. Based on this information,
we define the speed-up (sp) as the ratio between the resolution time of ODP
and the resolution time of the considered heuristic h, i.e., sph = rtODP/rth.
Usually, the heuristics reduce the resolution time but also decrease the qual-
ity of the computed placement solution. To quantify how far is the place-
ment solution by the heuristic h to the optimal placement, we define the
performance degradation (pd) as pdh = (Fh − FODP)/(1 − FODP), where Fh is
the objective function value by h and FODP is the optimal value by ODP. By
definition, Fh ranges between FODP and 1; in turn, pdh ranges between the
best value 0 and the worst value 1.

Table 5.2 summarizes the experimental results that we will discuss in
the following sections.
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Table 5.1: Parameters of the experimental setup.

Infrastructure Application
|Vres| {36, 49, 64, 81, 100} |Vdsp| 20
Au U(97%, 99.99999%) Ci 1
Cu 2 Ri 3 ms
Su 1.0 λ(i,j) 100 tuples/s

A(u,v) 100%

avg d(u,v) 17 ms

BRITE’s parameters used to generate the infrastructure network
Resource Random Graph Latency Space

AS Waxman (α: 0.15; β 0.20) HS: 1000; LS: 100
Routers in AS Waxman (α: 0.15; β 0.20) HS: 10000; LS: 1000

Normalization factors for the ODP objective function
Diamond Application

Amin Amax Rmin Rmax Zmin Zmax

58.8 % 97.2 % 74 ms 410 ms 132.2 KB 1409.2 KB
Sequential Application

Amin Amax Rmin Rmax Zmin Zmax

58.8 % 97.2 % 114 ms 3098 ms 8.4 KB 303.8 KB
Replicated Application

Amin Amax Rmin Rmax Zmin Zmax

58.8 % 97.2 % 49 ms 247 ms 52.0 KB 446.4 KB
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Table 5.2: Heuristics comparison. For each heuristic, the first row reports the resolution time speed-up (sp), whereas the
second one represents the performance degradation (pd). The last column reports the average value of speed-up and per-
formance degradation obtained by considering the performance of all the experiments.

Algorithm Diamond Application Sequential Application Replicated Application Average
wa wr wz ∗ wa wr wz ∗ wa wr wz ∗

ODP rt 36 (s) 0.1 0.1 0.1 0.7 0.7 41.4 25.2 31.1 8.2 915.2 19682.8 86404.5
rt 100 (s) 0.7 0.8 0.7 2.6 4.9 2174.8 388.1 5225.4 168.6 32193.9 86407.0 86411.6

Hierarchical ODP sp 17.19 4.40 14.46 6.26 74.25 448.39 170.30 1425.05 52.21 602.77 110.65 269.64 266.30
pd 5% 17% 9% 14% 7% 3% 3% 8% 22% 11% 4% 11% 10%

ODP-PS sp 0.88 3.45 10.79 3.29 1.28 127.17 71.07 896.99 1.02 104.71 52.44 180.92 121.17
pd 0% 7% 2% 4% 0% 0% 0% 3% 0% 2% 2% 2% 2%

RES-ODP sp 0.01 2.93 4.95 1.93 0.05 6.77 9.96 6.27 0.03 73.80 16.05 10.51 11.10
pd 2% 0% 0% 1% 0% 0% 0% 0% 0% 0% 2% 0% 0%

Local Search sp 0.09 0.68 0.45 1.64 0.47 150.54 72.47 333.99 0.38 353.07 587.85 1088.04 215.81
pd 2% 0% 0% 1% 0% 1% 1% 2% 0% 4% 2% 3% 1%

Tabu Search sp 0.07 0.31 0.21 0.84 0.26 65.91 30.64 151.26 0.16 64.93 207.63 480.08 83.53
pd 2% 0% 0% 1% 0% 1% 1% 2% 0% 4% 1% 3% 1%

ODP+T sp 1.74 1.88 1.79 2.22 1.98 2.32 0.96 5.90 1.42 40.75 134.63 261.35 38.08
pd 0% 0% 0% 1% 0% 0% 0% 1% 0% 49% 0% 22% 6%

Greedy First-fit sp 354.60 454.40 338.80 1949.32 2821.80 56 · 104 19 · 104 168 · 104 6 · 104 12 · 106 40 · 106 78 · 106 11 · 106
pd 29% 0% 0% 2% 29% 7% 7% 12% 29% 5% 7% 8% 11%

Greedy First-fit sp 354.60 454.40 338.80 1949.32 2821.80 56 · 104 19 · 104 168 · 104 6 · 104 12 · 106 40 · 106 78 · 106 11 · 106
(no δ) pd 29% 34% 9% 15% 29% 7% 7% 10% 29% 24% 15% 16% 19%
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5.6.2 Application Topologies and Network Size

In this experiment, we compare the performance of the heuristics against
ODP, when the optimization objective is the minimization of the applica-
tion response time R. This corresponds to set the weights wr = 1, wa =
wz = 0 to the objective function F (see Section 5.2). We evaluate the heuris-
tics for different application topologies (i.e., diamond, sequential, repli-
cated) and different size of the computing infrastructure (i.e., when the
number of nodes grows from 36 to 100). Figure 5.4 reports the heuristic
resolution time as the number of computing resources increases, and, as a
horizontal red line, the timeout (set at 24 h). For sake of clarity, we do not
represent ODP+T, whose resolution time is like the one by ODP limited to
300 s, and the Greedy First-fit approaches, whose resolution time is at most
1 ms. By aggregating performance over the different configurations of in-
frastructure size, Figure 5.5 shows the average speed-up on resolution time
and the average performance degradation of the heuristics for the different
application topologies.

Diamond Application. From Figure 5.4, we readily see that the ap-
plication topology strongly influences the overall behavior of ODP and
the heuristics. The diamond application has the lowest computational de-
mand, which leads to a resolution time always below 10 s (see Figure 5.4a).
Conversely, the replicated application is the most demanding one and, when
ODP is used, the resolution time reaches 3 × 104 s, which is 3 orders of
magnitude higher than the one experienced for the diamond application
(see Figure 5.4c). When the diamond application has to be deployed, ODP
and the model-based heuristics are very competitive and can quickly com-
pute the placement solution in less than 1 s, even when the infrastructure
includes 100 computing nodes. In this case, Local Search and Tabu Search
perform worse than the others: they register a resolution time that grows
up to 19 s on the largest infrastructure. Interestingly, these heuristics are
slower then ODP (they obtain a speed-up factor lower than 1). Greedy
First-fit, with and without the penalty function δ, computes the placement
solution in 1 ms, independently from the infrastructure size.

Considering the performance degradation reported in Figure 5.5a, we
can identify two main groups of heuristics. In the first one, we find the
approaches that compute lower quality placement solutions (i.e., with not
negligible performance degradation), namely ODP-PS, Hierarchial ODP,
and Greedy First-fit (no δ). As expected, since Greedy First-fit (no δ) does
not consider the QoS attributes of computing resources, it determines place-
ment solutions having a very limited quality. Hierarchical ODP, the fastest
model-based heuristic, shows a performance degradation of about 17%,
whereas ODP-PS has a degradation of 7%. All the other heuristics identify
the optimal placement. Interestingly, besides being very fast (with a speed-
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(c) Replicated application

Figure 5.4: Resolution time of different policies to define the application
placement that minimizes the response time R, when several application
topologies and size of the computing infrastructure are considered.

up of 454 times), Greedy First-fit also identifies the optimal placement so-
lution. As a consequence, also Local Search and Tabu Search identify the
optimum; nevertheless, they are even slower than ODP.

Sequential Application. When the sequential application has to be de-
ployed on the computing infrastructure, the benefits of the heuristics are
clearer: they can reduce the resolution time up to 3 orders of magnitude
with respect to ODP. From Figure 5.4b, we can observe a non-monotonic
trend on the resolution time, especially for ODP. It depends on the differ-
ent network topologies that, being randomly generated, do not preserve
exactly the same connectivity as the network size increases. Differently
from the case of diamond applications, here all the heuristics have a reso-
lution time smaller than the one by ODP, and they present only a limited
performance degradation (see Figure 5.5b). More precisely, Tabu Search,
ODP-PS, Local Search, and Hierarchical ODP have speed-up from 66 to
448 times, respectively, with a performance degradation always below 3%
(see Table 5.2). Observe that, in this case, Local Search and Tabu Search
are effective, because they improve the sub-optimal placement solutions
identified by Greedy First-fit.
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(a) Diamond application
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(b) Sequential application
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(c) Replicated application

Figure 5.5: Policies performance to compute the application placement that
minimizes the response time R, when different application topologies are
considered. Each point reports the average performance on the different
infrastructure settings.

Replicated Application. The replicated application is characterized by
a higher number of streams exchanged between operators; this makes the
optimization function harder to minimize. In general, all the placement
policies have a resolution time greater by one order of magnitude than the
case of sequential application. From Figure 5.4c, we observe an exponen-
tial growth of the ODP resolution time when the number of computing
resources increases. The model-based heuristics successfully restrict the
solution space and present a resolution time that increases slowly as the in-
frastructure size grows. Considering the case of 100 resources, the slowest
model-based heuristic, i.e., RES-ODP, has a resolution time in the order of
102 seconds. Local Search and Tabu Search obtain similar performance. As
appears from Figure 5.5c, ODP-PS and RES-ODP are as fast as Tabu Search,
but they compute a better placement solution (performance degradation of
2%, 0%, and 4%, respectively). In this case, Hierarchical ODP is faster than
Tabu Search and Local Search with a speed-up of 603 times (instead of 353
and 65, respectively), however it has a higher performance degradation,
i.e., 11%. The resolution time of ODP is prohibitively high; surprisingly,
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ODP+T performs very badly in this case, reporting a 49% of performance
degradation. Greedy First-fit is very beneficial for replicated applications,
because of its limited resolution time (1 ms); moreover, the penalty func-
tion further improves this heuristic, by reducing performance degradation
from 24% to 5%.

Discussion. In these experiments, the heuristics achieved different trade-
offs between speed-up and performance degradation. ODP+T turned out
not to be a good resolution approach: in case of replicated application, it
obtained a performance degradation higher than Greedy First-fit (no δ). In
most of the cases, Local Search and Tabu Search improved the placement
solution with respect to Greedy First-fit. ODP-PS and RES-ODP behaved
similarly to Local Search and Tabu Search, determining placement solu-
tions with a limited performance degradation. The fastest model-based
heuristic is Hierarchical ODP, which obtained, in the worst case, a rather
high 17% of performance degradation (which is still lower than the one by
Greedy First-fit (no δ)).

We summarize the outcomes of these experiments as follows. First, the
application topology strongly influences the complexity of computing the
optimal placement: a diamond application is less demanding than a se-
quential one, which, in turn, is less demanding than a replicated appli-
cation. Solving the ODP model is feasible for diamond applications (it
takes at most 0.8 s); nevertheless, this does not hold true for sequential
and replicated applications, which lead to an increment of resolution time
up to 9 hours. Second, the infrastructure size increases the resolution time
of ODP; nevertheless, working on a subset of resources, the heuristics are
less prone to increase their resolution time. In these experiments, when
the infrastructure size increased from 36 to 100 resources, the resolution
time of ODP has grown up to 35 times, whereas the resolution time of the
model-based heuristics at most up to 20 times and of the other heuristics at
most up to 6 times. Third, the penalty function δ, presented in Section 5.3,
helps to improve the quality of placement solutions. Greedy First-fit is the
fastest heuristic and, independently from the application topology, deter-
mines a placement solution in 1 ms. When the penalty function δ is used,
Greedy First-fit has strongly reduced the performance degradation of the
computed solutions.

5.6.3 Optimization Objectives

In the previous set of experiments, we have investigated the heuristics
behavior when they minimize the application response time. In this ex-
periment, we first consider the other single-objective optimization func-
tions (i.e., maximization of the application availability and minimization of
network usage), and then we focus on a multi-objective function. In Ta-
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(a) Minimization of the response time R
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(b) Maximization of the availability A
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(c) Minimization of the network usage N

Figure 5.6: Policies performance to compute the application placement,
when different single-objective optimization functions are considered.
Each point reports the average performance on different infrastructure set-
tings and application topologies.

ble 5.2, we report the performance metrics for each combination of appli-
cation topology and optimization objective. In the following, we describe
the heuristics behavior aggregated by optimization objective: for each one,
we consider the average value of speed-up and performance degradation
which have been experienced for all the application topologies.

Response Time. In Section 5.6.2, we have considered the minimization
of the response time as optimization objective (i.e., wr = 1, wa = wz = 0).
Figure 5.6a reports the heuristics performance when this objective function
is considered (note that, in this figure, we aggregate results on the differ-
ent application topologies). Figures 5.6b and 5.6c report the heuristic per-
formance when the placement goal is the maximization of the application
availability (i.e., wa = 1, wr = wz = 0) and the minimization of network
usage (i.e., wz = 1, wa = wr = 0), respectively. From Figure 5.6, we can
easily observe that the different optimization objectives lead to different
performance of the heuristics. The minimization of response time and net-
work usage result in similar trade-offs between speed-up and performance
degradation. However, the maximization of availability deeply changes
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the heuristics behavior.
Availability. In the evaluated settings, the maximization of the appli-

cation availability imposes a limited computational demand. Even in the
most complex configuration, i.e., ODP deploying a replicated application
on an infrastructure with 100 nodes, the resolution time is at most 169 s
(see Table 5.2). Interestingly, Local Search, Tabu Search, and RES-ODP per-
form worse than ODP (they have speed-up lower than 1). Being ODP very
fast, ODP-PS does not significantly reduce its resolution time, obtaining a
limited speed-up (see Figure 5.6b). We can also observe that most of the
heuristics (i.e., all but Hierarchical ODP and Greedy First-fit) determine
near-optimal placement solutions, introducing at most 2% of performance
degradation. In particular, Table 5.2 reports that this is especially true for
sequential and replicated applications, where the performance degradation
is reduced to 0%. Similarly to the previous scenario, Hierarchical ODP has
a rather high speed-up (up to 2 orders of magnitude), albeit it degrades the
quality of the computed solution (10% on average). For this optimization
function, Greedy First-fit is not very effective, even when it is equipped
with the penalty function δ. With and without the penalty function, the
performance degradation of the computed solution is close to 30%; this re-
sult clearly shows the benefit of performing a local or a tabu search so as to
escape from the local optimum and improve the solution quality.

Network Usage. As we can see from Figure 5.6c, when network usage
is optimized, the heuristics behave similarly to the case of response time
minimization. Most of the heuristics have a speed-up of 2 order of magni-
tude and achieve a very limited performance degradation (always below
9%, except for Greedy First-fit (no δ)). As reported in Table 5.2, the res-
olution time changes widely with respect to the application topology. In
general, ODP and the other heuristics can determine the placement of the
sequential and diamond applications rather quickly (at worst, ODP takes
388 s). As regards the sequential application, optimizing the network us-
age is apparently less computational demanding than optimizing response
time. Nevertheless, when the replicated application is considered, ODP
has a very high resolution time and the need of heuristics is very well mo-
tivated. More precisely, when the infrastructure contains 100 computing
resources, ODP always reaches the timeout and returns the best feasible
solution (i.e., it requires more than 24 h to identify the optimal solution).
Albeit not the optimum, the computed placement solutions after 24 h are
better than the ones by the other heuristics. As shown in Figure 5.6c, the
Greedy First-fit heuristics are still the fastest ones, computing the place-
ment in 1 ms. Excluding the case of sequential applications, the penalty
function δ improves the placement quality by reducing the solution per-
formance degradation from 9% to 0%, for diamond applications, and from
15% to 7%, for replicated applications. Also in this setting, Local Search and
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Figure 5.7: Policies performance to compute the application placement,
when a multi-objective optimization function is considered. The optimized
QoS metrics are equally weighted. Each point reports the average perfor-
mance on different infrastructure settings and application topologies.

Tabu Search are beneficial for improving the solution quality; they obtain
a performance degradation of 2% and 1%, respectively, for the replicated
application (i.e., the most demanding one). Figure 5.6c also shows that
most of the heuristics achieve a speed-up of 2 orders of magnitude with
a very limited performance degradation. Hierarchical ODP has slightly
higher performance degradation. A very good trade-off is obtained by Lo-
cal Search with a speed-up of 588 times (i.e., in the worst case, it takes up to
3 minutes to compute the placement solution) and only 2% of performance
degradation. ODP+T has overall good performance: with replicated appli-
cations, where the resolution time is very high, the early stop due to the
timeout does not compromise the solution quality. This happens because,
even though CPLEX has found the best solution within the first 300 ms, it
needs to further explore the solution space so to certify the solution opti-
mality. By taking up to 1.5 hours to compute the placement, RES-ODP is
not well suited to be applied in online DSP systems.

Multi-objective Optimization. We now consider the case of multi-
objective optimization function: the application requires a placement so-
lution that minimizes response time and network usage and, at the same
time, maximizes the availability. This corresponds to assign the weights
wa = wr = wz = 0.33 to the optimization function F . Figure 5.7 summa-
rizes the experimental results. From Table 5.2, we can see that this is the
most challenging scenario: the resolution time of ODP is higher than all
the other configurations of objective functions. ODP takes at most 2.6 s to
determine the placement of the diamond application, meaning that, in this
case, ODP is very competitive (only Tabu Search has, on average, longer
resolution time — its speed-up is 0.84). Conversely, for sequential applica-
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tions, ODP shows its scalability issues, by requiring about 1.5 h to compute
the placement. The case of replicated applications is even worse: in most
of the cases (even with the 36 computing resources), ODP reaches the time-
out at 24 h and does not certify the computed best solution as the optimal
one. By observing Figure 5.7, we can classify the heuristics in four groups,
according to their performance. The first group contains RES-ODP, which
has a very limited speed-up: on average, it is one order of magnitude faster
than ODP (i.e., in case of replicated application, RES-ODP is prohibitively
slow — it requires 2.3 h to compute the placement solution). The second
group contains ODP-PS, Tabu Search, and Local Search. They achieve a
very good trade-off between resolution time and solution quality, having
speed-up from 2 to 3 orders of magnitude with respect to ODP and per-
formance degradation at most of 4%. In the most challenging setting (i.e.,
replicated application), ODP-PS and Local Search compute the placement
in 8 and 1.3 minutes, respectively. The third group comprises ODP+T and
Hierarchical ODP. Their speed-up is very similar to the one by the pre-
vious group of heuristics; nevertheless, their performance degradation is
slightly higher: the average performance degradation by Hierarchical ODP
and ODP+T is around 10%, which, in the worst case, grows up to 14% and
22%, respectively. The fourth group comprises the Greedy First-fit heuris-
tic, which is characterized by a very high speed-up and a rather limited
performance degradation (it is always below 15%). The penalty function δ
improves the computed solution quality in, basically, all the experiments.
Interestingly, for sequential applications, there is an inversion of tendency
and δ reduces the application quality by 2%: this is an outlier behavior,
which could be caused by the computing infrastructure topology5 or by
the complexity of the objective function.

Discussion. This set of experiment has extended the results of Sec-
tion 5.6.2 by investigating the heuristics under different optimization ob-
jectives. We have seen that, together with the application topology and
infrastructure size, also the optimization goal impacts on the heuristics
performance. In general, we have empirically observed that some single-
objective functions can be more easily optimized (e.g., availability) than
others (e.g., network usage). In the worst case, i.e., minimize the network
usage for a replicated application, the resolution time of ODP grows from
169 s to 24 h, whereas the resolution time of Hierarchical ODP, the fastest
heuristics excluding Greedy First-fit, grows from 3.2 s to 13 min. Inter-
estingly, when we are interested in maximizing the application availabil-
ity, the well-know meta-heuristics, i.e., Local Search and Tabu Search, are
rather slow. Conversely, Greedy First-fit is tremendously fast but computes
low quality solutions (up to 29% of performance degradation).

5Our results present this anomaly only for the infrastructure with 49 and 64 computing
nodes.
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Figure 5.8: Performance distribution of ODP and the heuristics, consider-
ing their speed-up and performance degradation obtained throughout the
whole experimental session.

Determining an application placement that optimizes the multi-objective
function (i.e., when wa = wr = wz = 0.33 in F ) represents the hardest case.
Here, although Hierarchical ODP performs well in terms of speed-up and
performance degradation (at most, 14%), Local Search shows even better
performances (resolution time in the order of minutes and at most 3% of
performance degradation).

All these experiments clearly show that it is not easy to identify the best
heuristic: in the different scenarios, the heuristics achieve a different trade-
off between speed-up and performance degradation. Nevertheless, these
experiments provide us enough data to discuss which are the heuristics
that, on average, show a good behavior.

5.6.4 Heuristics Overall Performance

In this section, we analyze the heuristics performance obtained during the
whole experimental evaluation, aiming to identify their average behavior.
To this end, in Table 5.2, we report the average values of speed-up and
performance degradation obtained for each combination of infrastructure
size, application topology, and optimization objective. Figure 5.8 also re-
ports the distribution of these two performance indexes (i.e., speed-up and
performance degradation): each boxplot reports the minimum value, the
5th percentile, the median, the 95th percentile, and the maximum value.
We summarize the experimental results as follows.

The diamond application presents a topology whose complexity can be



5.6. Experimental Results 159

efficiently handled by ODP and the model-based heuristics. Interestingly,
in this case, Tabu Search and Local Search perform poorly. With differ-
ent application topologies, we need to use heuristics to efficiently deploy
the application. This is especially true when complex objective functions
should be optimized (e.g., multi-objective functions).

The Greedy First-fit heuristic is the fastest one, although it obtains solu-
tion with lowest quality (19% of average performance degradation). How-
ever, when equipped with our penalty function δ, the quality of this heuris-
tic increases: it decreases the quality degradation of the computed place-
ment solution from 19% to 11%, on average. These results empirically show
the benefits of our penalty function δ, which is adopted also by the other
heuristics.

In several configurations, ODP has a prohibitively high resolution time.
We have shown that the idea of applying a stringent timeout to the CPLEX
solver (as ODP+T does) does not always work fine. We have shown that,
in some cases, ODP+T computes low quality solution, obtaining a perfor-
mance degradation higher than Greedy First-fit (no δ). Figure 5.8 shows
that the 95th percentile and the maximum value of performance degrada-
tion by ODP+T are the highest achieved in our experiments.

The heuristic ODP-PS, RES-ODP, Local Search, and Tabu Search have a
very good trade-off between speed-up and performance degradation. The
latter is always below 10%, whereas the resolution time of these heuristics
is distributed on a wide range. We observe that RES-ODP shows an inter-
esting behavior, indeed it always computes near-optimal solutions (with
at most 2% of performance degradation), by reducing the resolution time
of ODP by 11 times on average. Nevertheless, in the worst case, it takes
several hours to compute the placement solution. As regards the other
heuristics (i.e., ODP-PS, Local Search, and Tabu Search), there is not a net
supremacy of one on the others. However, we consider Local Search to be
the one having the best performance trade-off: it shows an average speed-
up of 216 times and performance degradation of 1% with respect to ODP. In
the worst case, Local Search took 269.8 s to compute the placement solution.
Furthermore, this heuristic can easily extended to further limit the resolu-
tion time by using time-based stopping criteria, e.g., by setting a timeout on
the exploration phase or by limiting the number of neighbor configurations
to evaluate (see Section 5.5.2).

We also observe that Hierarchical ODP is very fast (average speed-up
of 266 and 1.2 s as median value of resolution time) and shows an aver-
age performance degradation of 10%. As such, it determines, on average,
higher quality solutions with respect to those by Greedy First-fit (indepen-
dently whether the latter is equipped with or without the penalty function
δ).
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To conclude, we have shown that the combination of application topol-
ogy, optimization function, and infrastructure size can deeply change the
complexity of the placement problem to be solved. Moreover, we have
shown that is not easy to identify a single heuristic that always achieves
the best performance: e.g., see Local Search for diamond applications in Ta-
ble 5.2. By analyzing the overall behavior in our experiments, we have con-
cluded that Local Search achieves the best performance trade-off between
efficiency (i.e., speed-up) and efficacy (i.e., performance degradation).

5.7 Summary

In this chapter, we have presented several heuristics for computing the
placement of DSP applications over geo-distributed infrastructures. Re-
lying on a penalty function, these heuristics explicitly take into account
the heterogeneity of optimization goals and computing and network re-
sources. Some of them are built around the ODP model (i.e., Hierarchi-
cal ODP, ODP-PS, and RES-ODP), whereas others implement well-known
meta-heuristics for the problem at hand (i.e., Greedy First-fit, Local Search,
and Tabu Search).

We have conducted a thoroughly experimental evaluation, where we
investigated the heuristics’ performance under different configurations of
application topology, computing infrastructure size, and deployment opti-
mization objective. To this end, we have used ODP as benchmark to de-
termine the heuristics speed-up on resolution time and the quality of the
computed placement solution (i.e., closeness to the optimal placement so-
lution).

The experimental results have shown that the heuristics achieve dif-
ferent speed-up and performance degradation for the different combina-
tions of application topology, infrastructure size, and optimization objec-
tive. There is not a one-size-fits-all heuristic, and we have discussed how the
different approaches behave under different deployment configurations.
By aggregating the results over every evaluated configuration, we have
identified Local Search as the heuristic that achieves the best trade-off be-
tween high speed-up and reduced performance degradation.



Chapter 6

Optimal Operator Replication
and Placement

To keep up with the high volume of daily produced data, the op-
erators of a DSP application can be replicated and placed on multi-
ple, possibly distributed, computing nodes, so to process data in
parallel. We propose a general formulation of the optimal DSP
replication and placement problem that, differently from most ex-
isting works, jointly optimizes these two deployment actions.

In the previous chapters, we have seen the importance of the placement
problem for geo-distributed infrastructures and how our unified general
formulation of the problem helps to evaluate existing heuristics as well as
to develop new ones. In the Big Data era, DSP applications should be capa-
ble to seamlessly process huge amount of data, which require to scale their
execution on multiple computing nodes, because a single machine cannot
provide enough processing power. To this end, these applications usually
exploit data parallelism, which consists in increasing or decreasing the num-
ber of parallel instances for the operators, so that each instance can process
a subset of the incoming data flow in parallel (e.g., [65, 81]). Moreover,
since data sources can be geographically distributed, the execution of DSP
applications should also take advantage of the ever increasing presence of
distributed Cloud and Fog computing resources. Indeed, the latter can im-
prove the system scalability and reduce latency by moving the computation
close to data sources and consumers.

In this chapter, we present and evaluate a general formulation of the
optimal DSP replication and placement (ODRP) as an ILP problem. ODRP
represents a unified general formulation of the operator replication and
placement problem, which takes into account the heterogeneity of appli-
cation requirements as well as computing and network resources. Differ-
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ently from most works in literature [53, 132, 145, 196], ODRP can jointly
determine the application placement and the replication of its operators,
while optimizing the QoS attributes of the application. At the same time,
ODRP provides a benchmark against which other centralized and decen-
tralized placement and replication algorithms can be compared. The main
contributions of this chapter are as follows.

• We model the ODRP problem as an ILP problem, which can be used to
optimize different QoS metrics, such as response time, cost, and avail-
ability (Sections 6.2 and 6.3).

• We present a prototype scheduler for Distributed Storm, where the DSP
application operators are replicated and placed according to the ODRP
solution (Section 6.4).

• We thoroughly validate and evaluate the proposed ODRP model, rely-
ing on a set of numerical experiments, aimed to show the benefit of a
joint optimization of replication and placement (Section 6.5).

• Relying on the Storm-based prototype and the benchmark application
that addresses the DEBS 2015 Grand Challenge [99], we propose a sec-
ond set of experiments. The latter aims to show strengths and draw-
backs of the proposed solution in a real setting. Moreover, the prototype-
based experiments aim to confirm the outcomes of the numerical ex-
periments and show how ODRP can contextually optimize several QoS
metrics (Section 6.6).

6.1 Related Work

To deploy a DSP application, a DSP system needs to determine the repli-
cation degree of the application operators and their placement on the com-
puting infrastructure. The literature analysis presented in Chapter 2 has
shown that, although widely investigated, these problems are often con-
sidered separately and only few works study their joint optimization.

Specifically, most works in literature first compute the operator place-
ment without determining the replication degree for each operator. Then,
in response to performance deterioration, they use a different policy to ac-
cordingly change the number of operator replicas (e.g., [78]). This two-
stage approach requires to reschedule the DSP application multiple times,
thus possibly incurring in higher overhead.

The placement problem has been investigated in literature under differ-
ent modeling assumptions and optimization goals, e.g., [53, 117, 196]. Our
problem formulation can be adjusted to take into account these different
utility functions. As regards the replication problem, many research efforts
focus on scaling the amount of operator replicas in response to changes ob-
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served in some monitored performance metric. Some works, e.g., [30, 80],
exploit threshold-based policies based on the utilization of either the sys-
tem nodes or the operator instances. Other works, e.g., [65, 132, 145], use
more complex policies to determine the scaling decisions. Lohrmann et
al. [132] propose a strategy that enforces latency constraints by relying on a
predictive latency model based on queuing theory. Mencagli [145] present
a game-theoretic approach where the control logic is distributed on each
operator.

Differently from the above mentioned works, in this chapter, we pro-
pose a single-stage approach to determine both the placement and the par-
allelism degree of the operators in a DSP application. Specifically, we build
on the ODP model presented in Chapter 4, which provides a general formu-
lation of the optimal DSP placement, taking into account the heterogeneity
of computing and networking resources. ODRP extends the formulation of
ODP so as to determine the optimal number of replicas for each operator
contextually to their placement on the underlying infrastructure.

The most closely related work to ours has been proposed by Madsen
et al. [138]. The authors propose an ILP model that computes replication
of co-location groups, together with load balancing among them. These
co-location groups are pre-determined relying on a heuristic that aims to
minimize inter-node traffic. Nevertheless, differently from our solution,
Madsen et al. do not consider network delays among computing nodes.

Interestingly, Heinze et al. [78, 81] propose a model to estimate the la-
tency spike created by a set of operator movements. This model is then
used to define an operator placement algorithm based on a bin packing
heuristic, which minimizes the latency violations and focuses only on the
placement of the newly added operators. We present an optimal problem
formulation that targets the initial placement decision and can be used to
benchmark existing heuristics.

An important issue related to operator replication regards the manage-
ment of stateful operators (see Chapter 2). The approach we propose in
this chapter jointly places and replicates operators, thus saving the over-
head and latency penalty incurred by stateful operator migrations in case
of disjointed replication and placement decisions. Anyway, the latter still
occur when the deployment is adapted at runtime and we will address this
issue in the next chapters.

6.2 System Model and Problem Statement

In this section, we recall the resource model from Chapter 4, extend the
DSP application model for representing replication, and define the operator
replication and placement problem. For the sake of clarity, in Table 6.1 we
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Table 6.1: Main notation adopted in this chapter

Symbol Description
Gdsp Graph representing the DSP application
Vdsp Set of vertices (operators) of Gdsp
Edsp Set of edges (streams) of Gdsp
Ci Cost of deploying operator i ∈ Vdsp
Ri Latency of i ∈ Vdsp on a reference processor
Resi Resources required to execute i ∈ Vdsp
ki Maximum replication degree of i ∈ Vdsp
λ(i,j) Average tuple rate exchanged on (i, j) ∈ Edsp
b(i,j) Avg. number of byte per tuple on (i, j) ∈ Edsp
Gres Graph representing computing and

network resources
Vres Set of vertices (computing nodes) of Gres
Eres Set of edges (logical links) of Gres
Au Availability of node u ∈ Vres
Resu Amount of resources available at u ∈ Vres
Su Processing speed-up of u ∈ Vres
A(u,v) Availability of (u, v) ∈ Eres
C(u,v) Transmission cost per data on (u, v) ∈ Eres
d(u,v) Network delay on (u, v) ∈ Eres
V i
res ⊆ Vres Subset of nodes where i ∈ Vdsp can be placed
X @ X Multiset of elements in X
xi,U Placement of i ∈ Vdsp on nodes in U @ V i

res

y(i,j),(U ,V) Placement of (i, j) ∈ Edsp on the network paths
from nodes in U @ V i

res to nodes in V @ V j
res

zu Activation variable for u ∈ Vres
z(u,v) Activation variable for (u, v) ∈ Eres

summarize the notation used throughout the chapter.

6.2.1 Resource Model

Computing and network resources can be represented as a labeled fully
connected directed graph Gres = (Vres, Eres), where the set of nodes Vres
represents the distributed computing resources, and the set of links Eres
represents the logical connectivity between nodes. At this level, links repre-
sent the logical connections across the network, which correspond to net-
work paths between nodes (as determined by the network operator routing
strategies). Each node u ∈ Vres is characterized by: Resu, the amount of
available resources; Su, the processing speed-up on a reference processor;
and Au, its availability, i.e., the probability that u is up and running. Each
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link (u, v) ∈ Eres, with u, v ∈ Vres, is characterized by: d(u,v), the network
delay between node u and v; A(u,v), the link availability, i.e., the probability
that the link between u and v is active; and C(u,v), the cost per unit of data
transmitted along the network path between u and v. This model considers
also edges of type (u, u) (i.e., loops); they capture network connectivity be-
tween operators placed on the same node u, and are considered as perfect
links, i.e., always active with no network delay. We assume that the con-
sidered QoS attributes can be obtained by means of either active/passive
measurements or through some network support (e.g., SDN).

6.2.2 DSP Model

A DSP application can be represented at different levels of abstraction. We
distinguish between a user-defined abstract model and an execution model,
which is used to run the application.

A DSP abstract model can be represented as a labeled DAG Gdsp =
(Vdsp, Edsp), where the nodes in Vdsp represent the application operators,
data sources and sinks, and the links in Edsp represent the streams between
nodes. Due to the difficulties in formalizing the non-functional attributes
of an abstract operator, we characterize it with the non-functional attributes
of a reference implementation on a reference architecture: Resi, the amount
of resources required for running the operator; Ri, the operator latency
(which accounts for the waiting time on the input queues as well as the
execution time of a unit of data); Ci, the cost of deploying an instance of
the operator. We characterize the stream exchanged from operator i to j,
(i, j) ∈ Edsp, with its average tuple rate λ(i,j) and average number of bytes
per tuple b(i,j). To model load-dependent latency, we assume that the la-
tency is function of λi, the operator input tuple rate, Ri = Ri(λi), where
λi =

∑
j∈Vdsp λ(j,i); without loss of generality, we also assume that Ri is

an increasing function in λi. We assume that Resi is a scalar value, but
our placement model can be easily extended to consider Resi as a vector of
required resources.

The DSP execution model is obtained from the abstract model by replac-
ing each operator with its replicas. Differently from most of the existing
solutions, ODRP computes the execution model by optimizing, in a single
stage, the number of operator instances and their placement.

6.2.3 Operator Replication and Placement

The DSP replication and placement problem consists in determining, for
each operator i ∈ Vdsp, the number of replicas and where to deploy them
on the computing nodes in Vres. Figure 6.1 represents a simple instance
of the problem. Since a DSP operator cannot be usually placed on every
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Figure 6.1: Replication of the application operators and their placement on
the computing resources

node in Vres, we consider for each operator i ∈ Vdsp a subset of candidate
resources V i

res ⊆ Vres where it can be deployed. For example, if sources
and sinks (I ⊂ Vdsp) are external applications, their placement is fixed,
that is ∀i ∈ I, |V i

res| = 1. The operator placement can be represented by
a function map which maps an operator i ∈ Vdsp to a multiset of comput-
ing nodes in V i

res. We recur to multisets because a deployment can place
multiple replicas of the same operator on the same computing node. For
instance, map(i) = {u, u, v}, i ∈ Vdsp, u, v ∈ V i

res, indicates that opera-
tor i deployment consists of 3 replicas, two of which on node u and one
on node v. A multiset X over a set X , which we denote as X @ X , is
defined as a mapping X : X → N where, for x ∈ X , X (x) denotes the
multiplicity of x in X . x ∈ X if and only if X (x) ≥ 1. The cardinality
of a multiset X , denoted |X |, is defined by the number of elements in X ,
that is |X | =

∑
x∈X X (x). Hereafter, without lack of generality, we will

assume that in a deployment each operator i ∈ Vdsp can be replicated at
most ki times. Therefore, we also find convenient to define the power mul-
tiset P(X) of a set X as the set of all multisets with elements taken from X
and the subset P(X; k) ⊂ P(X) of the multiset over X with cardinality no
greater of k, that is P(X; k) = {X ∈ P(X)|

∑
x∈X X (x) ≤ k}.

6.3 Optimal Replication and Placement Model

In this section we present our model for the ODRP problem. As the optimal
solution depends on non-functional attributes, we first derive the expres-
sion for the different QoS metrics of interest and then present the ODRP
formulation.
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6.3.1 ODRP Variables

We model the ODRP problem with binary variables xi,U , i ∈ Vdsp and U @
V i
res: xi,U = 1 if and only if the operatormap(i) = U , that is, i is replicated in
|U| instances with exactly U(u) copies deployed in u, with u ∈ U . We also
find convenient to consider binary variables associated to links, namely
y(i,j),(U ,V), (i, j) ∈ Edsp, U @ V i

res, V @ V j
res, which denotes whether the

data stream flowing from operator i to operator j traverses the network
paths from nodes in U to nodes in V . By definition, we have y(i,j),(U ,V) =
xi,U ∧ xj,V .

Finally, we also consider the variables zu, u ∈ Vres which denote whether
at least one operator is deployed on node u and the variables z(u,v), (u, v) ∈
Eres, which denote whether a stream (or a portion of it) traverses the net-
work path (u, v). By definition, we have zu = ∨i∈Vdsp,U∈P(V ires;ki)

xi,U and
z(u,v) = ∨

(i,j)∈Edsp,U∈P(V ires;ki),V∈P(V jres;kj)
y(i,j),(U ,V). For short, in the follow-

ing we denote by x and y the placement vectors for nodes and edges,
respectively, where x = 〈xi,U 〉, ∀i ∈ Vdsp, ∀U ∈ P(V i

res; ki), and y =
〈y(i,j),(U ,V)〉, ∀xi,U , xj,V ∈ x. Similarly, we denote by zV and zE the vec-
tors zV = 〈zu〉, ∀u ∈ Vres, and zE = 〈z(u,v)〉, ∀(u, v) ∈ Eres.

6.3.2 Qos Metrics

Operator QoS Metrics

Let us first consider an operator in isolation. For each i ∈ Vdsp, the QoS
of the operator deployment depends on the deployment U . Let Ri,U , Ci,U ,
and Ai,U denote the maximum latency1, the cost, and the availability of the
deployment U , respectively. We readily have:

Ri,U = max
u∈U

Ri(
λi
|U|)

Su
(6.1)

Ci,U =
∑
u∈U
U(u)CiResi (6.2)

Ai,U =
∏
u∈U

Au (6.3)

under the assumption that the traffic is equally split among the different
operator replicas.

1This definition of the operator response time might appear counter intuitive. Neverthe-
less, it is consistent with our definition of the DSP application response time (see (6.8)–(6.11)
below) which we define as the expected delay along the critical path of the DSP application.
It is indeed easy to verify that, with this definition of operator response time Ri,U , since
different replicas can experience different average response time, (6.8) corresponds to the
average latency along the DSP critical path.
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Stream QoS Attributes

We now turn our attention to the QoS attributes related to a stream. For a
stream (i, j), the QoS depends on the upstream and downstream operators’
deployments U and V . Let d(i,j),(U ,V), C(i,j),(U ,V), and A(i,j),(U ,V) denote the
maximum latency2, the cost, and the availability of the deployments U and
V , respectively. We readily have:

d(i,j),(U ,V) = d(U ,V) = max
u∈U ,v∈V

d(u,v) (6.4)

C(i,j),(U ,V) =
∑

u∈U ,v∈V
λ(i,j),(U ,V)Cu,v (6.5)

A(i,j),(U ,V) =
∏

u∈U ,v∈V
A(u,v) (6.6)

where

λ(i,j),(U ,V) =
λ(i,j)

|U||V|
u ∈ U , v ∈ V (6.7)

is the amount of stream (i, j) traffic exchanged between two operator repli-
cas under the deployments U and V .

DSP Application QoS Metrics

We consider both user-oriented and system-oriented QoS metrics, such as
application response time, cost, and availability for the former, and net-
work related metrics for the latter.
Response Time: We consider as response time R the critical path average
delay (we refer the reader to Section 4.3 for the definition of critical path
delay). Formally, we have that:

R = max
π∈Πdsp

Rπ (6.8)

being Rπ the delay along path π and Πdsp the set of all source-sink paths
in Gdsp. Given a placement vector x (and resulting y) and a path π =
(i1, i2, . . . , inπ), we have R = R(x,y) = maxπ∈Πdsp Rπ(x,y) with Rπ(x,y)
defined as:

Rπ(x,y) =

nπ∑
p=1

Rip(x) +

nπ−1∑
p=1

D(ip,ip+1)(y) (6.9)

2Similarly to the response time definition (6.1), this definition might appear counter intu-
itive. Nevertheless, it is easy to verify that it is consistent with the DSP application response
time definitions, (6.8)-(6.11).
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where

Ri(x) =
∑

U∈P(V ires;ki)

Ri,Uxi,U (6.10)

D(i,j)(y) =
∑

U∈P(V ires;ki)

V∈P(V jres;kj)

d(U ,V)y(i,j),(U ,V) (6.11)

denote respectively the execution time of operator i when deployed over
the multiset U and the worst case network delay for transferring data from
i to j when the two operators are mapped over U and V , respectively.
Cost: We define the cost C of the DSP application as the monetary cost
of all the computing resources and paths involved in the processing and
transmission of the application data streams. We have:

C(x,y) =
∑
i∈Vdsp

Ci(x) +
∑

(i,j)∈Edsp

C(i,j)(y) (6.12)

where

Ci(x) =
∑

U∈P(V ires;ki)

Ci,Uxi,U (6.13)

C(i,j)(y) =
∑

U∈P(V ires;ki)

V∈P(V jres;kj)

C(i,j),(U ,V)y(i,j),(U ,V) (6.14)

Availability: We define the application availability A as the availability
of all the nodes and paths involved in the processing and transmission of
the application data streams. For the sake of simplicity, we assume the
availability of the different components to be independent; we have:

A(zV , zE) =
∏

u∈Vres:zu=1

Auzu ·
∏

(u,v)∈Eres:z(u,v)=1

A(u,v)z(u,v) (6.15)

To obtain a linear expression, we consider the logarithm of the availability,
obtaining:

logA(zV , zE) =
∑
u∈Vres

auzu +
∑

(u,v)∈Eres

a(u,v)z(u,v) (6.16)

where au = logAu and a(u,v) = logA(u,v). It is worth observing that in (6.16)
we can take the summation over all u ∈ Vres and (u, v) ∈ Eres since the
terms not appearing in (6.15) are those corresponding to zu = 0 or z(u,v) = 0,
which do not affect the summation in (6.16).
Network Related QoS Metrics: Similarly to Chapter 4, we model the fol-
lowing network related QoS metrics: inter-node traffic T , network usage N ,
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and equivalent elastic energy EE. Let Z(y), Z = T |N |EE, denote QoS at-
tribute of the DSP application under the placement policy y; we have:

Z(y) =
∑

(i,j)∈Edsp

Z(i,j)(y) (6.17)

where Z(i,j)(y) is defined as follows. Given a stream (i, j) ∈ Edsp and the
placement vector y, we define the inter-node traffic T , the network usage N ,
and the equivalent elastic energy EE as follows:

T(i,j)(y) =
∑

u∈U ,v∈V,u6=v
U∈P(V ires;ki)

V∈P(V jres;kj)

b(i,j)λ(i,j),(U ,V)y(i,j),(U ,V) (6.18)

N(i,j)(y) =
∑

u∈U ,v∈V,u6=v
U∈P(V ires;ki)

V∈P(V jres;kj)

b(i,j)λ(i,j),(U ,V)d(u,v)y(i,j),(U ,V) (6.19)

EE(i,j)(y) =
∑

u∈U ,v∈V,u6=v
U∈P(V ires;ki)

V∈P(V jres;kj)

b(i,j)λ(i,j),(U ,V)d
2
(u,v)y(i,j),(U ,V) (6.20)

where d(u,v) is the network delay among nodes u, v ∈ Vres, with u 6= v.

6.3.3 ODRP Formulation

Depending on the usage scenario, a DSP replication and placement strategy
could be aimed at optimizing different, possibly conflicting, QoS attributes.
To this end, we use again the SAW technique to define the utility function
F (x,y, zV , zE) as a weighted sum of the normalized QoS attributes of the
application, as follows:

F (x,y, zV , zE) = wr
Rmax −R(x,y)

Rmax −Rmin
+ wa

logA(zV , zE)− logAmin

logAmax − logAmin

+ wc
Cmax − C(x,y)

Cmax − Cmin
+ wz

Zmax − Z(x,y)

Zmax − Zmin
(6.21)

where wr, wa, wc, wz ≥ 0, wr + wa + wc + wz = 1, are weights associ-
ated to the different QoS attributes. Rmax (Rmin), Amax (Amin), Cmax (Cmin),
and Zmax (Zmin) denote, respectively, the maximum (minimum) value for
the overall expected response time, availability, cost and network related
metric. Observe that after normalization, each metric ranges in the interval
[0, 1], where the value 1 corresponds to the best possible case and 0 to the
worst case.
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We formulate the ODRP problem as an ILP model as follows:

max
x,y,r

F ′(x,y, zV , zE , r)

subject to:

r ≥
∑

p=1,...,nπ
U∈P(V ires;ki)

Rip,Uxi,U +

∑
p=1,...,nπ−1
q=p+1

U∈P(V
ip
res;kip )

V∈P(V
iq
res;kiq )

d(U ,V)y(ip,iq),(U ,V) ∀π ∈ Πdsp (6.22)

Resu ≥
∑
i∈Vdsp
U∈P(V ires)

U(u)Resixi,U ∀u ∈ Vres (6.23)

zu ≥

∑
i∈Vdsp

U∈P(V ires;ki)

xi,U

M
u ∈ Vres (6.24)

z(u,v) ≥

∑
(i,j)∈Edsp
U∈P(V ires;ki)

V∈P(V jres;kj)

y(i,j),(U ,V)

N
(u, v) ∈ Eres (6.25)

1 =
∑

U∈P(V ires;ki)

xi,U ∀i ∈ Vdsp (6.26)

xi,U =
∑

V∈P(V jres;kj)

y(i,j),(U ,V)
∀(i,j)∈Edsp,
U∈P(V ires;ki)

(6.27)

xj,V =
∑

U∈P(V ires;ku)

y(i,j),(U ,V)
∀(i,j)∈Edsp,
V∈P(V jres;kj)

(6.28)

xi,U ∈ {0, 1}
∀i∈Vdsp,

U∈P(V ires;ki)
(6.29)

y(i,j),(U ,V) ∈ {0, 1}
∀(i,j)∈Edsp,
U∈P(V ires;ki)

V∈P(V jres;kj)
(6.30)

zu ∈ {0, 1} ∀u ∈ Vres (6.31)
z(u,v) ∈ {0, 1} ∀(u, v) ∈ Eres (6.32)

In the problem formulation we use the objective functionF ′(x,y, zV , zE , r)
that is obtained from F (x,y, zV , zE) by replacing R(x,y) with the auxil-
iary variable r, which represents the application response time in the opti-
mization problem, in order to obtain a linear objective function. Observe
that, indeed, whileF is nonlinear in x, y sinceR(x,y) = maxπ∈Πdsp Rπ(x,y)
is a nonlinear term, F ′ is linear in r as well as in x and y. Equation (6.22)
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follows from (6.8)–(6.11). Since r must be larger or equal than the response
time of any path and, at the optimum, r is minimized, we have that r =
maxπ∈Πdsp Rπ(x,y) = R(x,y). The constraint (6.23) limits the placement
of operators on a node u ∈ Vres according to its available resources. Con-
straints (6.24) and (6.25) are the activation constraints for the variable zu
and z(u,v), respectively, with M and N large constants. Equation (6.26)
guarantees that each operator i ∈ Vdsp is placed on one and only one node
u ∈ V i

res. Finally, constraints (6.27)–(6.28) model the logical AND between
the placement variables, that is, y(i,j),(u,v) = xi,u ∧ xj,v.

Theorem 6.1. The ODRP problem is an NP-hard problem.

Proof. It is sufficient to observe that the Optimal DSP Replication and Place-
ment problem is a generalization of the Optimal DSP Placement problem
we presented in Chapter 4, which has been shown to be NP-hard.

6.4 Storm Integration: S-ODRP

To enable the usage of ODRP in a real DSP framework, we develop a pro-
totype scheduler for Apache Storm, named S-ODRP. To this end, we have
to address two issues: (1) to adapt the DSP and resource model to consider
the specific execution entities of Storm, and (2) to instantiate the ODRP
model with the proper QoS information about computing and networking
resources.

As regards the first issue, we have to model the fact that Storm runs
multiple executors to replicate an operator, and that a Storm scheduler
deploys these executors on the available worker slots, considering that at
mostEPSmax executors can be co-located on the same slot. Hence, S-ODRP
defines Gdsp = (Vdsp, Edsp), with Vdsp as the set of operators and Edsp as
the set of streams exchanged between them. Since in Storm an operator
is considered as a black box element, we conveniently assume that its at-
tributes are unitary, i.e., Ci = 1 and Resi = 1, ∀i ∈ Vdsp. By solving the
replication and placement model, S-ODRP determines the number of ex-
ecutors for each operator i ∈ Vdsp, leveraging on the cardinality of U when
xi,U = 1, with U @ V i

res. The resource model Gres = (Vres, Eres) must con-
sider that a worker node u ∈ Vres offers some worker slots WS(u), and
each worker slot can host at most EPSmax executors. For simplicity, S-
ODRP considers the amount of available resources Cu on a worker node
u ∈ Vres to be equal to the maximum number of executors it can host, i.e.,
Cu = WS(u) × EPSmax. To enable the parallel execution of executors, Cu
must be equal (or proportional) to the number of CPU cores available on u.

As regards the second issue, Storm allows us to easily develop new cen-
tralized schedulers with the pluggable scheduler APIs. However, Storm is
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unaware of the QoS attributes of its networking and computing resources,
except for the number of available worker slots. Since we need to know
these QoS attributes in order to apply the ODRP model, we rely on Dis-
tributed Storm, that enables the QoS awareness of the scheduling system
by providing intra-node (i.e., availability) and inter-node (i.e., network de-
lay and exchanged data rate) information. S-ODRP retrieves, from the
monitoring components of the extended Storm, the information needed to
parametrize the nodes and edges inGdsp andGres. Specifically, it considers:
the average data rate exchanged between communicating executors (i.e.,
λ(i,j),∀(i, j) ∈ Edsp), the node availability (Au,∀u ∈ Vres), and the network
latencies (d(u,v),∀u, v ∈ Vres). Once built the ODRP model, S-ODRP relies
on CPLEX c©, the state-of-the-art solver for ILP problems, for its resolution.

From an operational prospective, Nimbus uses S-ODRP to compute the
optimal operator replication and placement when a new application is sub-
mitted to Storm and when a failure of the worker process compromises
the application execution. In the latter case, S-ODRP invalidates the ex-
isting assignment and computes the new optimal placement. Algorithm 6
summarizes the runtime execution of S-ODRP, which has to face two main
issues: to collect the exchanged data rate between the operators, and to
replicate the operators as needed. When information on the exchanged
data rate is unknown (line 5), e.g., the first time the application is sched-
uled, S-ODRP defines an early assignment and monitors the application
execution to harvest the needed information (lines 6–8). As soon as this
information is available, S-ODRP reassigns the application by solving the
updated ODRP model with the network-related QoS attributes (line 10). To
enact the replication decision computed by ODRP (lines 7 and 11), S-ODRP
leverages on the Storm API rebalance, which restarts the application with
the correct number of executors, before assigning them to the worker nodes
as specified by the computed placement solution.

Algorithm 6 Application placement with S-ODRP

1: function SCHEDULE(Gdsp, Gres)
2: Input: Gdsp, graph representing a DSP application
3: Input: Gres, graph representing computing and network resources
4: RP = [ ] . replication and placement
5: if not streamsDatarateAvailable(Gdsp) then
6: RP ← ODRP(Gdsp, Gres)
7: enact(RP )
8: Gdsp ← collectStreamsDatarate(Gdsp)
9: end if

10: RP ← ODRP(Gdsp, Gres)
11: enact(RP )
12: end function
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Figure 6.2: Reference infrastructure and DSP application

6.5 Numerical Experiments

In this section, we evaluate the ODRP model through a set of numerical ex-
periments that aim at demonstrating the flexibility of the formulation and
the benefits that derive from the joint optimization of operators placement
and replication. In Section 6.5.2, we show the impact of replication when
the DSP application is subject to an increasing load. Then, in Section 6.5.3,
we analyze how the ODRP formulation allows us to consider the optimiza-
tion of several QoS metrics, such as response time, cost, availability, and
inter-node traffic.

6.5.1 Experimental Setup

The ODRP model allows us to define the operators placement and replica-
tion by optimizing different QoS attributes, whose importance depends on
the utilization scenario.

We solve the ILP problem using CPLEX c© (version 12.6.2) on an Ama-
zon EC2 virtual machine (c4.xlarge with 4 vCPU and 7.5 GB RAM). In
the experiments, Gres models a portion of ANSNET, a geographically dis-
tributed network where 15 computing nodes are interconnected with non-
negligible network delays. Within this network, we assume that a logical
link (u, v) ∈ Eres between any two computing resources u, v ∈ Vres always
exists; each logic link results by the underlying physical network paths,
which are represented in Figure 6.2a, and a shortest-path routing strategy.

As reference application, we consider the topology represented in Fig-
ure 6.2b, which is made of a sequence of 10 operators, where the first and
last one are respectively the source and sink. If not otherwise specified, the
application includes two CPU-intensive operators, represented with a big-
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Table 6.2: Parameters of the experimental setup

Processing and network resources
Parameter Value Parameter Value

|Vres| 15 A(u,v) 100 %
Au Uniform in C(u,v) 0.02

[97, 99.99999] %
Resu 5 avg d(u,v) 32 ms
Su 1.0

Application
Parameter Value Parameter Value

|Vdsp| 10 Resi 1
Ci 1 µi 0.02 ms−1

Ri(λi/|U|) 1
µi−λi/|U| ms b(i,j) 1500 B/tuple

λi 14 tuples/s

Normalization factors for the ODRP utility function
Parameter Value Parameter Value

Rmin 1230 ms Rmax 2810 ms
Amin 85 % Amax 98.8 %
Cmin 11.0 Cmax 25.0
Zmin 8.0 KB/s Zmax 40.0 KB/s

ger shape, which require twice of the computing resources Resi and have a
service time five times longer than the other operators. We summarize the
application and infrastructure configuration parameters in Table 6.2.

We rely on ODRP to define the optimal placement and replication of
each operator but the source and sink, which are placed a-priori. In the
experiments, we assume that each operator can be replicated at most twice
(i.e., ki = 2, ∀i), while the source and sink are not replicated. In the ODRP
model, we obtain the response time Ri of the operator i subject to the
incoming load λi/|U| by modeling the underlying computing node as an
M/M/1 queue.

6.5.2 Impact of Replication

In this experiment, we want to investigate the replication benefits when the
application is subject to an increasing traffic load. Differently from the pre-
vious experiment, now each operator emits only 95 % of the incoming data;
in this way, every operator imposes a different load which decreases from
the source to the sink. We compare the performance achieved by ODRP
with ODP, which optimizes only the operator placement. Note that ODP
is a special case of ODRP where ki = 1, ∀i ∈ Vdsp. Both the models are
solved with the following configurations of weights: (wr = 0.8, wc = 0.2),
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Figure 6.3: Impact of replication on the application performance

(wr = 0.5, wc = 0.5), and (wr = 0.2, wc = 0.8). The other weights are set
to 0. In Figure 6.3 we indicate with “ODP(wr, wc)” the curves obtained by
ODP under the different weight configurations, which overlap one another.
Note also that “ODP(wr, wc)” overlaps with “ODRP(wr = 0.2, wc = 0.8)”.

During the experiment, the incoming load increases from 2 to 18 tu-
ples/s, therefore the bottleneck operator imposes a load on the underlying
computing node that ranges from 10% to 90% of its capacity. Although
ODP cannot replicate the operators, it can find the optimal placement that
minimizes the response time. As shown in Figure 6.3a, when the system be-
comes overloaded, i.e., after 14 tuples/s, the response time grows quickly,
up to become 4 times higher than the case of medium load. A similar result
is obtained when ODRP is configured with (wr = 0.2, wc = 0.8): being the
application cost much more important than the response time, ODRP tries
not to replicate the operators. The opposite result is achieved when ODRP
is configured with (wr = 0.8, wc = 0.2), because replication is exploited
to reduce the application response time. Figure 6.3b shows the number of
operator instances. We can observe that, when the incoming load exceeds
8 tuples/s, ODRP with (wr = 0.8, wc = 0.2) starts replicating the bottleneck
operators one by one up to 18 instances, i.e., when every operator is repli-
cated. As shown in Figure 6.3a, this strategy is beneficial for the response
time, which does not increase more than 1.5 times with respect to the case
of lightly loaded system.

6.5.3 Optimal Replication and Placement

This second experiment evaluates the effect on QoS metrics of different op-
timization objectives. We first compute the replication and placement so-
lution by optimizing a single QoS metric. For example, to optimize the
response time we set the weights as wr = 1, wa = wc = wz = 0. Then, we
optimize the multi-objective function by uniformly weighting each metrics
contribution (i.e., wr = wa = wc = wz = 0.25); we report in Table 6.2 the
normalization factors used in Equation (6.21). Since the position of data
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Figure 6.4: Impact of different optimization objectives on the QoS metrics

source and sink affects the optimal solution, we execute a run for each
configuration that results by pinning these components on every pair of
distinct nodes. Figure 6.4 presents the results in term of the different QoS
metrics. For each optimization objective, a boxplot represents the perfor-
mance distribution that results from the different locations of data source
and sink. Each boxplot reports the minimum value, the 5th percentile, the
median, the 95th percentile, and the maximum value.

When ODRP optimizes the response time R, the solution achieves the
minimum achievable response time, as shown in Figure 6.4a, but also re-
quires that all the operators are replicated, as shown in Figure 6.4d. Since
the cost of running a configuration is directly proportional to the total num-
ber of operator instances, this is also the most expensive solution. We can
also observe from Figure 6.4b that the inter-node traffic is indirectly mini-
mized, because transmitting data over the network rather than locally in-
troduces network delays that penalize the response time.

When ODRP optimizes the cost C, the placement solution tries to use
less computing resources as possible, therefore no operator is replicated as
shown in Figure 6.4d. This strategy penalizes the response time which al-
most doubles with respect to the minimum value, as shown in Figure 6.4a.
Nothing can be concluded about the application availability (Figure 6.4c)
and inter-node traffic (Figure 6.4b): since these metrics are not optimized,
there is a set of equally optimal solutions that differ each other only in the
operator placement on the same set of computing resources.
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At a first sight, the results obtained when ODRP optimizes the applica-
tion availability seem to be unexpected, because, as shown in Figure 6.4c,
the application availability is not maximized. However, this behavior can
be easily explained recalling that the data source and sink are placed a-
priori on each pair of computing nodes, so their availability drives the
overall application availability. In some cases ODRP increases the num-
ber of operator instances to improve the application availability: from Fig-
ure 6.4d, we can see that the maximum number of instances in this config-
uration is 13, i.e., 3 operators are replicated with degree 2.

When ODRP optimizes the inter-node traffic, the solution tries to co-
locate the operator instances on the least number of nodes, so to reduce
the amount of data transmitted over the network (see Figure 6.4b). An
interesting behavior is highlighted by Figure 6.4d: sometimes ODRP takes
advantage of replication in order to reduce the amount of data transmitted
on the network; this behavior is analytically explained by Equation (6.7).

When ODRP optimizes all the considered QoS metrics, the resulting
placement and replication solution has a response time (Figure 6.4a) and an
inter-node traffic (Figure 6.4b) which are very close to the values achievable
when optimizing a single-objective function. The total number of operator
instances is always equal to 12, as shown in Figure 6.4d, therefore only
two operators are replicated. Recalling the topology of our application, we
can readily identify that these two replicated operators are the application
bottlenecks.

6.6 Prototype-based Experiments

In this section, we present a series of experiments that revolve around S-
ODRP, the prototype scheduler for Storm whose core is ODRP. They aim
to show the generality and flexibility of the proposed formulation as well
as its impact in terms of achievable application performance. After intro-
ducing the experimental setup and the reference application (Section 6.6.1),
we provide a general overview on the runtime execution of S-ODRP (Sec-
tion 6.6.2). Then, in Section 6.6.3, we show the benefits of the joint opti-
mization of placement and replication when the DSP application is subject
to an increasing load. Finally, in Section 6.6.4, we evaluate how S-ODRP
can optimize several QoS metrics, such as response time, cost, availability,
and inter-node traffic.

6.6.1 Experimental Setup

We perform the experiments using Apache Storm 0.9.3 on a cluster of 6
worker nodes, each with 2 worker slots, and a further node to host Nim-
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Figure 6.5: Reference DSP application

bus and ZooKeeper. Each node is a machine with a dual CPU Intel Xeon
E5504 (8 cores at 2 GHz) and 16 GB of RAM. To better exploit the presence
of independent CPU cores, we define that a worker slot can host at most
4 executors, i.e., EPSmax = 4; therefore, a worker node can host at most
8 operator replicas, one for each available CPU core. We emulate wide-
area network latencies among the Storm nodes using netem, which applies
to outgoing packets a Gaussian delay with mean and standard deviation in
the ranges [12, 32] ms and [1, 3] ms, respectively. As regards the pricing pol-
icy, we charge only the usage of computing resources, i.e., we set a unitary
cost for each operator replica. We solve the ILP problem using CPLEX c©

(version 12.6.3) on the node hosting Nimbus.
As test-case application we developed a benchmarking application that

solves the first query of the DEBS 2015 Grand Challenge [99]: by process-
ing data streams originated from the New York City taxis, the goal of the
query is to find the top-10 most frequent routes during the last 30 min-
utes. Its topology is represented in Figure 6.5. The data source reads the
dataset from Redis, an in-memory data store, and pushes data towards a
parser operator, which parses them and filters out irrelevant and invalid
data. Afterwards, filterByCoordinates forwards only the events related to a
specific observation area, whose extension is about 22 500 Km2. The oper-
ator computeRouteID is in charge of identifying the route covered by taxis,
and countByWindow counts the route frequency in the last 30 minutes; the
notion of time is managed by a coordinator component, called metronome,
which pulses when the time related to the dataset events advances. The
following operators, partialRank and globalRank, compute the top-10 most
frequent routes by leveraging on a two-step approach that enables to com-
pute the ranking in a distributed and parallel manner. Finally, globalRank
publishes the top-10 updates on a message queue, implemented with Rab-
bitMQ. We assume that data source and globalRank are pinned operators.
Moreover, since we investigate the initial application placement, we have
set the data source so to feed the topology with a constant data rate, defined
a-priori.

In the experiments, we define that each operator can be replicated at
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Table 6.3: Parameters of the experimental setup

Application: service rate per operator, expressed in tuples/s (tps)
Operator µi Operator µi

data source 284 tps metronome 190 tps
parser 233 tps countByWindow 335 tps

filterByCoordinates 253 tps partialRank 2371 tps
computeRouteID 253 tps globalRank 185 tps

Normalization factors for the ODRP utility function
Parameter Value Parameter Value

Rmin 5 ms Rmax 450 ms
Amin 95% Amax 100%
Cmin 8 Cmax 18
Zmin 0 tps Zmax 3400 tps
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Figure 6.6: Runtime execution of S-ODRP and S-ODP

most three times (i.e., ki = 3, ∀i), except for the pinned ones (i.e., data
source and globalRank) and the metronome, which cannot be easily paral-
lelized. Without loss of generality, in the ODRP model we estimate the
response timeRi of operator i subject to the incoming load λi/|U| by model-
ing the underlying computing node as an M/M/1 queue, i.e., Ri(λi/|U|) =
(µi − λi/|U|)−1, where µi is the service rate of i measured on a reference
processor. The operators service rate and the other configuration parame-
ters have been obtained through preliminary experiments and are shown
in Table 6.3.

6.6.2 Evaluation of S-ODRP

This first experiment aims at showing the runtime execution of the S-ODRP
scheduler, described by Algorithm 6, and its impacts on the application
performance. As baseline we use S-ODP, a prototype scheduler for Storm



6.6. Prototype-based Experiments 181

whose core is the ODP model that optimizes only the operator placement
(see Chapter 4). Note that ODP is a special case of ODRP where ki = 1,
∀i ∈ Vdsp. To simplify the presentation, we consider only the response time
R and the monetary cost C as QoS metrics; all worker nodes have an avail-
ability of 100%. Both the optimization models focus on the minimization
of the application response time R (i.e., wr = 1, wc = 0), so we name them
as S-ODRP_R and S-ODP_R, respectively. Differently from S-ODP_R, S-
ODRP_R computes R relying on the exchanged data-rate between the op-
erators; as presented in Section 6.4, it deploys the application with a prelim-
inary placement so to harvest the relevant data; this preliminary placement
is computed by minimizing the deployment cost (i.e., wc = 1, wr = 0). The
rescheduling event takes place after 100 s of execution and is represented
in Figure 6.6 with a vertical line.

We set the data rate of the source operator to 80 tuples/s and launch the
application. Figure 6.6 reports the resulting application response time. We
observe that as soon as the placement is defined, i.e., after 0 s and after 100 s
(the latter for S-ODRP_R only), a transient period is experimented where
R is quite high and exceeds 1 s. This behavior depends on a well-known
issue of the Storm framework [213], which starts the operators as soon as
they are ready without coordination at level of the whole application; as
a consequence, data emitted by an operator wait in inter-operator buffers
until the following operator is up and running for processing. When the
transient period ends, after 200 s, the applications deployed with the two
schedulers experience quite similar performance in terms of response time.

Table 6.4 reports the total number of operator replicas deployed by the
two schedulers. S-ODP_R cannot replicate the operators, therefore it in-
stantiates a replica for each of them. With a source data rate of 80 tuples/s,
S-ODRP_R replicates twice two operators, namely computeRouteID and par-
tialRank, and runs the application with a total of 10 executors. S-ODRP_R
replicates the operators as much as possible while considering that, when
a new replica has to be located on a new worker node, the latter introduces
network latencies that can overcome the benefits of replication in reducing
the operator execution time. In this experiment, it is worth to observe that,
although the scheduler is forced to use a second worker node, it places the
replicas so to minimize the response time; in particular, only the replicas of
computeRouteID, which have the lowest data rate exchanged with the other
operators, are located on a separate node.

6.6.3 Impact of Replication

In the second set of experiments, we want to investigate the replication
benefits when the application is subject to different incoming loads. We use
the same settings of the previous experiment except for the source data rate
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Figure 6.7: Impact of replication on the application performance

and we compare how S-ODRP_R and S-ODP_R determine the placement
of the reference application. In each single experiment, which lasts 900 s,
the source data rate is constant and is set in the range [20, 120] tuples/s with
step 20. We collect the resulting QoS metrics as soon as the transient period
ends (i.e., after 200 s) and we summarize the results in Figure 6.7 lever-
aging on a boxplot, which represents the QoS metric distribution through
the minimum value, the 5th percentile, 50th percentile, 95th percentile, and
the maximum value; the average value is also represented using a full dot.
We define as active node utilization, the average utilization of all the worker
nodes involved in the application execution; each node contributes with its

Table 6.4: Operator replication

S-ODP
S-ODRP

Operator 20, 40, 60 80, 100 120
tuples/s tuples/s tuples/s

data source 1 1 1 1
parser 1 1 1 3

filterByCoordinates 1 1 1 2
computeRouteID 1 1 2 2

metronome 1 1 1 1
countByWindow 1 1 1 3

partialRank 1 1 2 3
globalRank 1 1 1 1
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average utilization calculated on a time window of 60 s.
Figure 6.7a reports the application response time and Table 6.4 the num-

ber of replicas per operator. Although S-ODP_R cannot replicate the oper-
ators, it finds the optimal placement that minimizes R, as S-ODRP_R does.
Indeed, when the replication is not needed, i.e., up to 60 tuples/s, the two
schedulers achieve the same application performance. Note that, also in
this case, network delays prevent S-ODRP_R from further replicating the
operators: due to the absence of inter-node traffic (see Figure 6.7c), we can
easily detect that all the 8 replicas run on the same node.

When the data source emits 80 tuples/s, the replication is needed: the
partialRank operator represents a bottleneck, because it receives on average
2500 tuples/s, i.e., 5% more than its service rate. The utilization of the
worker node that hosts the whole application for S-ODP_R, reported in
Figure 6.7b, is around 20%, therefore the overload situation cannot be easily
detected if not relying on fine-grain monitoring tools, which work at the
level of single operator or CPU core. Conversely, S-ODRP_R detects the
bottleneck and replicates the operator, which is then executed on a second
worker node (see Table 6.4 and Figure 6.7c).

We observe a similar behavior when the data source emits 100 tuples/s.
This time the bottleneck operator, partialRank, receives on average 30% more
tuples than a single replica can process per unit of time. With S-ODP_R, the
application response time is unstable and continuously grows during the
experiment, up to 106 s per single tuple. Conversely, thanks to replication,
with S-ODRP_R the application maintains the same response time of the
configuration with 80 tuples/s.

The need of replication is further exacerbated when the data source
emits 120 tuples/s. With S-ODP_R, the application response time explodes
up to about 300 s per tuple. On the contrary, S-ODRP_R obtains an appli-
cation response time that is not influenced by the increased load. To keep
up with the incoming data rate, S-ODRP_R needs to replicate every opera-
tor. It instantiates 2 replicas for filterByCoordinates and computeRouteID, and
3 replicas for parser, countByWindow, and partialRank; comprising also the
other operators, the application runs with a total of 16 executors (see Ta-
ble 6.4) on 2 worker nodes. In spite of the increased incoming data rate,
Figure 6.7c shows that the application deployment produces a fairly lim-
ited inter-node traffic. Finally, we observe from Figure 6.7b that, although
the need of replication, the average value of the active node utilization is
quite low. This behavior highlights that, for this specific use case, a static
mapping between replicas and CPU cores does not lead to an efficient us-
age of resources; a possible solution to better exploit the available resources
might be based on a dynamic multiplexing of replicas on the same CPU
core. This optimization calls for the runtime adaptation of the application
deployment, which will be the topic of the next chapters of this thesis.
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Figure 6.8: Impact of different optimization objectives on the QoS metrics

6.6.4 Optimal Replication and Placement

This experiment evaluates the effect of different optimization objectives on
QoS metrics, i.e., availability A, cost C, response time R, and inter-node
traffic T . To this end, we set our experimental environment so that half of
the worker nodes has an availability of 99% and the other of 100%, whereas
the links are always available. We place the pinned operators (i.e., data
source and globalRank) on a single worker node chosen randomly among
those 100% available. S-ODRP determines the placement of the reference
application when the data source emits 100 tuples/s. Figure 6.8 summa-
rizes 25 runs, each of 900 s, where we collect QoS metrics after the initial
transient period of 200 s. We first compute the replication and placement
solution by optimizing a single QoS metric. For example, to optimize the
response time we set the weights as wr = 1, wa = wc = wz = 0. Then, we
optimize the multi-objective function by uniformly weighting each metrics
contribution (i.e., wa = wc = wr = wz = 0.25); we report in Table 6.3
the normalization factors used in Equation (6.21). Figure 6.8 presents the
results in term of the different QoS metrics.

When S-ODRP optimizes the application availability A (for short, S-
ODRP_A), the solution finds the configuration where all the replicas are
on the most available worker nodes. Observe that the placement of pinned
operators, which are not relocated by S-ODRP, impacts on the overall appli-
cation availability. In our experiments we placed these operators on nodes
with 100% of availability. From Figure 6.8d and Equation (6.15), we observe
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that, although this configuration of S-ODRP does not optimize the number
of operator instances, multiple replicas can be executed until a new worker
node with availability lower than 100% has to be activated. This setting of
weights does optimize neither the response time nor the inter-node traffic
(see Figure 6.8a and 6.8c): on average, the response time is almost 1.6 times
higher than the minimum achievable, whereas the inter-node traffic is al-
most 35 times higher than the optimal one.

When S-ODRP optimizes the cost C (S-ODRP_C), the placement solu-
tion tries to use fewer replicas as possible, as shown in Figure 6.8d. How-
ever, the explicit modeling of the operator service rate enables to instanti-
ate a configuration that can properly handle the incoming traffic: S-ODRP
instantiates 9 replicas, i.e., replicates twice the bottleneck operator (partial-
Rank). Nothing can be concluded about the other QoS metrics, i.e., response
time, application availability, and inter-node traffic (see Figures 6.8a, 6.8b,
and 6.8c): since these metrics are not optimized, there is a set of equally
optimal solutions that differ each other only for the operator placement on
the same set of computing resources.

When S-ODRP optimizes response time (S-ODRP_R), the placement so-
lution experiences the minimum achievable value for this metric, as shown
in Figure 6.8a, but it uses up to 16 replicas (Figure 6.8d). Observe that 16
replicas completely occupy two worker nodes, and the presence of network
delays prevents the scheduler from instantiating other replicas. Since the
cost of running a configuration is directly proportional to the total number
of operator instances, this is also the most expensive solution. From Fig-
ure 6.8c, we can also observe that the inter-node traffic is quite low (almost
double with respect to the optimal value), because transmitting data over
the network rather than locally introduces network delays that penalize the
response time.

When S-ODRP optimizes the network-related QoS metric, that is the
inter-node traffic T (S-ODRP_T), the solution tries to co-locate the oper-
ator instances on the least number of nodes, so to reduce the amount of
data transmitted over the network (see Figure 6.8c). In this configuration
the number of replicas is neither minimized nor maximized; however, if
the load is equally split among replicas, S-ODRP might take advantage of
replication in order to reduce the amount of data transmitted on the net-
work. As side effect of the co-location, the application response time is, on
average, very close to the optimal one. Nothing can be concluded about
the application availability (Figure 6.8b), which is not considered as an op-
timization objective of S-ODRP_T.

When S-ODRP optimizes all the considered QoS metrics, the resulting
placement and replication solution has response time and inter-node traffic
which are very close to the values achievable when optimizing a single-
objective function. The total number of operator instances is equal to 9, as
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Figure 6.9: Average resolution time of ODRP with respect to the optimiza-
tion objective

shown in Figure 6.8d, therefore only the bottleneck operator is replicated.
The application availability ranges from 100% to 99%, and assumes 99.6%
as average value. Although it might appear counter-intuitive, this result
follows from the trade-off between the minimization of response and the
maximization of the availability pursued in the utility function F . In par-
ticular, when the application availability is 99%, on the basis of the pinned
operators placement, whose location is randomly defined a-priori, choos-
ing a worker node that minimizes the response time, rather than one that
maximizes the availability, provides a bigger contribution to the optimiza-
tion of the utility function F .

On ODRP Resolution Time. We now discuss about the resolution time
of ODRP and its relationship with the optimization goals. We consider as
resolution time the time needed to compute the exact solution of the ILP
problem. Although the investigated placement problem is fairly limited
in size (|Vres| = 6, |Vdsp| = 8), the ODRP model includes about 55.8 K
variables3 and, considering all the 25 runs of the last experiment, its av-
erage resolution time is 10.84 s. Figure 6.9 provides more details on the
average resolution time of ODRP with respect to the different weights (wa,
wc, wr, and wz) used for the utility function F . Determining a placement
that minimizes the application response time is the most computationally
demanding configuration; conversely, the minimization of the application
deployment costs registers the fastest resolution time. Note that the for-
mer is twice slower than the latter. Being ODRP an NP-hard problem, as
demonstrated in Theorem 6.1, it does not scale well as the problem instance

3Observe that the number of multisets X of cardinality k, with elements taken from a
finite set of cardinality n, grows very quickly, as (n+k−1)!

k!(n−1)!
. This clearly shows the com-

binatorial nature of the problem at hand. Nevertheless, as we showed in Chapter 5 and
we will show in Chapter 8, the problem structure can often be exploited so to reduce the
computational cost of solving the problem formulation with a reduced quality degradation.
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increases in size. Nevertheless, by determining the optimal replication and
placement of DSP operators, ODRP provides a benchmark for evaluating
heuristics, for developing new ones, and for identifying the most suitable
ones with respect to the specific optimization objectives.

6.7 Summary

In this chapter, we have presented and evaluated ODRP, an ILP formulation
that jointly optimizes the replication and placement of DSP applications.
ODRP is a general and flexible model that can take into account the hetero-
geneity of computing and networking resources and can be conveniently
configured to optimize different QoS metrics, whose importance depends
on the application scenario. We have thoroughly evaluated the proposed
contribution using both numerical and prototype-based experiments. The
set of numerical experiments has validated the proposed model and has
shown the benefits of a joint optimization of the operators placement and
their replication on the application performance. The set of prototype-
based experiments has investigated how S-ODRP, an ODRP-based sched-
uler for Apache Storm, manages the deployment of a real and well-known
application. The latter is the DEBS 2015 Grand Challenge application, which
processes real time data generated by taxis moving in a urban environment.
Besides confirming the ODRP flexibility and the benefits of a joint optimiza-
tion of replication and placement, this second set of experiment has shown
how ODRP can contextually optimize several QoS metrics.
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Chapter 7

Elastic Storm

Due to the unpredictable rate and varying nature of incoming work-
loads, DSP applications demand for adaptation capabilities. We
extend Storm with two mechanisms that support the runtime re-
configuration of DSP applications: elasticity and stateful migration
of DSP operators.

In the previous chapters, we investigated the initial deployment of DSP
applications. From this chapter onwards, we turn our attention on appli-
cation runtime and the need for changing the application deployment so
to keep satisfying performance during the application execution. Indeed,
DSP applications are usually long-running and subject to periodic or un-
predictable workload variations. Elasticity consists in automatically scal-
ing the number of parallel instances for the DSP operators (i.e., data paral-
lelism), so that each instance can process a subset of the incoming data flow
in parallel (e.g., [65, 81, 86]).

For the execution of DSP applications, users commonly rely on DSP
frameworks (e.g., Apache Storm [199], Spark [221], Flink [27]), that offer
simple programming interfaces, abstracting away the underlying infras-
tructure and complexity of distributing the operators. Although includ-
ing numerous features, in most cases these open-source frameworks only
support a static or manual definition of the operator parallelism. More-
over, most DSP frameworks supporting elasticity are equipped with mech-
anisms in an embryonic stage: they dynamically scale the application in
a disruptive manner, because they enact reconfigurations by killing and
restarting the whole application. As a consequence, to support workload
fluctuations, the user determines the number of parallel instances for the
operators on the expected maximal workload, achieving either an average
under-utilization of the system, because load peaks can rarely occur, or
being unable to manage a bursty workload with unexpected fluctuations.
Therefore, they deploy the application on a fixed number of computing
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nodes and do not fully exploit the Cloud computing principles, which pro-
mote the elastic usage of on-demand resources. Among the open source
DSP systems, Apache Storm has received increasing interest in the last few
years and, as shown in Chapter 2, different works have proposed exten-
sions, defined new scheduling policies, and build applications on top of it
(e.g., [9, 28, 58, 213]).

In this chapter, we extend Storm by introducing two mechanisms that
support the runtime adaptation of DSP applications: automatic elasticity
and stateful migration. The elasticity mechanism implements scaling deci-
sions at the framework level, i.e., it allows to automatically adapt the num-
ber of parallel instances for each application operator, according to a scaling
policy. Different scaling policies can be defined, as surveyed in Chapter 2;
as proof of concept, we propose a simple threshold-based policy that elas-
tically changes the number of parallel instances of each operator according
to the incoming workload. Once equipped with elasticity at the frame-
work level, Storm can be then properly coupled with a lower-level scaling
system that realizes elasticity at the infrastructure level by acquiring and
releasing the computational nodes as needed, therefore encompassing the
on-demand resource principle of Cloud computing. The stateful migration
mechanism supports the relocation of the operator internal state on a differ-
ent node and enables Storm to change the application deployment at run-
time, without compromising the application integrity in terms of extracted
information. This mechanism operates at fine granularity with respect to
the execution model adopted by Storm and allows multiple and concurrent
migrations.

The main contributions of this chapter are as follows.

• We extend Storm with an automatic elasticity mechanism that changes
the number of parallel instances for the operators at runtime; we real-
ize, as proof of concept, a threshold-based scaling policy that aims at
maximizing the system utilization (Section 7.3).
• We enhance Storm with stateful operator migrations, which enable the

self-adaptation capabilities of DSP applications in a non-destructive way,
preserving the operators state (Section 7.4).

A set of experiments run with the enhanced Storm shows the benefits and
overhead of the newly introduced mechanisms (Section 7.5). Our exten-
sion is fully modular and loosely coupled from the existing architecture of
Storm, therefore existing solutions based on or proposed for Storm in the
literature can transparently reuse the new functionalities. To this end, we
publicly release our source code to the community1.

1Elastic Storm is available on GitHub: http://bit.ly/1oUjZAi

http://bit.ly/1oUjZAi
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7.1 Related Work

As analyzed in Chapter 2, the most popular open-source DSP frameworks
(e.g., Storm, Spark Streaming, Flink, and Heron) do not fully support elas-
ticity and stateful migration, which are two features that have recently re-
ceived an increasing attention.

As regards the operator elasticity, in most cases these frameworks re-
quire their users to manually tune the number of replica per operator, thus
potentially leading to a sub-optimal provisioning of resources. In recent
years2, some of these frameworks have been equipped with elasticity mech-
anisms, which nevertheless are in a embryonic stage: indeed, they dynam-
ically scale the application in a disruptive manner, because they enact re-
configurations by killing and restarting the whole application (which in-
troduces a significant downtime). Storm does not natively support elastic-
ity. Yang and Ma [216] have investigated the internal architecture of Storm
and have proposed different strategies for relocating stateless executors,
achieving a reduction of the application latency degradation. Since we in-
troduce the new mechanisms on top of the existing architecture of Storm,
enhancements on its internal components are beneficial also for our exten-
sion. Differently from our work that exploits replication to implement data
parallelism, Liu et al. [129] exploit replication for achieving fault-tolerance
in Storm; in this case, multiple operator replicas process the same input
stream and generate the same output stream (i.e., active replication — see
Chapter 2). When equipped with Dhalion [60], Heron exposes elastic ca-
pabilities and allows to update the application topology without restart-
ing its execution. Nevertheless, at the time of writing, Dhalion has not yet
been open-sourced. From version 2.0, the micro-batched streaming module
of Apache Spark (i.e., Spark Streaming) introduces the dynamic allocation
feature. The latter uses a simple heuristic where the number of executors
is scaled up when there are pending tasks and is scaled down when execu-
tors have been idle for a specified time. Finally, Flink, although supporting
stateful operators (and their stateful reconfiguration upon request), does
not yet autonomously adapt the application deployment [26, 27].

In Chapter 2, we have shown that most elasticity policies are threshold-
based and rely on the measured CPU utilization of the system nodes or
of the operator replicas (e.g., [31, 71, 80]). Other solutions use more com-
plex policies to determine the scaling decisions (e.g., [65, 78, 81, 132]). For
example, Lohrmann et al. [132] propose a strategy that enforces latency
constraints by relying on a predictive latency model based on queueing
theory. Heinze et al. [78] propose a model to estimate the latency spike
created by a set of operator movements and use it to define an elastic oper-

2At the moment of writing this contribution, published in [30], the most popular open-
source DSP frameworks did not support elasticity.
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ator placement algorithm that minimizes the latency violations. De Matteis
and Mencagli [46] present an interesting elasticity policy, which relies on
a proactive and control-theoretic method that takes into account a limited
future time horizon to choose the reconfigurations to execute. Similarly
to the approaches in [81, 80, 132], our proof-of-concept scaling policy is
reactive and threshold-based; however, we decouple the elasticity mecha-
nism from the corresponding policy, which can be easily changed. Bilal and
Canini [20] propose a framework for offline parameter tuning. This frame-
work determines the best configuration (e.g., in terms of operator replica-
tion) according to the performance goals through a set of preliminary DSP
application runs. Differently from our approach, they assume the schedul-
ing is static, therefore the application cannot be conveniently reconfigured
when the incoming workload changes.

While scaling stateless operators can be achieved by just starting or
stopping new operator instances, elasticity of stateful operators requires
state migration to preserve the consistency of the operations [65]. The most
common solutions, as seen in [78], are the pause-and-resume approach
(that we adopt in this thesis) and the parallel track approach (see Chap-
ter 2). To identify the portion of state to migrate, Castro Fernandez et al. [31]
expose an API to let the user manually manage the state, while Gedik et
al. [65] automatically determine, on the basis of a partitioning key, the opti-
mal number of state partitions to be used and to migrate. In our approach,
the minimum unit of migratable state is defined by the user through the
Storm execution model. ChronoStream [210] natively supports stateful
migrations and uses a lightweight protocol that leverages on distributed
checkpoints to minimize the amount of state relocated during a migration.
Conversely, our work is driven by the existing Storm architecture. Storm
also includes Trident, which provides high-level processing abstractions
such as joins, aggregations, and filters. Differently from our extension, Tri-
dent can persist a state which is obtained by applying a sequence of Trident
transformations on the input data. However, this approach requires to play
the stream as a sequence of micro-batches, processed in a commit-like fash-
ion, thus causing a constant latency overhead.

7.2 Elastic Storm Architecture

Neither stateful migrations nor elastic scaling decisions are supported by
the current architecture of Storm. However, Storm provides the rebalance
function which allows to manually change the number of executors for the
topology operators. We extend Storm to support elasticity and stateful mi-
gration, aiming at providing mechanisms that can be reused by the Storm-
based extensions in the literature, including those focusing on the operator
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Figure 7.1: Extended Storm architecture.

placement policies (e.g., [9, 28, 34, 58, 213]). Figure 7.1 illustrates in red the
newly introduced components, namely the ElasticityManager, the Migra-
tionNotifier, and the Distributed Data Store (DDS).

The ElasticityManager is located on the centralized component Nimbus
and is in charge of evaluating scaling decisions for the topologies man-
aged by Storm. A scaling decision changes the operator parallelism, i.e.,
it increases or decreases the number of executors for an operator, improv-
ing resource utilization in relationship to the incoming data rate. Since the
newly added executors have to be placed on the worker nodes, the Elas-
ticityManager is executed before the Storm scheduler, so that the latter can
analyze and define the placement of the newly introduced executors.

The MigrationNotifier is executed after the scheduler; it initiates the mi-
gration by notifying the tasks of the executors that have changed their
placement to save their internal state. The MigrationNotifier will resume
the execution as soon as all the migrating tasks can be terminated with-
out loss. Afterwards, the new assignment plan, defined by the scheduler,
will become effective and the migrating tasks can be restored on the new
worker nodes.

The Distributed Data Store (DDS) is a data store introduced on each
worker node and allows the migrating tasks to save their internal state be-
fore terminating their execution. It acts as a local repository for migrating
tasks, which can retrieve and restore their state as soon as they are instan-
tiated on the new worker nodes. The presence of a locally available data
store allows us to minimize the amount of state moved across the network
during a migration.

We observe that the presence of centralized components that oversee
the adaptation of DSP applications (such as the ElasticityManager and the
MigrationNotifier) represents a scalability bottleneck for the execution of
Elastic Storm in geo-distributed environments. In the next chapters we will
further extend the architecture of Storm to overcome this scalability issue.
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7.3 Operator Elasticity

The ElasticityManager dynamically reconfigures a topology by scaling hor-
izontally (i.e., scaling out and in) the number of executors for an operator.
A scale-out decision increases the number of executors when the operator
needs more computing resources. A scale-in decreases the number of ex-
ecutors when the operator under-uses its resources. Recalling the execu-
tion model of Storm (Section 3.2), a scaling operation changes how tasks
are grouped into executors, thus leading to a possible relocation of the op-
erator state on a different worker node.

7.3.1 Design Overview

The ElasticityManager is designed as a loosely coupled component of Storm,
which works independently from the placement policy. Periodically, every
Tnbs, Nimbus activates the ElasticityManager; the latter analyzes each of
the topologies running in Storm by possibly taking scaling decisions for at
most a single topology at a time. This limitation allows to evaluate the ef-
fects of scaling decisions on the other running topologies. We describe the
simple yet effective threshold-based policy adopted by the ElasticityMan-
ager to compute the scaling decisions in Section 7.3.2. The resulting de-
cisions are then implemented exploiting the rebalance function provided
by Storm, which allows to change the set of executors for the operators
of a topology and to adapt the Storm execution environment. As side ef-
fect, rebalance suspends the execution of the topology spouts until the
scheduler defines a new placement for the topology. To avoid stressing a
topology with frequent scaling decisions that may lead to instability, after a
rebalance we let the topology enter in a cooldown state for the next EMcld

invocations of the ElasticityManager.

7.3.2 Scaling Policy

We design a reactive and threshold-based policy: the ElasticityManager
takes scaling decisions comparing the fraction of CPU time utilized by each
executor against some thresholds. Specifically, Ue measures the fraction of
CPU time used by the executor e ∈ E(op) of the operator op ∈ OP (q) in
the topology q3. That is, Ue is the CPU utilization per executor e. The
ElasticityManager considers a single topology q at a time and decides first
the scale-out actions, then the scale-in ones.

3Since an executor is a Java thread, the CPU time for the thread can be obtained relying
on the ThreadMXBean class.
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Scale-out. It adds a new executor for each one in overload. Formally,
for each e ∈ E(op), with op ∈ OP (q), such that

Ue > ScaleOutThr

where ScaleOutThr is the upper usage threshold, one new executor is
added to E(op). According to this policy, the number of executors for op
can be at most doubled in a run of the ElasticityManager. All the operators
subject to a scale-out operation compose the set OP sc(q).

Scale-in. It halves the number of executors of an operator, if all those
existing are underloaded. Scale-in decisions are evaluated for all the opera-
tors not already under a scaling-out operation. Formally, for each operator
op ∈ OP (q)\OP sc(q) such that

Ue < ScaleInThr ∀e ∈ E(op)

where ScaleInThr is the lower usage threshold, the number of executors
is halved or set to minExec(op), which is the configurable minimum for
operator op.

This scaling strategy doubles or halves the number of executors for
an operator. Therefore, we conveniently define the scaling thresholds in
a such a way that ScaleOutThr, ScaleInThr ∈ [0, 1] and we can guar-
antee a stability gap S ∈ [0, 1] between them such that ScaleOutThr >
2×ScaleInThr+S. The higher the values for S, the more conservative are
the scaling decisions.

7.3.3 Elasticity and Placement

When a topology is subject to a scaling decision, the ElasticityManager con-
veniently marks it with a special label. The Storm scheduler can thus adopt
a specific placement policy, which assigns only the added or changed ex-
ecutors by minimizing, for example, the amount of relocated operator state.
Since in Storm the number of tasks for each operator is defined a-priori and
cannot change at runtime (see Section 3.2), the elasticity changes how the
tasks are grouped into executors. If the operator is stateful, a scaling deci-
sion leads to the relocation of a partition of the operator state, which could
be costly or negatively impact the application performance. Therefore, we
implement a simple placement policy for those topologies subject to scal-
ing decisions, which places the new or updated executors by minimizing
the number of tasks that should be relocated with respect to the previous
configuration. This strategy assumes that the operator state is uniformly
distributed across its partitions (i.e., tasks); if this condition does not hold
true, more sophisticated strategies can perform better. Furthermore, this
strategy consolidates the application executors on fewer worker nodes.
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7.4 Stateful Operator Migration

After either a scaling operation or the definition of a new application place-
ment, some executors may be relocated on the worker nodes. If the execu-
tor is stateless (i.e., it contains tasks of a stateless operator), the relocation
can be easily performed by terminating the executor on the old location,
moving its code to the new location, and restarting it. On the other hand,
if the executor is stateful (i.e., it contains tasks of a stateful operator), we
also need to efficiently migrate its internal state, so to preserve the integrity
and consistency of the outputted streams. As a consequence, this kind of
migration can involve a sophisticated cooperation among several compo-
nents.

7.4.1 Overview

We propose a stateful migration solution that uses a pause-and-resume ap-
proach [78], which extracts the current state from the old instance and re-
plays it within the new instance. To this end, the executor needs to be
paused to ensure a semantically correct migration. Since in Storm a task
represents the smallest entity that handles a partition of the operator state,
we extend Storm to support task-level, or fine-grained, migrations. Note
that this kind of migration covers the needs not only of scaling decisions,
which define a new tasks-to-executors mapping, but also of replacement
decisions, which move already existing executors. Furthermore, thanks to
the fine granularity, we can parallelize the migrations towards different
computing locations, for example when an executor is split in tasks that
will be relocated in different locations.

7.4.2 Extended Architecture

The design of the migration protocol aims at satisfying the following re-
quirements: (1) to be transparent to and reusable by the other existing
Storm components; (2) to preserve the operator semantics by avoiding tu-
ple loss and tuple reordering; and (3) to minimize the amount of data trans-
ferred using the network. Our intent is also to minimize the impact on the
existing Storm architecture, reducing the amount of new code and reusing
properly the Storm functionalities. The key idea is to enhance the tasks
with the ability of exporting the operator state from the old worker node
and of importing it to the new one. We realize this idea thanks to the coop-
eration of the following new components of Storm (see Figure 7.1):

• a Distributed Data Store (DDS) which enables to decouple the operator
state from the related task during the migration;
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• an extension of the Storm API that allows to define the code of spouts
(i.e., data sources) and bolts (i.e., operators and final consumers). Specif-
ically, we introduce the StatefulSpout and StatefulBolt classes, which en-
rich the tasks with the ability of storing and retrieving the partition of
the operator state from the DDS in a user-transparent way;

• a centralized MigrationNotifier that orchestrates the migration and pre-
vents Storm from propagating new placement decisions until all the
tasks involved in a migration have saved their state to DDS. Indeed, in
the official release of Storm, after a new placement decision the execu-
tors that have changed location are restarted, making the tasks loose
their state.

The proposed solution also exploits ZooKeeper, which provides a coordi-
nation and synchronization service that simplifies the cooperation among
the distributed components.

DDS. Each worker node is equipped with a data store, which is acces-
sible to all the other worker nodes. This allows a migrating task to save its
state on a local storage, so to minimize the amount of data transferred on
the network. The data store is implemented as an in-memory caching sys-
tem with Hazelcast4. We do not use ZooKeeper for this purpose, because it
is not designed to hold large data values.

StatefulSpout and StatefulBolt. These classes support and execute the
stateful migration protocol presented in the next section and should be
used when the topology has at least one stateful operator. That is, also
stateless operators should be defined leveraging on these new classes. Dif-
ferently from the default implementation of spouts and bolts, these new
classes are enhanced to: (1) provide a common interface that defines the
task state and allows to export and import it with getState() and setState(),
respectively; and (2) define two execution modes for the task, namely the
operational mode and the migration mode. The former represents the tradi-
tional execution mode of the task, which runs the operator logic that is
defined by the user. The latter is used when the task or a neighbor (i.e.,
upstream, downstream) task is migrating; it allows to safely stop the task
execution, save and restore the internal state, and avoid tuple loss and tu-
ple reordering — thus preserving the operator integrity. Moreover, since
the coordination among tasks relies on ZooKeeper, the StatefulSpout and
StatefulBolt classes include a Watcher component that asynchronously ob-
serves and retrieves information published by the MigrationNotifier or by
other tasks.

MigrationNotifier. This component executes on the centralized entity
Nimbus. Basically, the MigrationNotifier intercepts the scheduler assign-
ment plan, notifies the tasks that should export their internal state, and

4Hazelcast: https://hazelcast.com/

https://hazelcast.com/
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Figure 7.2: Sequence of operations performed by a migrating task.

waits until each of them has correctly completed this operation (i.e., it
reaches the first synchronization barrier, as presented next). When the Mi-
grationNotifier resumes the execution, Nimbus can disseminate the new
placement decisions to the worker nodes; the latter will terminate and
launch the worker processes (and related executors) according to the new
placement.

7.4.3 Migration Mode and Migration Protocol

When the MigrationNotifier communicates, through ZooKeeper, the set of
tasks involved in a migration, these tasks, as well as the tasks that precede
and follow them in the topology, enter in the migration mode. Each task
relies on the Watcher component to asynchronously check for this kind of
notifications. The migration mode runs the migration protocol, which spe-
cializes the task behaviour with respect to the role played during the mi-
gration. We identify three roles: the task precedes a migrating task in the
topology, the task itself is migrating, and the task follows a migrating task
in the topology. For short, we refer to them as upstream task, migrating task,
and downstream task, respectively.

To avoid tuple loss or their reordering, we need to pause the streams di-
rected to a migrating task and save the tuples in transit, so to replay them
as soon as the migration is completed. To this end, we introduce an Out-
putBuffer that resides on the upstream task and allows to temporary store
the tuples directed towards a migrating task that could change its location.
The upstream task explicitly notifies the last tuple sent on a stream, lever-
aging a special end-of-stream (EOS) message. For sake of efficiency, we
introduce also an InputBuffer, which resides on the migrating task and on
the downstream ones. Using this buffer, the migration protocol can stop
the execution of the operator logic and rapidly retrieve the incoming tuples
from the communication link.

We now present the migration protocol according to the role played by
a task during a migration: upstream task (of a migrating one), downstream
task (of a migrating one), and migrating task. If a task plays different roles
during a migration (e.g., upstream and downstream task), the following
procedures are combined. As depicted in Figure 7.2, the migration proto-
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col is characterized by two synchronization barriers, which indicate respec-
tively that a task has correctly saved its state and has completely recovered
it.

Upstream Task. Entering the migration mode, the upstream task stops
(only) the streams directed to the migrating task: it emits the EOS message
and stores the subsequently produced tuples for that stream on the Out-
putBuffer. Besides the migrating task, this EOS message can be transmitted
to other tasks (e.g., the other operator tasks); the latter directly join the sec-
ond synchronization barrier. As soon as also the migrating task reaches the
second synchronization barrier, the migration is completed: the upstream
task emits the tuples stored within the OutputBuffer and switches back to
the operational mode.

Downstream Task. Entering the migration mode, the downstream task
stops the computation and rapidly downloads the streams coming from the
migrating task; all the received tuples that precede the EOS message are
stored into the InputBuffer. Afterwards, it switches back to the operational
mode and resumes the computation.

Migrating Task. Although logically sequential, the execution of the mi-
gration mode of the migrating task is divided in two parts, namely save
state and restore state, which can be executed on two different computing
locations.

a) Save State. Entering the migration mode, the migrating task stops the
computation, emits the EOS message to its downstream tasks, and buffers
the incoming tuples on the InputBuffer until the EOS message is received
from its upstream tasks. As soon as these operations are completed, the
task pushes on the local DDS the operator state and the InputBuffer. The
operator state is extracted relying on the getState() function that the user
implements. Since computation is stopped, the OutputBuffer is always
empty. At this point, the task is ready to be safely terminated, reaches the
first synchronization buffer, and disseminates this information to the other
tasks using ZooKeeper.

b) Restore State. When a new task is launched, it automatically enters the
migration mode and checks on ZooKeeper if it is involved in a migration.
If so, it contacts the DDS on the old worker node and recovers the oper-
ator state together with the InputBuffer. The operator state is imported
using the setState() function that the user implements. Afterwards, the
migration is considered as completed, the task reaches the second syn-
chronization barrier and spreads this information to the other tasks using
ZooKeeper. When all the tasks involved in a migration reach the second
synchronization barrier, the paused streams will be resumed and the ap-
plication will continue the execution. In the meanwhile, the task retrieves
and processes the tuples from the InputBuffer and, then, switches to the
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operational mode.
The proposed protocol supports concurrent migrations, because each

task can autonomously relocate its state.

7.5 Experimental Results

To analyze the benefits and overhead introduced by the new elastic scaling
and stateful migration mechanisms, we run a set of experiments executing
a stateful DSP application on Storm, by first enabling and then disabling
the new mechanisms.

7.5.1 Experimental Setup

We run the experiments using Storm 0.9.3 on a cluster of 5 worker nodes
and one further node for Nimbus and ZooKeeper. Each node is a m4.xlarge
AWS EC2 virtual machine with 4 vCPUs on Intel Xeon E5-2676 and 16 GB
of RAM.

In our experiments, Storm determines the operators placement using
the scheduler designed by Xu et al. [213], which assigns the operators on
the worker nodes in descending order of incoming and outgoing traffic
exchanged using the network so to minimize the inter-node traffic. Differ-
ently from the default round-robin scheduling policy, this one triggers ex-
ecutor reassignments if it finds a new configuration that reduces the inter-
node traffic. Moreover, the policy ensures an even distribution of the ex-
ecutors on all the worker nodes, because a node can run at most E/N ex-
ecutors, where E is the total number of executors and N the number of
worker nodes. To avoid inter-process communication overhead, the sched-
uler by Xu et al. uses only a worker slot per node. Since its source code
is not publicly available, we implement the scheduler according to the de-
scription in [213] and integrate it with the special placement policy for the
new or updated executors that we presented in Section 7.3.3.

The ElasticityManager is executed together with the scheduler every
Tnbs = 10 s, and ScaleOutThr and ScaleInThr are set to 0.7 and 0.2, respec-
tively. After a scaling decision, the topology enters in a cooldown state for
the next EMcld = 12 invocations of the ElasticityManager (i.e., for 120 s),
where no new scaling decision can be applied. In preliminary experiments,
not reported for space limits, we found that this setting ensures a stable
behavior of the system.

As testing application we implement the Frequent Pattern Detection
(FPD) [51], which analyzes tweets from Twitter and retrieves the most fre-
quent patterns (i.e., those that occur more than 20 times) on a sliding win-
dow of 60 s. Figure 7.3 shows the FPD topology and Table 7.1 reports the
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Figure 7.3: Frequent Pattern Detection topology.

Table 7.1: Number of executors and tasks, and minimum number of execu-
tors for each operator of the FPD application.

Operator op |E(op)| |T (op)| minExec(op)
Input 1 1 1
Generator 2 2 1
Detector 5 20 1
Reporter 1 1 1

configuration of its operators. The topology spout reads input data from
Redis, a shared memory, and emits them according to an exponential dis-
tribution with parameter λ.

Each experiment comprises five sequential phases, each lasting 900 s,
and with input data rate according to the sequence λ = {120, 350, 900, 250,
120} tweets/s. This workload stresses the infrastructure of Storm, which
has to repeatedly evaluate the application placement at runtime. In the
following figures, the beginning of each phase is represented with a ver-
tical dotted line with a rhombus on the extremities. A scaling decision,
which changes the number of executors for the topology, is represented
with a vertical dash line, whereas a scheduling decision, which changes
the placement of the executors, is represented with a vertical dot-dash line
and a symbol “+” on top. The performance metrics are collected through
the Storm metric system, which every 5 s provides an average value com-
puted on a sliding window of 600 s, made of samples harvested every 5 s.
Since this metric system is stateless, after a migration the old samples are
lost and thus the following figures will show some zero values.

7.5.2 On the Elastic Scaling Mechanism

Figure 7.4 shows the application latency, i.e., the average latency experi-
enced to traverse the entire FPD topology. When the elastic scaling mecha-
nism is deactivated (referred to as “w/o E+SM” in Figure 7.4), the applica-
tion ability of handling the incoming data rate depends on the parallelism
that is statically defined by the user at design time. In this case, the applica-
tion can manage the data source with λ = 120 tweets/s, but cannot keep the
pace when the data rate reaches λ = 350 tweets/s; the system becomes un-
stable, as confirmed by the continuous increase of the application latency
after 1500 s. When the input data rate reaches 900 tweets/s, the applica-
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Figure 7.4: Application latency with and without elasticity and stateful mi-
gration.

tion latency grows up to 1500 ms. When the source reduces its data rate to
λ = 250 tweet/s, the system can properly handle the buffered elements, un-
til 3300 s, when all the buffers are empty, and the experienced application
latency is below 90 ms. The elastic scaling and stateful migration mecha-
nisms (referred to as “with E+SM” in Figure 7.4) improves significantly the
application performance. When the data source emits 350 tweets/s, a scal-
ing decision allows to efficiently handle the incoming load by doubling the
number of executors for the Detector operator. Similarly, when the input
data rate reaches 900 tweets/s, three reassignments and a scaling decision
lead to an application latency lower than 900 ms. Soon after the occurrence
of either a scaling or scheduling decision, we observe a transient period,
where the application latency increases due to the processing of the col-
lected buffers and the overhead imposed by the extended Storm to restart
the executors on the new worker nodes.

Figure 7.5 shows how the ElasticityManager scales in or out the num-
ber of running executors during the experiment. In the first phase, the un-
needed executors are terminated, ensuring that the utilization of the run-
ning executors is higher than the ScaleInThr threshold. When the load
imposed to the system increases, new executors are launched up to the
third phase, when 23 executors run concurrently. As the incoming load
starts decreasing, the number of executors decreases as well and, at the end
of the experiment, only 8 executors are running. Except for the Generator
operator whose parallelism is halved in the first phase, only the Detector
operator is scaled out and in, since it constitutes the bottleneck of the FPD
application. The ElasticityManager changes the Detector parallelism de-
gree in the following sequence: {20, 10, 5, 10, 20, 10, 5}.
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Figure 7.5: Effects of the elasticity on the number of executors.

When the elastic scaling and stateful migration mechanisms are both ac-
tive, the application can better exploit the available resources. Figure 7.6a
represents the average and maximum node utilization by the application
executors. We can observe that the benefits of the scaling and scheduling
decisions are complementary. The former allow to change the set of execu-
tors in order to better exploit the available computing resources, whereas
the latter allow to balance the load among the worker nodes, enabling a
more efficient usage of the available resources. When the elasticity and
stateful migration mechanisms are both disabled, as results from Figure 7.6b,
the system utilization is low and the application cannot process the increas-
ing load in a timely way. This happens because the fixed number of execu-
tors overloads a subset of the computing resources, whereas the remaining
subset of computing resources is free and not utilized. For example, with
λ = 900 tweets/s, on the worker node with the maximum utilization (of
about 50%), the half of the CPU cores with running executors is overloaded,
whereas the other half is almost idle.

7.5.3 On the Stateful Migration Mechanism

We now analyze in detail the stateful migrations occurred during the ex-
periments, with a special focus on two characteristics: the amount of state
transferred using the network and the overhead introduced by the stateful
migration.

The system has performed 9 migrations, 6 of which are related to a scal-
ing decisions and 3 to placement decisions. In the following, we refer to
each of them using the migration index, a progressive number that reflects
the chronological order when the migration has been performed. We first
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Figure 7.6: Node utilization by executors.

analyze the amount of state transferred using the network. Figures 7.7a
and 7.7b illustrate the operator state and the InputBuffer that a migrating
task saves on the DDS. As expected, Figure 7.7a shows that there is a gen-
eral tendency which links the size of the migrating operator with the in-
coming data rate: the higher the load, the larger the saved state. From
Figure 7.7b, we can clearly see that the InputBuffers are always empty af-
ter the scaling decisions; this happens because the time elapsed between
the rebalance command, that suspends the spouts activity, and the begin-
ning of the migration is enough to consume the tuples already emitted.
Figure 7.7c shows the percentage of saved state that is relocated during
each migration. Specifically, after a scheduling decision on average 65% of
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Figure 7.7: Analysis of stateful migration.

the state is migrated. For the scaling decisions, the placement policy pro-
posed in Section 7.3.3 reduces this percentage and obtains a relocation of
only 37.5% and 0% for the scale-in and scale-out decisions, respectively. To
analyze the overhead introduced by the stateful migration, we run again
the same experiment by enabling the elastic scaling mechanism but dis-
abling the stateful migration. The result is shown in Figure 7.7d, where we
compare the time elapsed to perform the stateful migration with the time
needed to reassign the executors in Storm (i.e., stateless reassignment). On
average the stateful migration introduces an overhead of about 10 s com-
prising: (1) the time to save the state on the DDS; (2) the time to retrieve
and replay the state from the DDS; and (3) the time waited on the syn-
chronization barriers. In this experiment, the third component dominates
on the others, while the size of the operators state (from 2 to 16 MB, see
Figure 7.7a) does not affect the migration overhead.
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7.6 Summary

In this chapter, we have designed and implemented two mechanisms, i.e.,
elasticity and stateful task migration, that allow Storm to address at run-
time the highly dynamic nature of DSP applications. The proposed solu-
tion is modular and loosely coupled with the existing Storm architecture
as well as transparent and fully reusable by other Storm-based solutions
in literature. The experimental results have shown that Storm can elasti-
cally increase or decrease the number of operator executors as needed, im-
proving resource utilization of the underlying infrastructure and properly
processing the incoming workload.

In recent years, Storm has been widely adopted by research and indus-
trial communities. Therefore, many elasticity policies as well as stateful mi-
gration protocols have been proposed in literature. In our work, even tough
we have implemented simple proof-of-concept policies, we have designed
mechanisms to host also other, more efficient, algorithms. Elastic Storm
can represent a useful tool for the DSP-related community; therefore, we
have publicly released its source code, which is available as an open source
project on GitHub (http://bit.ly/1oUjZAi). In the next chapters, we will
use Elastic Storm to prototype and evaluate our runtime adaptation solu-
tions.

http://bit.ly/1oUjZAi


Chapter 8

Elastic Operator Placement and
Replication

In the Big Data era, DSP applications should be capable of seam-
lessly processing huge amount of data with varying workload pat-
terns, thus requiring to dynamically scale their execution on mul-
tiple computing nodes. We investigate and model the problem
of adapting at runtime the replication and placement of DSP op-
erators. By explicitly considering reconfiguration costs, the pro-
posed formulation can determine whether the application should
be more conveniently redeployed.

In the previous chapters, we have shown the importance of a reference
model to evaluate existing deployment heuristics as well as to develop new
ones. Moreover, we have investigated the benefits of a joint optimization
of replication and placement of DSP operators. From Chapter 7, we started
to explore the challenges of adapting at runtime the application deploy-
ment and, in this chapter, we show the importance of adaptation costs for
running high-performance DSP applications.

DSP applications should be capable of seamlessly processing massive
amount of data with varying workload patterns; therefore, they require to
dynamically scale their execution on multiple computing nodes. To deal
with the fact that some operators in the application can be overloaded and
thus become a bottleneck, a commonly adopted optimization consists of
scaling-out or scaling-in the number of parallel instances (i.e., replicas) for
the operators, so that each replica can process a subset of the incoming data
flow in parallel (e.g., [65, 81, 86]). Due to the unpredictable rate at which
the sources may produce the data streams, a static or manual configura-
tion of the operator replication degree (which in literature is also referred
to as parallelization degree) does not allow to effectively manage changes

207
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that can either occur in the execution environment (e.g., workload fluctua-
tions) or in the QoS requirements of the DSP application (which is typically
long-running). Therefore, a key design choice in a DSP framework is to
enable it with elastic data parallelism, where the replication degree is self-
configured at runtime. As expected, it is more complex to achieve elasticity
for stateful operators. Furthermore, since data sources can be geograph-
ically distributed, the deployment and execution of DSP applications can
also take advantage of the ever increasing presence of distributed Cloud
and Fog computing resources, which can reduce latency by moving the
computation towards the network edges.

This chapter focuses on the initial deployment and runtime reconfig-
uration of DSP applications over geo-distributed computing nodes. We
propose Elastic DSP Replication and Placement (for short, EDRP), a uni-
fied general formulation of the elastic operator replication and placement
problem. EDRP takes into account the heterogeneity of infrastructural re-
sources and the QoS application requirements and determines the num-
ber of replicas for each operator and where to deploy them on the geo-
distributed computing infrastructure. Moreover, EDRP takes into account
the reconfiguration costs, which arise when an operator is migrated from
one computing resource to another, as well as when a scaling-in/out de-
cision changes the replication degree of an operator. These costs are sig-
nificant in case of stateful operators, which require the relocation of the
internal state on a different node in such a way that no state information is
lost. As in most recent research, e.g., [65], we consider partitioned stateful
operators, for which the internal state can be decomposed into partitions
based on a partitioning key and each partition can be assigned to a distinct
replica.

Differently from most works in literature [53, 132, 145, 196], EDRP can
jointly determine the application placement and replication of its operators,
while optimizing the QoS attributes of the DSP application. At runtime,
by modeling the reconfiguration costs of migration and scaling operations,
EDRP can be used to determine whether the application should be more
conveniently redeployed.

The main research contributions of this chapter are as follows.

• We model the EDRP problem as an Integer Linear Programming (ILP)
problem (Sections 8.2, 8.3, and 8.4) which can be used to optimize dif-
ferent QoS metrics. Specifically, in this chapter, we minimize the re-
sponse time, defined as the critical path delay to traverse the application
DAG, and the monetary cost of all the computing and networking re-
sources involved in the processing and transmission of the application
data streams. We propose a general formulation of the reconfiguration
costs caused by operator migration and scaling in terms of application
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downtime. The latter depends on the fact that most DSP frameworks
do not support seamlessly reconfigurations, since the ongoing compu-
tation is interrupted while the migration and/or scaling operations are
being carried out.

• Leveraging on Distributed Storm (presented in Chapter 3), we develop
a prototype scheduler named S-EDRP. S-EDRP can replicate and place
the DSP application operators according to the EDRP solution (Sec-
tion 8.5). To this end, we adapt the reconfiguration costs in order to
consider the migration protocol used for relocating stateful operators.

• We extensively evaluate our proposal through numerical experiments
as well as experiments based on our S-EDRP prototype (Section 8.6).
The former aims to investigate the effectiveness of EDRP in taking the
reconfiguration decisions under different scenarios of reconfiguration
costs. The latter aims to evaluate the prototyped solution in a real set-
ting; to this purpose, we use the DSP application that solves the DEBS
2015 Grand Challenge and that we already used in Chapter 6.

8.1 Related Work

Starting from the literature analysis presented in Chapter 2, in this section,
we review the most relevant approaches aiming to pinpoint the research
contributions of this chapter.

From Chapter 2, we have seen that the DSP deployment problem has
been widely investigated in literature under different modeling assump-
tions and optimization goals. Therefore, in Chapter 4 and 6, we have pro-
posed two general formulations of the optimal DSP deployment problem,
which take into account the heterogeneity of computing and networking
resources. The first one determines only the operator placement, whereas
the second one optimizes also the replication degree of DSP operators. Dif-
ferently from existing solutions, our single-stage approach jointly optimizes
replication and placement of the DSP application operators. The contri-
butions of Chapters 4 and 6 focus only on the initial deployment problem,
thus neglecting the DSP systems runtime dynamics and the reconfiguration
costs. In this chapter, we further extend our results to explicitly address the
challenges of performing an elastic runtime adaptation.

Elasticity is a key feature for today’s DSP systems, and many research
efforts have proposed efficient policies. Some works, e.g., [31, 71, 80], ex-
ploit best-effort threshold-based policies based on some utilization metric.
Other works, e.g., [65, 132, 145, 214], use more complex policies to deter-
mine the scaling decisions, including latency models based on queuing
theory, game-theoretic and control theoretic approaches. These approaches
usually do not consider stateful operators (e.g., [132, 167, 205, 214, 219]) or
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cannot be easily utilized in geo-distributed environment (e.g., [31, 47, 60,
78, 162]), because they neglect the impact of network latencies while plan-
ning reconfigurations. Furthermore, the lack of a reference benchmark does
not allow to assess the quality of the proposed heuristics.

Since most DSP frameworks require to restart the application or rely
on a pause-and-resume approach, performing a reconfiguration may in-
cur in a significant downtime (e.g., [199]). Therefore, several solutions
explicitly consider the adaptation cost while determining the adaptation
actions. Specifically, some works only limit the number of deployment
changes [48, 47], whereas others predict the resulting performance penal-
ties (e.g., application downtime, latency spikes), with the aim of enacting
only the less expensive reconfigurations [78, 95, 219] or to enforce con-
straints on the adaptation cost [82, 138]. Our solution uses the adaptation
cost while determining the optimal reconfiguration strategy. Indeed, by
modeling the DSP system, EDRP can determine whether it is more con-
venient to redeploy the application by evaluating, at the same time, the
performance improvement and the cost of adaptation (which results in a
short term performance degradation).

The works most closely related to ours have been presented in [78, 81,
138]. Heinze et al. [78, 81] propose a model to estimate latency spikes
caused by operator reallocations, and use it to define a placement heuristic.
It results a solution that places only the newly added operators and min-
imizes the latency violations. Our approach differs in that we propose an
optimal problem formulation which deals with the reconfiguration costs of
the entire DSP application. Moreover, our solution represents a benchmark
against which heuristics can be compared. Madsen et al. [138] formulate a
MILP optimization problem aimed to control load balancing and horizontal
scaling, which works in combination with a heuristic in charge of collocat-
ing operators on computing nodes. Similarly to our work, their solution
considers operator collocation (in our case, it follows from minimizing the
response time) and state-migration overheads. However, we further con-
sider the network among computing nodes, which impacts on placement,
replication, and also on migration costs.

Differently from the above cited works that present reactive scaling
strategies, De Matteis and Mencagli [48] propose a proactive strategy for a
DSP distributed environment that takes into account a limited future time
horizon to choose the reconfigurations. Differently from our solution, their
approach is not integrated in an existing DSP framework.

DSP Frameworks. Aside the specific functionalities, the most popu-
lar open-source DSP frameworks (i.e., Storm, Spark Streaming, Flink, and
Heron) use directed graphs to model DSP applications. This is perfectly
in line with the model we adopt in EDRP. Some of these frameworks are
equipped with elasticity mechanisms in an embryonic stage, because they
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dynamically scale the application in a disruptive manner. To support elas-
ticity and stateful migrations, we originally developed in Elastic Storm sev-
eral runtime mechanisms, which have been presented in Chapter 7. In this
chapter, we combine these functionalities with our Distributed Storm to
exploit the distributed monitoring capabilities of the latter. We present in
Section 8.5 the resulting enhanced framework.

An approach to support elastic scaling of DSP applications in Storm
has been also presented at the same time in [123]; interestingly, their pro-
posal reduces the interruption due to scaling operations by keeping the ap-
plication running while scaling, instead of shutting down the application
operators and restarting them. However, they considered a clustered archi-
tecture and their improved version of Storm has not been released publicly.
Therefore, in our experiments we use the standard rebalancing command
of Storm.

As regards the deployment of DSP applications in geo-distributed envi-
ronments, we rely on Distributed Storm, that has been presented in Chap-
ter 3. However, we observe that our EDRP formulation is general enough
and it could be integrated in other DSP frameworks designed to operate in
a geo-distributed infrastructure (e.g., Foglets).

DSP systems are also offered as Cloud services (e.g., Google Cloud
Dataflow, Amazon Kinesis Streams, Azure Stream Analytics). These ser-
vices support dynamic scaling of the computing resources; however, it
appears that they execute in a single data center, conversely to the geo-
distributed environment we investigate in this thesis.

8.2 System Model

In this section, we briefly recall the resource and application model pre-
sented in Chapter 6, and introduce the reconfiguration model. We summa-
rize the notation used throughout the chapter in Table 8.1.

8.2.1 Resource Model

Computing and network resources can be represented as a labeled fully
connected directed graph Gres = (Vres, Eres): the set of nodes Vres repre-
sents the distributed computing resources, and the set of links Eres repre-
sents the logical connectivity between nodes. Each node u ∈ Vres is charac-
terized by Resu, the amount of available resources, and Su, the processing
speed-up on a reference processor. Each link (u, v) ∈ Eres, with u, v ∈ Vres
is characterized by: d(u,v), the network delay between node u and v; r(u,v),
the transfer rate between node u and v; and C(u,v), the cost per unit of data
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Table 8.1: Description of main symbols used in the model.

Symbol Description
Gdsp Graph representing the DSP application
Vdsp Set of vertices (operators) of Gdsp
Edsp Set of edges (streams) of Gdsp
Ci Cost of deploying i ∈ Vdsp
Ri Latency of i ∈ Vdsp
Resi Required resources to execute i ∈ Vdsp
IS,i Internal state size of i ∈ Vdsp
IC,i Operator code size of i ∈ Vdsp
λ(i,j) Avg. tuple rate on (i, j) ∈ Edsp
λi Avg. incoming tuple rate on i ∈ Vdsp
Gres Graph representing computing resources
Vres Set of vertices (comp. nodes) of Gres
Eres Set of edges (network links) of Gres
Resu Resources available on u ∈ Vres
Su Processing speed-up of u ∈ Vres
d(u,v) Network delay on (u, v) ∈ Eres
r(u,v) Transfer rate on (u, v) ∈ Eres
C(u,v) Cost for data unit on (u, v) ∈ Eres
ts,u Time for instance spawning on u ∈ Vres
tsyn Synchronization time for reconfiguration
V i
res ⊆ Vres Subset of nodes where to place i ∈ Vdsp
S @ S Multiset of elements in set S
P (S; k) Set of all multisets with elements taken in S

and cardinality no greater than k
U0,i Current deployment for i ∈ Vdsp
xi,U Placement of i ∈ Vdsp on nodes in U
y(i,j),(U ,V) Placement of (i, j) ∈ Edsp on network paths between U and V

transmitted along the network path between u and v. This model also con-
siders edges of type (u, u) (i.e., loops), as in Section 6.2.1.

8.2.2 DSP Model

To describe a DSP application, also in this chapter we distinguish between
a user-defined abstract model and an execution model.

A DSP abstract model can be represented as a labeled directed acyclic
graph (DAG) Gdsp = (Vdsp, Edsp), where the nodes in Vdsp represent the ap-
plication operators as well as the data stream sources and sinks, and the
links in Edsp represent the streams between nodes. We characterize an op-
erator with the non-functional attributes of a reference implementation on
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a reference architecture: Resi, the amount of resources required for running
the operator; Ri, the average operator instance latency (which accounts for
the waiting time on the input queues as well as the execution time of a data
unit); and Ci, the cost of deploying an operator instance. We characterize
the stream exchanged from operator i to j, (i, j) ∈ Edsp, with its average
tuple rate λ(i,j). To model load-dependent latency, we assume that Ri is
a function of the operator input tuple rate λi, that is, Ri = Ri(λi), where
λi =

∑
j∈Vdsp λ(j,i); without loss of generality, we also assume that Ri is

an increasing function in λi. We assume that Resi is a scalar value, but
our placement model can be easily extended to consider Resi as a vector of
required resources (e.g., CPU cores, memory).

The DSP execution model is obtained from the abstract model by replac-
ing each operator with the current number of operator replicas. Since the
load can vary over time, the number of replicas in the execution model can
change accordingly as to optimize QoS requirements (e.g., response time).

8.2.3 Reconfiguration Model

When a DSP application is launched, an initial number of replicas and their
placement is determined based on the current (expected) load and QoS re-
quirements. Then, at runtime, changes of QoS attributes of the application
and the execution environment (e.g., load, latency) can call for the appli-
cation reconfiguration. The latter aims to preserve high application perfor-
mance, facing the dynamism of the runtime environment. A DSP applica-
tion can be reconfigured by combining migrations and scaling operations.
A migration moves an operator replica to a different computing resource,
so to optimize resource utilization and, in turn, application performance.
A scaling operation changes the replication degree of an operator. Specif-
ically, a scale-out decision increases the number of replicas when the op-
erator needs more computing resources, whereas a scale-in decreases the
number of replicas when the operator under-uses its resources.

To perform a reconfiguration while preserving the application integrity
in terms of extracted information, we assume a simple pause-and-resume
approach, as introduced in Chapter 2. Its drawback is the application down-
time for the entire duration of the reconfiguration process, which nega-
tively impacts on the application perceived QoS.

Replica Migration. Migrating an operator replica using the pause-and-
resume approach involves the following operations. First, the DSP system
terminates the replica running on the old location and stops the related
upstream operators from emitting data towards the operator under recon-
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figuration. Then, the operator code1 is copied from an external repository
to the new location, if the latter does not hold it, i.e., if no other replica is
currently deployed there. Moreover, if the replica is an instance of a stateful
operator, the DSP system has to migrate the replica internal state from the
old location to the new one. Finally, the DSP system starts the new replica
and resumes the application execution. We consider that the DSP system
performs the code and state migrations leveraging on a storage system,
named DataStore. The DataStore acts as repository for the operators code
and allows replicas to save and restore their state during reconfigurations.

Scaling Operation. The complexity of changing at runtime the replica-
tion degree of an operator depends on the presence of its internal state. If
the operator is stateless, a scaling operation involves only adding or remov-
ing replicas. When a new replica is added, the DSP system also determines
where the replica should be executed; as a consequence of this decision, the
operator code may be transferred from the DataStore to the new location.
If the operator is stateful, a scaling operation has also to redistribute the
operator internal state among its replicas, so to preserve the application
integrity. Similarly to most of the existing solutions (e.g., [65, 71, 137, 199,
210]), we model the operator internal state as a set of key-value pairs, where
the key identifies the smallest and indivisible state entity. These keys are
partitioned and assigned to the operator replicas. After a scaling operation,
the keys are redistributed with the help of the DataStore.

8.3 Elastic Operator Replication and Placement Model

In this section, we present the EDRP elastic replication and placement model
and derive the expressions of the QoS metrics of interest.

8.3.1 Operator Replication and Placement

The EDRP problem consists in determining, for each operator i ∈ Vdsp, the
number of replicas and where to deploy them on the computing nodes in
Vres. EDRP can evaluate the application deployment either periodically
or in response to changes on the execution environment (e.g., workload
variations), so to execute application with high QoS even in dynamic run-
ning conditions. EDRP can identify the optimal reconfiguration strategy
and evaluate its convenience in terms of application downtime. Figure 8.1
represents a simple instance of the problem. Similarly to Chapter 6, we
represent the operator replication and placement through multisets, be-

1We use the term code to refer to the entity that encapsulates the execution logic of an
operator. Depending on the specific system implementation, it can correspond, e.g., to Java
classes, executables, or container/virtual machine images.
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Figure 8.1: Elastic replication of the application operators and their place-
ment. The right part of the figure shows: (top) scale-in of operators 2, 3
and 4 due to load decrease, (bottom) scale-out of operators 2 and 4 due to
load increase. The figure does not differentiate between stateful or stateless
operators.

cause a deployment can place multiple replicas of the same operator on
the same computing node. A multiset S over a set S, which we denote
as S @ S, is defined as a mapping S : S → N where, for s ∈ S, S(s)
denotes the multiplicity of s in S . Hence, s ∈ S if and only if S(s) ≥ 1.
The cardinality of a multiset S, denoted |S|, is defined by the number of
elements in S, that is |S| =

∑
s∈S S(s). Hereafter, without lack of gen-

erality, we assume that in a deployment each operator i ∈ Vdsp can be
replicated at most ki times. We also define the power multiset P(S) of a
set S as the set of all multisets with elements taken from S and the subset
P(S; k) ⊂ P(S) of the multiset over S with cardinality no greater than k,
that is P(S; k) = {S ∈ P(S)|

∑
s∈S S(s) ≤ k}.

We model the EDRP problem with binary variables xi,U , i ∈ Vdsp and
U ∈ P(V i

res; ki): xi,U = 1 if and only if i is replicated in |U| instances
with exactly U(u) copies deployed in u, with u ∈ U . We also find con-
venient to consider binary variables associated to links, namely y(i,j),(U ,V),
with (i, j) ∈ Edsp, U ∈ P(V i

res; ki), and V ∈ P(V j
res; kj), which denotes

whether the data stream flowing from operator i to operator j traverses
the network paths from nodes in U to nodes in V . By definition, we have
y(i,j),(U ,V) = xi,U ∧ xj,V . For short, in the following we denote by x and y
the placement vectors for nodes and edges, respectively, where x = 〈xi,U 〉,
∀i ∈ Vdsp, ∀U ∈ P(V i

res; ki), and y = 〈y(i,j),(U ,V)〉, ∀xi,U , xj,V ∈ x.
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8.3.2 QoS Metrics

We consider the application response time and deployment cost as QoS
metrics of interest. Nevertheless, the analysis can be easily extended to
include other QoS metrics, as application availability and network related
metrics (as shown in Chapters 4 and 6).

Since DSP applications are usually employed in latency-sensitive do-
mains (e.g., [99]), a desired placement should minimize the response time
resulting from the operators deployment. However, if on the one hand a
higher replication degree leads to lower response time, on the other hand
it incurs in higher resource wastage, which leads to a higher deployment
cost. We first formulate these metrics for operators and streams in isolation,
then derive the expressions for a DSP application.

Operator QoS Metrics.

For each i ∈ Vdsp, the QoS of the operator depends on the hosting resources,
that is its deployment U . Let Ri,U and Ci,U denote the maximum latency
and the cost experienced when i runs on U , respectively. We readily have:

Ri,U = max
u∈U

Ri

(
λi
|U|

)
Su

(8.1)

Ci,U =
∑
u∈U
U(u)CiResi (8.2)

under the assumption that the traffic is equally split among the different
operator replicas. Good load balancing can be achieved even for stateful
operators relying on the stream partitioning schemes mentioned in Chap-
ter 2 (e.g., [65, 150]). It is worth pointing out that here we do not make
any particular assumption on the actual expression of Ri. We can adopt
either a queuing model closed-form expression, e.g., the response time of a
M/M/1 queue (as in Section 8.6.2), or an experimental characterization of
the operator response time as function of the load (as in Section 8.6.3).

Stream QoS Attributes.

For a stream (i, j) ∈ Edsp, the QoS depends on the upstream and down-
stream operators deployments U and V . Let d(i,j),(U ,V) and C(i,j),(U ,V) de-
note the maximum latency and the cost experienced when i runs on U and
j on V , respectively. We readily have:

d(i,j),(U ,V) = d(U ,V) = max
u∈U ,v∈V

d(u,v) (8.3)

C(i,j),(U ,V) =
∑

u∈U ,v∈V
λ(i,j),(U ,V)Cu,v (8.4)
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where λ(i,j),(U ,V) =
λ(i,j)
|U||V| u ∈ U , v ∈ V is the amount of stream (i, j) traffic

exchanged between two replicas for the deployments U and V .

DSP Application QoS Metrics.

We derive the following expressions for a DSP application.
Response Time: For any placement vector x (and resulting y), we consider
as response timeR(x,y) the critical path average delay (we refer the reader
to Section 4.3 for the definition of critical path delay). Formally, we have:

R(x,y) = max
π∈Πdsp

Rπ(x,y) (8.5)

where Rπ(x,y) is the end-to-end delay along path π and Πdsp the set of all
source-sink paths in Gdsp. For any path π = (i1, i2, . . . , inπ) ∈ Πdsp, where
ip and nπ denote the pth operator and the number of operators in the path
π, respectively, we obtain:

Rπ(x,y) =

nπ∑
p=1

Rip(x) +

nπ−1∑
p=1

D(ip,ip+1)(y) (8.6)

where for any i ∈ Vdsp and (i, j) ∈ Edsp

Ri(x) =
∑

U∈P(V ires;ki)

Ri,Uxi,U

D(i,j)(y) =
∑

U∈P(V ires;ki)

V∈P(V jres;kj)

d(U ,V)y(i,j),(U ,V) (8.7)

denote respectively the execution time of operator i when deployed on U
and the network delay for transferring data from i to j when the two oper-
ators are mapped on U and V , respectively.
Cost: For any placement vector x (and resulting y), we consider the cost
C(x,y) of all the resources and links involved in the processing and trans-
mission of the application data streams. We have:

C(x,y) =
∑
i∈Vdsp

Ci(x) +
∑

(i,j)∈Edsp

C(i,j)(y) (8.8)

where

Ci(x) =
∑

U∈P(V ires;ki)

Ci,Uxi,U

C(i,j)(y) =
∑

U∈P(V ires;ki)

V∈P(V jres;kj)

C(i,j),(U ,V)y(i,j),(U ,V) (8.9)
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denote the cost of deploying i on U and the cost of transferring data from i
to j when the two operators are mapped on U and V , respectively.

Reconfiguration-related Metric.

The management operations that change the application deployment tem-
porarily degrade the application performance introducing a downtime.
Application downtime: We express the cost of reconfigurations in terms
of application downtime, so to capture the trade-offs between benefits and
costs of changing the deployment. Under the assumption that different
operators can be reconfigured in parallel, the overall application downtime
TD (x) corresponds to the longest operator downtime:

TD (x) = max
i∈Vdsp

TD,i (x) (8.10)

where TD,i (x) is the downtime duration for operator i ∈ Vdsp, which de-
pends on its new deployment configuration and can be expressed as:

TD,i (x) =
∑

V∈P(V ires;ki)

tD (i,U0,i,V)xi,V (8.11)

where tD (i,U ,V) represents the time needed to reconfigure the operator i
from the deployment U to V , and U0,i represents the current deployment
of i. The expression for tD (i,U ,V) depends on the actual type of operator
reconfiguration (i.e., no reconfiguration, operator migration, and operator
scaling). For the sake of readability, the derivation of their expressions is
postponed to Appendix 8.A.1.

8.4 EDRP Optimization Problem

In this section we present the EDRP optimization problem. We assume that,
at each reconfiguration, the system goal is to optimize a suitable objective
function which, depending on the scenario, could be aimed at optimizing
different, possibly conflicting, QoS attributes. We further assume that each
QoS metric must not exceed an application dependent worst case behavior.
We use the SAW technique to define the objective cost function F (x,y) as
a weighted sum of the normalized QoS attributes of the application:

F (x,y) = wr
R(x,y)

Rmax
+ wc

C(x,y)

Cmax
+ wd

TD(x)

TD,max
(8.12)

where wr, wc, wd ≥ 0, wr + wc + wd = 1, are weights associated to the dif-
ferent QoS attributes. Rmax, Cmax, and TD,max are user-defined parameters
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which denote, respectively, the worst case bound on the expected response
time, cost, and reconfiguration downtime. After normalization, each met-
ric ranges in the interval [0, 1], where the value 1 corresponds to the worst
possible value.

We formulate the EDRP problem as an ILP minimization problem as
follows:

min
x,y,r,tD

F ′(x,y, r, tD)

subject to:
r ≥ Rπ(x,y) ∀π ∈ Πdsp (8.13)
tD ≥ TD,i(x) ∀i ∈ Vdsp (8.14)

R(x,y) ≤ Rmax (8.15)
C(x,y) ≤ Cmax (8.16)
TD(x) ≤ TD,max (8.17)

Resu ≥
∑
i∈Vdsp
U∈P(V ires)

U(u)Resixi,U ∀u ∈ Vres (8.18)

1 =
∑

U∈P(V ires;ki)

xi,U ∀i ∈ Vdsp (8.19)

xi,U =
∑

V∈P(V jres;kj)

y(i,j),(U ,V)
∀(i,j)∈Edsp,
U∈P(V ires;ki)

(8.20)

xj,V =
∑

U∈P(V ires;ku)

y(i,j),(U ,V)
∀(i,j)∈Edsp,
V∈P(V jres;kj)

(8.21)

xi,U ∈ {0, 1}
∀i∈Vdsp,

U∈P(V ires;ki)
(8.22)

y(i,j),(U ,V) ∈ {0, 1}
∀(i,j)∈Edsp,
U∈P(V ires;ki)

V∈P(V jres;kj)
(8.23)

In this formulation we use the linear objective function F ′(x,y, r, tD),
obtained from F (x,y) by replacing R(x,y) and TD(x) with the auxiliary
variables r and tD, respectively. Observe that, while F is nonlinear in x
and y, since R(x,y) = maxπ∈Πdsp Rπ(x,y) and TD(x) = maxi∈Vdsp TD,i(x)
are nonlinear terms, F ′ is linear in r and tD as well as in x and y. Equa-
tion (8.13) follows from (8.5)–(8.6). Since r must be larger or equal than the
response time of any path and, at the optimum, r is minimized, we have
that r = maxπ∈Πdsp Rπ(x,y) = R(x,y). Similarly, Equation (8.14) defines
tD that, at the optimum, is tD = maxi∈Vdsp TD,i(x). Constraints (8.15)–(8.17)
are the worst case bounds on the QoS metrics. The constraint (8.18) limits
the placement of operators on a node u ∈ Vres according to its available re-
sources. Equation (8.19) guarantees that each operator i ∈ Vdsp is placed on
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one and only one node u ∈ V i
res. Finally, constraints (8.20)–(8.21) model the

logical AND between the placement variables, that is, y(i,j),(u,v) = xi,u ∧ xj,v.

Theorem 8.1. The EDRP problem is NP-hard.

Proof. It suffices to observe that the EDRP problem is a generalization of the
DSP Placement problem, presented in Chapter 4, which has been shown to
be NP-hard.

8.5 Storm Integration: S-EDRP

To enable the usage of EDRP in a real DSP framework, we have developed
a prototype scheduler for Apache Storm, named S-EDRP.

8.5.1 Elasticity in Storm

To elastically adapt the applications deployment in Storm, we resort on Dis-
tributed Storm, which is our extension of Storm with QoS-aware schedul-
ing capabilities (see Chapter 3), and on S-EDRP, which is a new custom
scheduler for Storm we propose in this work. Distributed Storm enhances
the official Storm architecture by introducing key components that support
the execution of the MAPE control loop. In our case, the MAPE loop con-
trols the runtime reconfiguration of the application deployment in response
to changes in the workload conditions. As shown in Figure 8.2, we have
designed a partially decentralized control loop, that follows the master-
worker pattern presented in [208]. Specifically, we have centralized the An-
alyze and Plan phases on Nimbus, and decentralized the Monitor and Exe-
cute phases on Nimbus and on the worker nodes, which contribute with lo-
cal components. The Analyze component collects the monitored data from
the decentralized Monitors on the worker nodes and periodically triggers
the Plan component. The latter solves the EDRP model, thus determining
if needed the reconfiguration actions (i.e., scale-in, scale-out, migrate) that
improve application performance. In such a case, the decentralized Execute
components perform the corresponding adaptation actions.

Monitor. The first phase of the control loop enriches S-EDRP with in-
frastructure and application QoS-awareness. Specifically, the monitoring
components of Distributed Storm running on each worker node provide
to Nimbus inter-node information, such as network delay and exchanged
data rate. Further details on our extension can be found in Chapter 3.

Analyze and Plan. In S-EDRP, the Analyze phase collects the moni-
tored data and periodically instantiates the EDRP model. The latter has
been properly adjusted, as described in Section 8.5.3, to represent the DSP
and resource models used by Storm. The Analyze phase instantiates the
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Figure 8.2: Extended Storm architecture.

EDRP model using the collected monitored data to parametrize nodes and
edges in Gdsp and Gres and give value to the average data rate exchanged
between communicating operator replicas, λ(i,j), and the network latencies,
d(u,v). When the Plan phase is activated, it resolves the EDRP model relying
on CPLEX c©. Observe that, to smoothly integrate our solution with the ex-
isting Storm architecture, the Analyze phase uses a time-based triggering
strategy to activate the Plan phase. However, more efficient strategies can
be designed to recompute the deployment only when specific events occur,
e.g., when QoS bounds are violated.

Execute. When EDRP devises a new application deployment, S-EDRP
needs to accordingly reconfigure the replication and placement of the appli-
cation operators. Storm provides an API to change the operators replication
at runtime (i.e., rebalance); nevertheless, this operation restarts the appli-
cation topology, compromising the integrity of stateful operators (which
lose their internal state). To overcome this issue, we further extend the
Storm architecture to include mechanisms that support the migration and
replication of stateful operators. In Section 8.5.2, we describe the newly
introduced components and the adopted stateful migration protocol.

Besides the runtime adaptation, Nimbus uses S-EDRP to determine the
deployment of new applications as well. In such a case, since information
on the exchanged data rate is not yet available, S-EDRP defines an early
assignment and monitors the application execution to harvest the needed
information. Then, at the first MAPE execution, S-EDRP can reassign the
application by solving the updated EDRP model and neglecting reconfigu-
ration costs (i.e., wd = 0).

8.5.2 Stateful Migrations in Storm

To perform stateful migrations, we integrate in Distributed Storm the fea-
tures of Elastic Storm, presented in Chapter 7. The resulting Distributed
Storm mainly differs from Elastic Storm for the presence of a centralized
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DataStore (instead of a decentralized one). For sake of clarity, in this sec-
tion we describe the stateful migration features of our extension.

In Storm, a task represents the smallest entity that handles a partition
of the operator state. Therefore, the key idea is to introduce, within the
Storm architecture, new components that perform reconfigurations by fol-
lowing the pause-and-resume approach. To this end, a task is enhanced
with the ability to be paused and resumed, and to export and import the
managed operator state. The newly introduced components, represented
in red in Figure 8.2, are DataStore, ReconfigurationNotifier, and Reconfigu-
rationWatcher. The DataStore provides a staging area for the operator state
during reconfigurations. It is a key-value storage component implemented
using Redis; we could not rely on ZooKeeper, because it is not designed to
hold large data values. The ReconfigurationNotifier is a centralized compo-
nent that we added on Nimbus in order to coordinate the reconfiguration
actions, in such a way to apply them while preserving the operators in-
tegrity (i.e., saving and restoring their internal state) during adaptations.
This component notifies tasks when a reconfiguration is going to be per-
formed, so that they can export their state, wait the reconfiguration, and
finally import again their state. On each worker node, the Reconfigura-
tionWatcher handles these notifications; it is a watchdog component that
pauses and resumes the execution of the application tasks and executes the
migration protocol.

To interact with the newly introduced components, we rely on the State-
fulSpout and StatefulBolt classes, described in Section 7.4.2.

Stateful Migration Protocol. When the number of executors or the
placement for an operator is changed, the ReconfigurationNotifier pub-
lishes a reconfiguration message on ZooKeeper to instruct the involved
worked nodes. As a consequence, on each worker node the Reconfigura-
tionWatcher activates the migration mode for the application tasks, which,
in turn, run the stateful migration protocol. The latter uses the pause-
and-resume approach for reconfiguring the stateful operator. We refer the
reader to Section 7.4.3 for further details on the stateful migration protocol.

8.5.3 S-EDRP: EDRP in Storm

To conclude this section, we present how the EDRP model has been ad-
justed to represent the abstractions of Storm. We first describe the represen-
tation of applications and resources and then the modeling of the stateful
migration protocol developed in Storm.

DSP and Resource Model of Storm. We have to model the fact that
Storm runs multiple executors to replicate an operator, and that a Storm
scheduler deploys these executors on the available worker slots, consid-
ering that at most EPSmax executors can be co-located on the same slot.
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Hence, S-EDRP defines Gdsp = (Vdsp, Edsp), with Vdsp as the set of opera-
tors and Edsp as the set of streams exchanged among them. Since in Storm
an operator is considered as a black box element, we conveniently assume
that its attributes are unitary, i.e., Ci = 1 and Resi = 1, ∀i ∈ Vdsp. By
solving the replication and placement model, S-EDRP determines the num-
ber of executors for each operator i ∈ Vdsp, leveraging the cardinality of U
when xi,U = 1, with U ∈ P(V i

res; ki) and ki equals to the number of tasks
of i. The resource model Gres = (Vres, Eres) must take into account that a
worker node u ∈ Vres offers some worker slots WS(u), and each worker
slot can host at most EPSmax executors. For simplicity, S-EDRP considers
the amount of available resources Cu on a worker node u to be equal to the
maximum number of executors it can host, i.e., Cu = WS(u)×EPSmax. To
enable the parallel execution of executors, Cu should be equal (or propor-
tional) to the number of CPU cores available on u.

Modeling the Stateful Migration Protocol. Differently from the generic
formulation described in Section 8.3.2, to model the downtime induced by
our the stateful migration protocol we need to account that, in Storm, the
entire application is restarted when a configuration is carried out. There-
fore, to preserve the application integrity, even the replicas of the operators
not directly involved in a reconfiguration need to save and restore the in-
ternal state on their local swapping area. This significantly impacts the
application downtime during reconfiguration. For the sake of readability,
we postpone the new downtime expression derivation to Appendix 8.A.2.

8.6 Experimental Results

In this section, we evaluate EDRP through two different sets of experi-
ments. First, we analyze the elasticity capabilities of the EDRP model through
numerical investigations. Then, we evaluate the elasticity mechanisms in-
troduced in Storm by our extension and the QoS achieved by the S-EDRP
scheduler. In both cases, we compare the results achieved using EDRP with
a baseline solution that does not consider reconfiguration costs (it suffices
to set wd = 0 to ignore the downtime effects). Observe that this baseline
EDRP configuration corresponds to ODRP.

8.6.1 Reference DSP Application

As a test-case application, we consider the prototype application that solves
the first query of DEBS 2015 Grand Challenge, presented in Section 6.6.1. By
processing data streams originated from the New York City taxis, the goal
of the query is to find the top-10 most frequent routes during the last 30
minutes. Differently from the previous setting, in these experiments we
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Table 8.2: Parameters of the experimental setup.

Service rate expressed in tuples per second (tps) and internal state size in bytes per operator
Operator µi (tps) State (B) Operator µi (tps) State (B)

data source 284 82 metronome 300 328
parser 233 - countByWindow 335 1376

filterByCoordinates 253 - partialRank 2371 1536
computeRouteID 253 - globalRank 3000 480

Default values used for metrics computation
Parameter Value Parameter Value

Ci 1 $/h r(u,DS), r(DS,u) 100 Mbps
C(u,v) 0.02 $/tps IC,i 300 KB
ts,u 500 ms tsyn 250 ms

define that each operator can be replicated at most three times (i.e., ki =
3, ∀i), except for the pinned ones (i.e., data source and globalRank) and the
metronome, which cannot be easily parallelized. If not otherwise specified,
we use the configuration parameters reported in Table 8.2.

8.6.2 Evaluation of EDRP Model

This set of experiments evaluates the behavior of the EDRP optimization
model for the reference DSP application through numerical investigation.
We have implemented EDRP in CPLEX c© (version 12.6.3) and we have exe-
cuted the experiments on an Amazon EC2 virtual machine (c4.xlarge with
4 vCPU and 7.5 GB RAM). In these experiments, Gres models a portion of
ANSNET, a geographically distributed network where 15 computing nodes
are interconnected with non-negligible network delays (whose average is
32 ms). Within this network, we assume that a logical link (u, v) ∈ Eres
between any two computing resources u, v ∈ Vres always exists; each logic
link results by the underlying physical network paths and a shortest-path
routing strategy. We assume that each computing node u has Resu = 2
available resources and provides a unitary Su = 1 processing speed-up.
Additionally, in this scenario, we assume that each operator can be repli-
cated at most twice (i.e., ki = 2, ∀i ∈ Vdsp), except for the pinned ones
(i.e., data source and globalRank) and the metronome, which cannot be easily
parallelized. EDRP estimates the response time Ri for operator i subject
to the incoming load λi/|U| by modeling the underlying computing node
as an M/M/1 queue, i.e., Ri(λi/|U|) = (µi − λi/|U|)−1, where µi is the
service rate of i measured on a reference processor. The operators service
rate has been obtained through preliminary experiments and it is shown
in Table 8.2. We assume that the network latency to and from DataStore is
constant and set to 5 ms, and the data transfer rate between all the pairs
of nodes is 100 Mbps. We consider a 1 hour experiment during which the
data source emission rate linearly increases from 70 to 220 tuples per sec-
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ond, during the first half of the experiment, and then decreases down to 70
tuples per second, during the second half. We solve EDRP periodically, ev-
ery minute, possibly reconfiguring the application deployment. The initial
placement is computed by EDRP as well, ignoring the downtime-related
metrics, with a balanced objective function having wr = wc = 0.5. Consid-
ering the execution environment, we impose the following bounds on the
QoS metrics: Rmax = 175 ms, Cmax = 30 $/h, and TD,max = 7.5 s.

We consider different objective function configurations by changing the
weights wX , X ∈ {r, c, d}, which translate to different QoS optimization
goals into the model. We first consider the case whereby we do not account
for reconfiguration costs, i.e., wd = 0, and assign equal weights to response
time and cost, i.e., wr = wc = 0.5. Then, we consider a balanced scenario
with wd = 0.4 and wr = wc = 0.3. Finally, we consider configurations
which focus on either response time or deployment cost: wr = 0.6, wd =
0.4, and wc = 0.6, wd = 0.4.

Results. We first study the DSP application behavior when we do not
consider reconfiguration cost, with wr = wc = 0.5 and wd = 0. In the
initial deployment at t = 0 minutes of simulated time (min), each com-
ponent gets exactly one instance. As shown in Figure 8.3a, as load starts
growing, EDRP repeatedly migrates components to exploit better operator
placement configurations. At t = 7 min, a second instance of partialRank
is eventually launched. Then, at t = 24 min, the model scales-out at once
other components: parser, filterByCoordinates, and computeRouteID. A third
scale-out is performed when the input rate reaches the peak, and countBy-
Window is replicated as well. In the second half of the experiment, EDRP
progressively comes back to the initial configuration. Table 8.3 summa-
rizes the experiment results, reporting the mean response time and cost,
and total downtime. Observe that, although the application achieves good
performance, it suffers appreciably longer downtime than other scenarios
(from 240% to 500% higher values).

We now turn our attention to the scenarios where EDRP accounts for
the reconfiguration costs. In the following experiments we set wd = 0.4
and vary the other weights. Figure 8.3b illustrates the results for the bal-
anced scenario with wr = wc = 0.3 and wd = 0.4. Compared to the previ-
ous case, here we have only three reconfigurations overall. First, as the in-
put rate grows, after 8 min EDRP launches a second replica for partialRank.
This new instance is placed on the same node where partialRank is already
running along with countByWindow, which minimizes the amount of state
moved across the network. The latter operator is concurrently migrated to
a different node. Then, at t = 27 min, since response time is approaching
the user-defined threshold, EDRP scales-out the parser, filterByCoordinates,
and computeRouteID operators, while also migrating others. some compo-
nents. When the load decreases, EDRP is quite conservative and does not
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Table 8.3: Mean response time and cost, and total downtime with different
EDRP objective configurations.

Objective Resp. time Cost Downtime
Baseline (wd = 0, wc = wr = 0.5) 120.8 ms 9.6 $/h 12.0 s

Balanced (wd = 0.4, wc = wr = 0.3) 121.7 ms 9.9 $/h 2.4 s
Response time (wd = 0.4, wr = 0.6) 121.5 ms 10.3 $/h 2.4 s

Cost (wd = 0.4, wc = 0.6) 136.0 ms 9.2 $/h 4.9 s

immediately scale-in operators. After 46 min, the model terminates all the
replicas launched at t = 27 min. So all the operators are left with just one
replica, except for partialRank because, according to the model, terminating
this extra replica is not worth more downtime. We observe that the scale-in
operation also results in a reduction of the application latency. This can be
explained by observing that, along with the scale-in, EDRP takes advan-
tage from co-locating communicating operators on the same node, which
reduces network latency and, in turn, overall application latency.

If we focus on response time optimization, setting wr = 0.6 and wd =
0.4, we get results which are similar to the previous balanced objective sce-
nario with better latency but higher cost. As shown in Figure 8.3c, EDRP
scales-out operators in two phases in the first part, and performs a single
scale-in after 50 min. Finally, we consider the deployment cost minimiza-
tion, setting wc = 0.6 and wd = 0.4. As expected, we experience lower cost
and higher response time with respect to the previous cases. As shown in
Figure 8.3d, EDRP scales-out partialRank at t = 8 min, similarly to other
settings. However, it delays other scaling operations until it is forced to use
more replicas to satisfy the latency bound; EDRP progressively launches
new instances from t = 26 min to t = 30 min. Nevertheless, consistently
with the cost minimization objective, EDRP immediately terminates those
replicas as input rate decreases. Finally, at t = 53 min, EDRP scales-in par-
tialRank, leaving each operator with a single running instance.

Scalability. For any given topology and number of computing nodes,
the EDRP optimization problem complexity depends on the maximum de-
gree of operator replication ki, which impacts the number of operator con-
figuration alternatives, that is the cardinality of the sets P(V i

res; ki) and thus
the number of operator and link variables, xi,U and y(i,j),(U ,V), respectively.
We computed the number of variables and measured the EDRP resolution
time for our reference DSP application for an increasing number of com-
puting nodes and maximum replication degree k. The results are shown in
Table 8.4 (at the left of the slash sign /). We can observe that the number of
variables and resolution time rapidly grow even for k = 2 and small num-
ber of nodes and it is not possible even to generate the entire instance for
k = 3 but for the smallest network size. This is due to the huge number of
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(a) Baseline (wr = 0.5, wc = 0.5, wd =
0): minimization of response time and cost,
with no reconfiguration costs.
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(b) Balanced (wr = 0.3, wc = 0.3, wd =
0.4): minimization of response time and
cost, with reconfiguration costs.
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(c) Response time (wr = 0.6, wd = 0.4,
wc = 0): minimization of response time,
with reconfiguration costs.
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(d) Cost (wc = 0.6, wd = 0.4, wr = 0): mini-
mization of deployment cost, with reconfig-
uration costs.

Figure 8.3: EDRP model: application response time under different opti-
mization configurations.

link variables which is O(|E
dsp
||Vres |2k) and thus exponentially grows with

k.
These results clearly show that EDRP can be directly applied only for

small instances and limited replication degree. Therefore, in order to sup-
port runtime operation computationally efficient heuristics are required.
In this respect, EDRP nevertheless represents a benchmark against which
the performance of heuristics solutions can be assessed. To address this
limitation, we can take advantage of the fact that, as confirmed by our ex-
periments, most of the times an operator reconfiguration entails a single
scale-out, scale-in operation or a migration. As a consequence, in prac-
tice, for each operator i we do not need to consider all possible configura-
tions V ∈ P(V i

res; ki), but only a (significantly smaller) subset. For example,
given the current operator i deployment U , we can consider, as a heuristic,
the set of configurationsP(V i

res; ki;Ui,0) ⊂ P(V i
res; ki) which only comprises

the deployments V which differ from the current deployment Ui,0 by only
one element (one more node u ∈ V i

res for a scale-out operation, one less
node u ∈ Ui,0, U(u) > 0 for a scale-in operation, and a node replacement
u ∈ Ui,0, Ui,0(u) > 0 replaced by a node v ∈ V i

res for a migration). More
formally, P(V i

res; ki;Ui,0) = {V ∈ P(V i
res; ki) | ∧v∈V ires (|Ui,0(v) − V(v)| ≤
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Table 8.4: Number of variables and execution time under EDRP and rEDRP
(expressed as EDRP / rEDRP).

Max Replication Degree = 2 Max Replication Degree = 3 Max Replication Degree = 4
|Vres| Variables Resolution Time Variables Resolution Time Variables Resolution Time

(×103) (s) (×103) (s) (×103) (s)
8 9.4 / 1.6 3.7 / 0.8 113.7 / 1.8 298.0 / 0.7 994.5 / 1.8 - / 1.0
12 37.3 / 2.8 30.5 / 0.6 848.7 / 3.3 - / 0.9 - / 3.4 - / 0.8
16 103.2 / 5.5 122.6 / 1.1 - / 6.1 - / 1.2 - / 6.3 - / 1.2
20 231.6 / 8.8 415.2 / 1.6 - / 10.0 - / 1.9 - / 9.7 - / 2.5
24 453.3 / 12.7 593.7 / 3.1 - / 13.8 - / 3.9 - / 13.9 - / 4.2

1) ∧
∑

v∈V ires |Ui,0(v)−V(v)| ≤ 2∧
∑

v∈V ires(Ui,o(v)−V(v)) ·
∑

v∈V ires(V(v)−
Ui,0(v)) ≤ 0}.

We call this approach restricted EDRP problem, rEDRP for short. As
shown in Table 8.4, rEDRP (at the right of / sign) is characterized by a much
smaller set of variables (it is easy to verify that the number of variables
is O(|Vres |2|Vdsp ||Edsp

|), which is only quadratic on the number of nodes)
and order of magnitudes faster execution times. The results with rEDRP
(not shown for space limitation) are very close to the optimal behavior but
require a fraction of the computational costs.

8.6.3 Evaluation of S-EDRP Scheduler

We perform the experiments using Apache Storm 0.9.3 on a cluster of 5
worker nodes, each with 2 worker slots, and a further node to host Nimbus
and ZooKeeper. Each node is a machine with a dual CPU Intel Xeon E5504
(8 cores at 2 GHz) and 16 GB of RAM. To better exploit the presence of
independent CPU cores, we configure the system so that a worker slot can
host at most 4 executors, i.e., EPSmax = 4; therefore, a worker node can
host at most 8 operator replicas, one for each available CPU core. In S-
EDRP, the Analyze phase triggers every 60 s the Plan phase, which solves
the ILP problem using CPLEX c© (version 12.6.3).

As regards the model parameters, we rely on the same configuration
used in the numerical investigation (see Table 8.2) upon which we intro-
duce the following adjustments. First, in these experiments we do not rely
on a closed formula expression, e.g., the response time of an M/M/1 queue,
to compute the response time as function of the input load. Instead, we
conducted a preliminary set of experiments to measure the response time
of each operator for different values of the input load2. Then, we increase

2Our earlier experiments revealed that a M/M/1 queue approximation provide a poor
approximation of the operator response time. For a more realistic response time modeling,
for each operator i we measured the average response time for a set of possible inputs and
then derived closed expressions for Ri(λ) through Least Squares polynomial interpolation.
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(a) Baseline (wr = 0.5, wc = 0.5, wd = 0):
minimization of response time and cost, with
no reconfiguration costs.
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(b) Balanced (wr = 0.3, wc = 0.3, wd = 0.4):
minimization of response time and cost, with
reconfiguration costs.
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(c) Response Time (wr = 0.6, wd = 0.4,
wc = 0): minimization of response time, with
reconfiguration costs.
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(d) Cost (wc = 0.6, wd = 0.4, wr = 0): min-
imization of deployment cost, with reconfig-
uration costs.

Figure 8.4: S-EDRP and different optimization configurations: evolution
of the application response time and operators replication under a varying
source data rate.

the synchronization overhead tsync from 250 ms to 6 s, accounting for the
execution time of Storm rebalance command.

In these experiments we use a portion of the real dataset provided by
DEBS for the 2015 Grand Challenge. We replay the taxi dataset 60 times
faster than the original dataset, thus obtaining that 1 minute of the original
dataset time is equal to 1 second of time in our experiments. In particular,
we feed the application with data collected during 4 days, characterized by
different load levels during the various parts of the day: the tuple emis-
sion rate ranges from about 20 to 300 tuples per second. We impose the
following bounds on the QoS metrics: Rmax = 150 ms, Cmax = 15 $/h,
TD,max = 60 s. We compare different configurations for the objective func-
tion. Similarly to the numerical investigation, we first consider the baseline
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Table 8.5: Mean response time and cost, and total downtime with different
S-EDRP objective configuration.

Objective Resp. time Cost Downtime
Baseline (wd = 0, wc = wr = 0.5) 103.6 ms 9.3 $/h 10.18%

Balanced (wd = 0.4, wc = wr = 0.3) 90.0 ms 9.8 $/h 2.36%
Response time (wd = 0.4, wr = 0.6) 88.8 ms 9.9 $/h 1.27%

Cost (wd = 0.4, wc = 0.6) 116.6 ms 8.9 $/h 4.00%

case that neglects reconfiguration costs, then we consider a balanced sce-
nario with wd = 0.4, and finally we consider the configurations that focus
on either response time or deployment cost. Table 8.5 provides a summary
of the obtained results in the different settings, showing mean response
time (computed excluding tuples buffered during reconfigurations) and
monetary cost, and total application downtime during each experiment.

Figure 8.4a shows the results for the baseline scenario, where S-EDRP
reconfigures the application at almost every scheduling round. It adjusts
the parallelism of partialRank, which appears to be a bottleneck in our ap-
plication, following the variations of the input rate. The total number of
replicas ranges from 8 (i.e., one per operator) to 10. Moreover, S-EDRP fre-
quently migrates operators when the load is high, in order to exploit more
promising deployments. As consequences of this behavior, we note that
(i) the application downtime lasts for 10.18% of the experiment duration,
and (ii) the latency and the source data rate present frequent spikes, which
are caused by the buffering of tuples during the reconfigurations at both
the source and operators.

Figure 8.4b shows the results obtained with a balanced objective func-
tion, which equally weights response time and cost, and limits downtime
(i.e., wr = wc = 0.3, wd = 0.4). In this setting, the number of performed
reconfigurations is significantly smaller. The balanced objective configu-
ration allows to achieve a 75% reduction of the total application down-
time. The mean response time, 90 ms, is lower with respect to the base-
line scenario, whereas the deployment cost is slightly higher, amounting to
9.8 $/h. We observe that, after 2000 s, S-EDRP finds more convenient to
run with a higher number of replica, so to avoid the downtime introduced
by a possible scale-in operation.

When S-EDRP focuses on response time minimization (i.e., wr = 0.6,
wd = 0.4), the scheduler does not need to keep the number of replicas as
low as possible. Nevertheless, it does not blindly scale-out operators, be-
cause a larger number of replicas would require using more nodes, thus
involving a higher network delay in exchanging data streams. Indeed, S-
EDRP scales-out only the bottleneck operator, partialRank. As shown in
Figure 8.4c, S-EDRP achieves a lower mean latency, 88.8 ms, launching two
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extra replicas as input rate begins to grow. Then, other reconfigurations
are driven by slight changes in the measured network latency, which make
S-EDRP enact a few migrations to exploit better placement configurations.
Running with a total of 10 replicas for most the time, the monetary cost of
executing the topology is the highest with respect to the other scenarios (its
mean value is equal to 9.9 $/h). The cumulative application downtime is
the 1.27% of the experiment duration.

Figure 8.4d reports the source rate and the application latency when
S-EDRP minimizes the deployment cost and downtime (i.e., wc = 0.6,
wd = 0.4). In this setting, S-EDRP keeps the operators replication as low
as possible. The number of replicas goes up to 10 when the load is high
(with partialRank running up to 3 replicas), but, as the load significantly de-
creases, the scheduler scales-in the operator, restoring the initial count of 8
replicas. The mean deployment cost is indeed lower, amounting to 8.9 $/h.
The application latency is not minimized throughout the experiment, and
ranges from 40 ms to 300 ms (except for the spikes soon after the reconfig-
urations). The cumulative application downtime is 4% of the experiment
duration. Observe that, in this experiment, S-EDRP performs scale-out op-
erations only when the bounds are violated: the violation of Rmax and the
minimization of cost lead to scale-out and subsequent scale-in operations,
respectively.

8.7 Summary

In this chapter, we have presented and evaluated EDRP, an ILP formula-
tion that jointly optimizes the replication and placement of DSP applica-
tions running in geo-distributed environments. At runtime, by monitoring
the application deployment, EDRP can identify the optimal reconfigura-
tion strategy and evaluate its convenience in terms of application down-
time. Our formulation of EDRP is general and flexible, thus it can be easily
extended or customized for considering different needs. We have shown
how it can be adapted and integrated in Apache Storm, one of the most
used open-source DSP frameworks. Then, relying on an application that
processes real-time data generated by taxis moving in a urban environ-
ment, we have conducted a thorough experimental evaluation. The latter
has shown the benefits on the application performance that steam from a
joint optimization of operators replication and placement and the detailed
modeling of the reconfiguration costs. In particular, our results show the
importance of taking into account reconfiguration cost to the overall appli-
cation performance. In the considered scenario, which can be regarded as
a best case scenario as far as reconfiguration is concerned, being executed
on a local cluster, the reconfiguration downtime were as large as 10% of
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the overall experiment duration and with EDRP we were able to achieve
up to a tenfold reduction of the system downtime. Moreover, by adjust-
ing the metric weights, we were able to trade-off the different performance
metrics stressing latency and/or resource utilization. Since reconfiguration
costs are expected to be significantly higher in a distributed scenario due to
non negligible network delays and limited bandwidth, these results clearly
show that importance of taking into account reconfiguration costs in the
operation of self-adaptive DSP platforms.



Appendix

8.A Reconfiguration Metrics

In this appendix we present the detailed expressions of the reconfiguration
cost metrics. In Section 8.A.1, we derive the expressions for the reconfig-
uration downtime metric under the pause-and-resume approach. Then, in
Section 8.A.2, we provide the detailed downtime expressions for our im-
plementation of the stateful migration protocol in Storm.

8.A.1 Reconfiguration Downtime

As shown in Section 8.3.2, the reconfiguration downtime of the operator
i ∈ Vdsp is defined as:

TD,i (x) =
∑

V∈P(V ires;ki)

tD (i,U0,i,V)xi,V (8.24)

where tD (i,U ,V) represents the time needed to reconfigure the operator i
from the deployment U to V , and U0,i represents the current deployment
of operator i. The expression for tD (i,U ,V) depends on the actual type of
reconfiguration to be enacted when the deployment of i changes from U to
V :

tD (i,U ,V) =


0 if U = V
tsyn + tD,MI (i,U ,V) if |U| = |V|,U 6= V
tsyn + tD,SO (i,U ,V) if |U| > |V|
tsyn + tD,SI (i,U ,V) if |U| < |V|

(8.25)

where tsyn is a constant synchronization overhead, tD,X (i,U ,V), with X ∈
{MI, SO, SI}, represents the time needed to perform a migration, a scale-
out, and a scale-in operation on i, respectively. Since each type of reconfig-
uration requires data transfers between multiple pairs of nodes, which can
be concurrently executed, the time to complete the reconfiguration corre-
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sponds to the longest of any such operation, that is:

tD,X (i,U ,V) = max
u∈U ,v∈V
u6=v

{τD,X (i, u, v,U ,V)} (8.26)

where τD,X (i, u, v,U ,V),X ∈ {MI, SO, SI} represents the time required to
exchange data between node u to node v when the operator i is migrated,
scaled out, or scaled in, respectively, during the reconfiguration from de-
ployment U to deployment V .

The expression for τD,X (i, u, v,U ,V) has the following general form:

τD,X (i, u, v,U ,V) = max
{
τdwlC (i, v) · 1{U(v)=0}, τ

upl
S,X(i, u, v,U ,V)

}
+

+ τdwnS,X (i, u, v,U ,V) + ts,v · 1{V(v)>U(v)} (8.27)

where 1{.} is the indicator function. The expression of τD,X (i, u, v,U ,V)

accounts for: 1) τdwlC (i, v), the time to download time the operator code to
node v, if there was not a replica of operator i in v in the (current) deploy-
ment U , i.e., if U(v) = 0; 2) τuplS,X(i, u, v,U ,V), the time to upload the internal
state of the replicas present in u to the DataStore; 3) τdwnS,X (i, u, v,U ,V), the
time to download the internal state of replicas from the DataStore to node
v; and 4) ts,v, the time to (concurrently) initialize new replicas in v, if any,
i.e., if V(v) > U(v).

The time needed to transfer the operator code, i.e., tdwlC (i, v), and the
time needed to redistribute the replicas state, i.e., tuplS,X(i, u, v,U ,V) as well
as tdwnS,X (i, u, v,U ,V), are function of: 1) the round-trip network delay be-
tween the DataStore and the related computing resource, dx,DS + dDS,x,
with x ∈ {u, v}; 2) the amount of data to transfer data from or to the
DataStore, that is, the code IC,i to be downloaded to node v, the state
IuplS,X,(i,u,v,U ,V) to be uploaded from u to the DataStore and the state IdwnS,X,(i,u,v,U ,V)

to be then downloaded to v, respectively; and 3) the data rate r(x,DS) and
r(DS,x), with x ∈ {u, v}, to and from the DataStore. We readily get the fol-
lowing expressions:

τdwnC (i, v) = d(v,DS) +
IC,i

r(DS,v)
+ d(DS,v) (8.28)

τuplS,X(i, u, v,U ,V) = d(u,DS) +
IuplS,X,(i,u,v,U ,V)

r(u,DS)
+ d(DS,u) (8.29)

τdwnS,X (i, u, v,U ,V) = d(v,DS) +
IdwnS,X,(i,u,v,U ,V)

r(DS,v)
+ d(DS,v) (8.30)

We conclude by deriving the expressions for the amount of state that
has to be redistributed, which depends on the specific reconfiguration ac-
tion. When a migration is performed, i.e., X = MI , a replica first stores
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and then retrieves its portion of the state on the DataStore during the re-
configuration. A scaling operation redistributes the operator state among
its replicas. Specifically, when a scale-out is performed, i.e., X = SO, each
replica provides a uniform fraction of its internal state to the new ones; sim-
ilarly, when a scale-in is performed, i.e., X = SI , the internal state of the
terminated replicas is redistributed among the other operator replicas. Let
IS,i denote operator i state size. Under the assumption that the state is uni-
formly redistributed among replicas, we have the following expressions:

IuplS,X,(i,u,v,U ,V) =

IS,i
[
δ−u (U ,V)
|U| + U(u) |V|−|U||U||V|

]
if X = SO

IS,i
δ−u (U ,V)
|U| otherwise

(8.31)

IdwnS,X,(i,u,v,U ,V) =

IS,i
[
δ+v (U ,V)
|V| + min {U(v),V(v)} |U|−|V||U||V|

]
if X = SI

IS,i
δ+v (U ,V)
|V| otherwise

(8.32)

where δ+
u (U ,V) (and δ−u (U ,V)) denotes the number of replicas to be added

(and removed) in node u ∈ Vres when the configuration changes from
U to the deployment V , that is: δ+

u (U ,V) = max{V (u) − U (u) , 0} and

δ−u (U ,V) = max{U (u) − V (u) , 0}, respectively. In (8.31)-(8.32), δ
−
u (U ,V)
|U| is

the percentage of state uploaded from the node u to the DataStore during
a migration or scale in operation, which is function of the number of ter-

minated replicas δ−u (U ,V). Similarly, δ
+
v (U ,V)
|V| is the percentage of new state

transfered to v from the DataStore, going from deployment U to V . The
terms proportional to |U|−|V|

|U||V| represent the amount of state that is redis-
tributed among the other operator replicas after a scaling operation.

8.A.2 Stateful Migration Downtime in Storm

As mentioned in Section 8.5.3, in Storm we need to take into account that,
for any reconfiguration, the entire application must be restarted. In this
case we can rewrite (8.24) as:

TD,i (x) = max

 ∑
V∈P(V i

res;ki)

tD (i,U0,i,V)xi,V , tD,R(i,U0,i) · 1{∑i

∑
V6=U0,i

xi,V>0}


(8.33)

where the first term is the time needed to reconfigure the operator i
from the deployment U to V , U0,i is the current deployment of i, whereas
tD,R (i,U) is the time needed to restart i, should any configuration occurs
in the application (condition expressed by

∑
i

∑
V6=U0,i xi,V > 0).
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Since our Storm migration protocol does not distinguish the different
reconfiguration actions (i.e., migration or scaling), we have a single expres-
sion for tD (i,U ,V), i.e., the time to reconfigure the operator i from U to
V . It needs to account for a constant synchronization overhead, tsyn, and
the longest downtime over any possible replica reconfiguration. Thus, we
have:

tD (i,U ,V) = tsyn + max
u∈U ,v∈V
u6=v

{τD (i, u, v,U ,V)} U 6= V (8.34)

where

τD (i, u, v,U ,V) = τ dwlC (i, v)1{v/∈⋃i U0,i}
+ τ uplS (i, u, v,U ,V) + τ dwnS (i, u, v,U ,V) + V(v)ts,v, (8.35)

and tD (i,U ,V) = 0 if U = V . Comparing the expression above to (8.27), we
note that: (i) we need to consider the sum of the different terms in place of
the maximum, because the pause-and-resume approach serializes the dif-
ferent phases; (ii) the time to download the operator code on v, τ dwlC (i, v),
needs to be considered only if no replica of any operator is currently de-
ployed on that node, because Storm packages the code of the whole appli-
cation in a single archive, which is transferred to each worker node the first
time it has to execute a component of the topology; (iii) the whole applica-
tion is restarted after a reconfiguration, thus all the V(v) replicas deployed
on v have to be launched at the end of the migration process, as expressed
by the last term. We also obtain slightly different expressions for the time
spent moving state and code as well:

τ dwnC (i, v) = d(v,DS) +

∑
i∈Vdsp IC,i

r(DS,v)
+ d(DS,v) (8.36)

τ uplS (i, u, v,U ,V) = d(u,DS) +
IS,i
U(u)
|U|

r(u,DS)
+ d(DS,u) (8.37)

τ dwnS (i, u, v,U ,V) = d(v,DS) +
IS,i
V(v)
|V|

r(DS,v)
+ d(DS,v) (8.38)

where we model that, differently from the general formulation (8.28)–(8.30),
in Storm: (i) a node has to download the whole topology code; and (ii) each
node has to save (and restore) the internal state for all the hosted replicas,
because the entire application is restarted during a reconfiguration.

Finally, we consider tD,R (i,U), the time needed to restart i on the same
location. This term accounts for a constant synchronization overhead, tsyn,
and the restart time of any replica. We have:

tD,R (i,U) = tsyn + max
u∈U
{τD,R (i, u,U)} (8.39)
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where

τD,R (i, u,U) =
IS,i
U(u)
|U|

r(u,LS)
+
IS,i
U(u)
|U|

r(LS,u)
+ U (u) ts,v (8.40)

models the time to store and retrieve the state from the swapping area and
restart the replicas of i.
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Chapter 9

Hierarchical Autonomous
Control for Elastic DSP

We present a hierarchical and distributed architecture for the au-
tonomous control of elastic DSP applications, which relies on a two
layered approach. At the lower level, distributed components is-
sue requests for adapting the deployment of DSP operators as to
adjust to changing workload conditions. At the higher level, a per-
application centralized component works on a broader time scale;
it oversees the application behavior and grants reconfigurations to
control the application performance while limiting the negative ef-
fect of their enactment (i.e., application downtime).

In the previous chapter, we have shown the importance of controlling
the adaptation costs while reconfiguring the application deployment. Be-
ing the EDRP problem NP-hard, it suffers from scalability issues and does
not represent a viable approach when the system needs to quickly solve
large problem instances. Therefore, we need efficient heuristics that can
quickly determine the DSP application deployment adaptation at runtime.
As previously discussed, recently we have witnessed a paradigm shift with
the deployment and execution of DSP applications over distributed Cloud
and Fog computing resources. The latter de facto bring applications closer
to the data, rather than the other way around. Nevertheless, this very
idea makes it difficult to control DSP application performance. Most of
the approaches proposed in the literature have been designed for cluster
environments with a centralized control component overlooking the DSP
operations. These solutions typically do not scale well in a distributed en-
vironment given the spatial distribution, heterogeneity, and sheer size of
the infrastructure itself. While scalable decentralized solutions have been
proposed, e.g., [158], their inherent lack of coordination might result in
frequent reconfigurations which negatively affect the application perfor-
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mance due to continuous system downtime.
In this chapter, to take the best of the two worlds, we propose a hi-

erarchical distributed approach to the autonomous control of elastic DSP
applications in Fog-based environment. Indeed, by working at different
levels of abstractions, we believe that a hierarchical approach can improve
performance and scalability without compromising stability. Specifically,
by decentralizing the resource and operator control, we relieve the control
load on the centralized component of the system. This allows a scalable
management of a multitude of computing resources and DSP applications.
However, by conveniently centralizing the high-level management capa-
bilities, we can overcome the lack of coordination, which represents one of
the main drawbacks of the existing fully decentralized approaches.

The contributions of this chapter are as follows.

• We present Elastic and Distributed DSP Framework (EDF), a hierarchical
distributed architecture for the autonomous control of elasticity (Sec-
tion 9.2). The control is organized according to the MAPE model for
self-adaptive systems. Specifically, the proposed architecture relies on
a high-level centralized MAPE-based Application Manager that coordi-
nates the runtime adaptation of subordinated MAPE-based Operators
Managers, which, in turn, locally control the adaptation of single DSP
operators.

• We present a simple reference control strategy for each component (in
Section 9.3). Specifically, we present a local policy for the Operator Man-
agers and a global policy for the Application Manager. The first monitors
and analyzes the operator performance to determine whether it needs
to be reconfigured by scaling the number of replicas or by migrating a
replica. The global policy identifies the most effective reconfigurations
proposed by the Operator Managers, accepting or declining the pro-
posed reconfigurations in order to control their number, and hence the
application downtime.

• We have implemented EDF on Distributed Storm and evaluated the
proposed solution on our prototype. We implemented two simple poli-
cies: the local policy employs a threshold approach to request operator
reconfigurations to the Application Manager; the global policy adopts a
token bucket scheme to control the number of allowed reconfigurations
in any control interval. As shown in Section 9.4, our results are promis-
ing and show the effectiveness of the proposed solution in achieving
a good trade-off between application performance and reconfiguration
cost.

Although this chapter presents only preliminary results, it proposes
a general DSP system architecture for geo-distributed environments, and
sheds light on the benefits of using hierarchical decentralized placement
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policies. The results are encouraging and foster the design of new hierar-
chical heuristics, which can be efficiently employed in distributed Cloud
and Fog computing environments.

9.1 Related Work

Runtime adaptation of DSP applications achieved through elastic data par-
allelism is attracting many research and industrial efforts. As analyzed in
Chapter 2, albeit most of the approaches for elasticity use a centralized ap-
proach (e.g., [65, 71, 78, 83, 132]), several decentralized solutions have also
been proposed (e.g., [88, 145]). Either way, all these solutions are implicitly
or explicitly organized as self-adaptive systems based on the MAPE model.

To determine when the DSP application should be reconfigured, some
works, e.g., [31, 71, 80], exploit best-effort threshold-based policies based on
the utilization of either the system nodes or the operator instances. Other
works, e.g., [48, 65, 132, 145, 214], use more complex centralized policies to
plan the scaling decisions. However, all these works rely on a centralized
planner for the runtime adaptation of DSP applications, that may suffer
from network latencies in a geo-distributed operating environment.

Several works also propose decentralized approaches for adapting the
DSP application deployment. Mencagli [145] presents a game-theoretic
approach where the control logic is distributed on each operator; specifi-
cally, each decentralized agent seek to change its operator parallelism de-
gree as needed, when multiple applications compete for resources in a non-
cooperative manner. Nevertheless, this solution is not integrated in a DSP
system. Hochreiner et al. [88] introduces a managing component for each
DSP operator, which uses a threshold-based policy to elastically adapt the
number of operator replicas at runtime. Other decentralized approaches
(e.g., [50, 158, 171, 222]) focus only on adapting the operator placement
at runtime and do not consider the operator replication problem. Exam-
ples are the distributed placement heuristics by Pietzuch et al. [158] and by
Rizou et al. [171], that we have implemented in Distributed Storm (Chap-
ter 3). Even though these decentralized heuristics overcome scalability is-
sues, they can suffer from lack of global coordination. Therefore, they can
introduce frequent and uncoordinated reconfigurations, which degrade the
application performance.

Differently from all the above mentioned solutions, we introduce a hi-
erarchical control architecture that can be equipped with hierarchical elas-
ticity policies. Our approach reacts to changes of working conditions (e.g.,
workload variations) by performing migration and scaling operations. Fur-
thermore, by working at different levels of abstractions, it can improve
performance and scalability without compromising stability. Few other
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research efforts also rely on a multi-level strategy with separation of con-
cerns and time-scale to adapt DSP applications [83, 146]. Hidalgo et al. [83]
propose a centralized elasticity control algorithm, where a reactive and a
proactive policy work interleaved on two different time scales. Mencagli
et al. [146] study the problem of parallelizing sliding-window preference
queries on a single multi-core computing node. These queries are imple-
mented using a special kind of windowed operators. The authors design
a two-level adaptation solution that controls load balancing (at the lower-
level) and resource allocation through vertical elasticity (at the higher-level).
Differently from these solutions, we design a hierarchical approach that
considers the adaptation of the whole DSP application and makes no as-
sumptions on the type of DSP operators. Furthermore, our solution works
in distributed environments, where computing nodes can be interconnected
with not-negligible network latency.

Most of the existing DSP systems have been designed to work in cen-
tralized cluster or Cloud computing environments (e.g., [65, 71, 77, 113, 199,
221]). As more extensively discussed in Chapter 2, so far, only few solutions
have been explicitly proposed for Fog computing environments (e.g., [11,
175, 178]). The recently presented SpanEdge [175] considers the execution
of Storm in decentralized data centers and, similarly to our works, places
the application operators so to minimize network latencies. Nevertheless,
it does not support operator migrations. Foglets [178] proposes a decen-
tralized architecture and a Fog-specific programming model that supports
the migration of application components. Differently from all the existing
solutions, we propose a hierarchical architecture that supports the execu-
tion of multi-level autonomous control policies, that drive the deployment
adaptation of DSP applications at runtime.

9.2 System Architecture

9.2.1 Architectural Options for Decentralized Control

The MAPE loop is a widely adopted model to organize the autonomous
control of a software system (see Chapter 2). When the controlled system is
geo-distributed as in Fog computing, a single MAPE loop, where analysis
and planning decisions are centralized on a single component, introduces a
single point of failure and scalability limitation. The latter depends on the
capacity of the centralized control entity, which can efficiently manage the
adaptation of only a limited number of entities, as well as on the presence of
network latencies among the system components. As described by Weyns
et al. in [208], different patterns to design multiple MAPE loops have been
used in practice by decentralizing the functions of self-adaptation. Here,
we describe some key configurations, aiming to identify the most suitable
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Figure 9.1: Different options for decentralizing the MAPE loop

approach to control DSP applications in the geo-distributed execution en-
vironment under investigation.

Master-slave Pattern. In a master-slave pattern, the system includes a
single master component, which runs the Analyze and Plan phases, and
multiple independent worker components, which run the Monitor and Ex-
ecute phases in a decentralized manner. We represent this pattern in Fig-
ure 9.1a. Differently from a fully centralized approach, this design pattern
decentralizes the execution of the Monitor and Execute components, reliev-
ing the burden from the centralized control node. The latter is in charge of
determining when and how a reconfiguration should be performed. Hav-
ing single and centralized Analyze and Plan components, this pattern can
be equipped with self-adaptation policies that can be more easily designed
and, moreover, can more easily determine globally optimum reconfigu-
ration strategies. Nevertheless, the centralized components of the MAPE
loop can still represent the system bottleneck, especially when they have
to control a multitude of entities scattered in a large-scale geo-distributed
system. Moreover, due to the system distribution, collecting monitoring
data on the master component and then dispatching the subsequent scal-
ing actions to the decentralized executors may introduce a not negligible
communication overhead.

Coordinated Control Pattern. Sometimes controlling the elasticity of
a system using a single centralized component is unfeasible, e.g., because
of scale, administrative, or privacy issues. Anyway, we still need to effi-
ciently control the application elasticity so to meet certain QoS metrics. As
represented in Figure 9.1b, the coordinated control pattern employs multiple
decentralized MAPE loops, where each control loop oversees one specific
part of the system. The control loops must also coordinate with one an-
other, as peers, so to reach joint adaptation decisions, when needed. With
respect to the degree of cooperation, a great variety of inter-node behaviors
can be devised, ranging from a fully uncoordinated to a tightly coordinated
one. Each degree of coordination exhibits pros and cons. As observed in
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Chapter 3, the lack of coordination between the distributed agents may in-
troduce too frequent and uncoordinated decisions that can be detrimental
for the application performance. Conversely, a tightly coupled coordina-
tion reduces the system ability to quickly react to changes. Although this
pattern allows to obtain highly scalable solutions, designing efficient de-
centralized control policies is, in general, not easy, because of the difficulty
of guaranteeing convergence properties in a decentralized manner.

Hierarchical Control Pattern. The hierarchical control pattern revolves
around the idea of a layered architecture, where each layer works at a dif-
ferent level of abstraction. In this pattern, multiple MAPE control loops
work with time scales and concerns separation. Lower levels operate on a
shorter time scale and are in charge of performing local adaptation. Exploit-
ing a broader view on the system, higher levels steer the overall adaptation
by providing guidelines to the lower levels. As represented in Figure 9.1c,
each layer usually includes a full MAPE loop with all the four components.

We believe that this approach is well suited for controlling DSP appli-
cations in a Fog environment: it promises to exploit the benefits of both
centralized and decentralized architectures, thus improving performance
and scalability without compromising stability. By working at different
levels of abstraction, the system can more efficiently deal with a great num-
ber of near-edge and Cloud computing resources, which can also expose
very different features. Near-edge resources are usually characterized by
lower computing capacity, are interconnected by not negligible network la-
tency, and can possibly have limited energy capacity. Conversely, Cloud
resources expose (practically) infinite computing capacity and are inter-
connected with almost negligible network latency. A hierarchical control
allows to rule the complexity by decentralizing as much as possible the
low-level adaptation, while, at the same time, exploiting the benefit of
lightweight higher-level coordination elements, which take advantage of
a broader view of the system.

9.2.2 Hierarchical Architecture

We present a hierarchical distributed architecture, named Elastic and Dis-
tributed DSP Framework (EDF), for the autonomous control of elastic DSP
applications in a Fog environment. The proposed solution is organized ac-
cording to the hierarchical control pattern, where higher-level MAPE com-
ponents control subordinate MAPE components. Specifically, our proposal
revolves around a two layered approach with separation of concerns and
time scale between layers. Figure 9.2a illustrates the conceptual architec-
ture of EDF, highlighting the hierarchy of the multiple MAPE loops and
the system components in charge of the MAPE loop phases.

At the lower level (i.e., at the per-operator grain) and a faster time scale,
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Figure 9.2: System architecture

the Operator Manager is the distributed entity in charge of controlling the
adaptation of a single DSP application operator/subset of the DSP appli-
cation operators through a local MAPE loop. It monitors the system logi-
cal and physical components used by the operator(s) through the Operator
Monitor and the Resource Monitor, and then, through the Local Reconfigura-
tion Manager, it analyzes the monitored data and determines if and which
local reconfiguration action (among operator scale-in, scale-out, or migra-
tion) is needed. When the Operator Manager determines that some adap-
tation should occur, it issues an operator adaptation request to the higher
layer.

At the higher level (i.e., at the per-application grain) and a slower time
scale, the Application Manager is the centralized entity that coordinates the
adaptation of the overall DSP application through a global MAPE loop. By
means of the Application Monitor it oversees the global application behav-
ior. Then, through the Global Reconfiguration Manager it analyzes the mon-
itored data and the reconfiguration requests received by the multiple Op-
erator Managers, and decides which reconfigurations should be granted.
These decisions are then communicated by the Global Actuator to each Op-
erator Manager, which can, finally, execute the operator adaptation actions
by means of the its local Reconfiguration Actuator.

The EDF architecture is general enough to not limit the specific inter-
nal policies and goals that can be designed for each component in the two
layers. For example, the planning components can be either activated pe-
riodically or on event-basis, can rely on optimization problem formulation
or heuristics with the goal to minimize the application response time, max-
imize its availability or a combination of the two. As a proof-of-concept of
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the proposed architecture, we present, in Section 9.3, simple heuristic adap-
tation policies whose overall adaptation goal is to preserve the application
performance, avoiding unnecessary or too frequent reconfigurations which
might result in excessive application downtime.

We have implemented the proposed EDF architecture in Apache Storm.
Figure 9.2b shows the high-level instantiation of the EDF components on
the Storm architecture. EDF leverages on the monitoring system and the
elasticity and stateful migration capabilities exposed by Distributed Storm
(see Chapters 3, 7, and 8). Furthermore, we consider that, to agree on satis-
fying execution conditions, the user and the DSP system provider stipulate
a Service Level Agreement (SLA). The SLA specifies as Service Level Objec-
tive (SLO) the maximum acceptable response time Rmax, that is the worst
end-to-end delay from a data source to a data sink, and the maximum tol-
erable downtime during normal execution conditions. The latter indicates
how often the application can be reconfigured when its response time is far
from the critical value Rmax.

9.3 Multi-level Elasticity Policy

The proposed two-layered architecture for self-adaptive DSP elasticity con-
trol identifies the different macro-components (i.e., Application Manager
and Operator Managers) that, by means of abstraction layers and separa-
tion of concerns, cooperate to adapt the deployment of DSP applications
at runtime. By properly selecting each component internal policy, the pro-
posed solution can address the needs of different execution contexts, which
can comprise applications with different requirements, infrastructures with
different computing resources, and different user preferences. For exam-
ple, specific policies can execute the application by minimizing its response
time, maximizing its availability, or limiting the adaptation efforts (i.e., ex-
ecuting the application in a best-effort manner). The Operator Manager
works at the granularity of a single DSP operator and implements what we
call a local policy. By monitoring and analyzing the performance of each op-
erator replica, the local policy can plan a reconfiguration of number and lo-
cation of the operator replicas. Specifically, by scaling the number of repli-
cas, the operator exploits parallelism to quickly process its incoming data,
whereas by migrating some of the operator replicas, the operator better
distributes the incoming load among computing resources. The Operator
Manager sends the planned reconfiguration to the Application Manager,
which runs periodically and decides, according to its so called global policy,
which reconfigurations should be enacted. The global policy works at the
granularity of the whole application, thus it coordinates the reconfigura-
tions so to limit them and avoid deployment oscillations, if needed. On the
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basis of the monitored application performance and the stipulated SLA, the
global policy identifies the most effective reconfigurations proposed by the
Operator Managers: it accepts or declines each reconfiguration with the
aim to adapt the DSP application to changing working conditions while
meeting the SLA.

9.3.1 Local Policy

The Operator Manager local policy implements the Analyze and Plan phases
of the decentralized MAPE loop, which controls the execution of a single
DSP operator. Running on a decentralized component, this policy has only
a local view of the system, which results from the monitoring components
(i.e., Operator Monitor and Resource Monitor). The local view consists of
the status (i.e., resource utilization) of each operator replica and of a re-
stricted suitable set of computing nodes (i.e., located in the neighborhood).
By analyzing this information, the policy can plan a reconfiguration of the
operator deployment, either by changing the number of replicas, or by mi-
grating some of them. The proposed reconfiguration plan is then communi-
cated to the centralized Application Manager which, based on all the Op-
erator Manager’s reconfiguration plans and the global policy, determines
which plan can be executed and which not.

Reconfiguration Plan. A reconfiguration plan is expressed through the
following information: adaptation actions, reconfiguration gain, and reconfig-
uration cost1. We consider two types of adaptation actions: replica migra-
tion and operator scaling. Actions can be of the form: “move replica α
of op from ri to rj”, “add a new replica to op on ri”, or “remove replica
α of op from ri”, where op and ri denote an operator and a computing re-
source, respectively. The reconfiguration gain is a function, adopted by every
Operator Manager, which captures the benefits of the planned adaptation
action. It can express, for instance, the reduction of the operator’s process-
ing latency, the reduction of monetary cost for running the operator, or the
improvement of some utility function. We assume a simple gain function
that induces an order relation among the reconfiguration actions, namely
scale-out > migration > scale-in. The reconfiguration cost expresses the
cost of reconfiguring the system. In this chapter, we express it in terms of
application downtime. It results from the time required to add/remove an
operator replica, to relocate the operator code, and to migrate its internal
state (if any). We now discuss the two types of adaptation action.

Replica Migration. A computing resource can host replicas of one or
more operators, which, in turn, are controlled by dedicated Operator Man-
agers. When the computing resource becomes overloaded, the hosted repli-

1For the sake of simplicity, we assume that the local policy proposes, for an operator, a
single reconfiguration decision (i.e., migration, scaling) at a time.
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cas can experience a performance degradation. To overcome this issue, an
Operator Manager proposes to move some of the operator replicas away
from the resource.

We adopt a reactive and threshold-based policy in order to decide when
and how to perform the migration. The local policy analyzes the monitor-
ing data coming from the computing resources that host at least one opera-
tor replica. We denote with Ur the overall CPU utilization of the resource r.
When Ur is above a critical value Umax, the policy plans to migrate at most
one operator replica to a new location. The latter is identified in two steps.
First, the policy sorts the known neighbor resources according to their dis-
tance, measured in terms of network delay. Then, it selects the new location
using a randomized approach: the closer the resource, the higher the prob-
ability of being selected. The policy checks if the new selected location has
room to run the migrating replica; in negative case, a new resource is se-
lected from the sorted list.

Reconfiguration Cost. If the operator is stateless, the migration of a replica
can be easily performed by terminating the replica on the old location, mov-
ing its code to the new location, and restarting it. On the other hand, if the
operator is stateful, we also need to efficiently migrate its internal state, so
to preserve the integrity and consistency of the outputted streams. Our mi-
gration protocol follows a pause-and-resume approach with the help of a
data store as staging area for the replica internal state (details on our mi-
gration protocol in Chapter 7).

Operator Scaling. When an operator replica receives an increasing
workload, it can saturate the capacity of the hosting computing resource.
To prevent the performance penalty associated to overloading, the Oper-
ator Manager proposes to add an additional replica and redistribute the
incoming workload accordingly. Conversely, when the incoming work-
load decreases, the Operator Manager can reduce the number of replicas
in order to decrease the number of allocated resources, and redistribute the
workload among the remaining ones. Let us denote by Sα the resource uti-
lization of the hosting resource by replica α, which measures the fraction
of CPU time used by α. We adopt a simple threshold-based scale-out pol-
icy to each replica. When the utilization of α exceeds a usage threshold
Ss-out ∈ [0, 1] (i.e., Sα > Ss-out), the Operator Manager proposes to add a
new replica. Its placement is computed relying on the same strategy used
for the replica migration. Conversely, the Operator Manager proposes a
scale-in operation, which removes one of the running n replicas, when the
sum of their utilization divided by n − 1 is significantly below the usage
threshold, i.e., when

∑n
α=1 Sα/(n− 1) < cSs-out, being c < 1. The replica to

be removed is randomly chosen between the two replicas with the highest
utilization.

Reconfiguration Cost: If the operator is stateless, a scaling operation im-
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plies only to start or stop a replica. If the operator is stateful, we also need
to reallocate its internal state among the new set of replicas. We assume
that each replica can work on a well-defined state partition [65]. A scale-
out operation redistributes equally the partitions among replicas, whereas
a scale-in operation aggregates the partitions from the merged replicas.

9.3.2 Global Policy

The Application Manager global policy implements the Analyze and Plan
steps of the centralized MAPE loop. Its main goal is to satisfy the DSP ap-
plication SLA, while minimizing the allocated resources (or their cost). To
this end, it monitors the application response time and analyzes its behav-
ior with respect to the SLO specified in the SLA. In the planning phase,
the policy determines which reconfiguration plans, proposed by the decen-
tralized Operator Managers, should be enacted as to improve performance
while controlling the number of application reconfigurations (which cause
application downtime). In this thesis, we consider a simple global pol-
icy scheme which is exemplified in Figure 9.3. Time is divided in control
intervals of fixed length T . During each interval, the global policy col-
lects reconfiguration requests from the Operator Managers: these requests
can take different forms, e.g., replica migrations (the continuous arrows
in the figure), operator scale-out (the dotted arrow), and operator scale-
in (the dashed arrow). At the end of each interval, the policy determines
how many and which reconfigurations should be enacted by the Operators
Managers. In order to control the number of reconfigurations, and hence
the downtime, we adopt a simple token bucket scheme whereby each re-
configuration consumes a token. Tokens are generated at the end of each
control interval T and are accumulated in a token bucket, which has a finite
capacity (i.e., when the bucket is full, it cannot store any other token). The
number of reconfigurations allowed at the end of each control interval is
thus limited by the number of available tokens. If the number of requests is
higher than the number of available tokens, the global policy has to iden-
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tify the most valuable reconfigurations to accept. As simple scheme, the
policy uses a greedy approach by prioritizing the requests according to the
gain to cost ratio; the higher this index, the better the reconfiguration.

In the proposed scheme, a key role is played by the token generation
rate. Ideally, when the application response time is well within the SLO
(defined by Rmax), reconfigurations should be limited since performance
is guaranteed and the possibly sub-optimal behavior is preferable to the
downtime caused by reconfigurations. On the other hand, should the per-
formance degrades, the system should be more prone to reconfigure it-
self. As such, the token generation frequency depends on how far is the
response time from Rmax, with increasing token generation rates as perfor-
mance gets close to Rmax.

9.4 Evaluation

We evaluate EDF equipped with the proposed proof-of-concept policies,
using Apache Storm 0.9.3 on a cluster with 5 worker nodes and one further
node to host Nimbus and ZooKeeper. Each node has a dual CPU Intel Xeon
E5504 (8 cores at 2 GHz) with 16 GB of RAM.

The reference application solves a query of DEBS 2015 Grand Chal-
lenge [99], where data streams originated from the New York City taxis are
processed to find the top-10 most frequent routes during the last 30 min. A
detailed description of the DEBS 2015 Grand Challenge application can be
found in Chapter 6.

We feed the application with a sample dataset provided by DEBS, and
process real data collected during 2 days. The taxi service utilization signif-
icantly changes during the day, thus the application input rate is variable
as well. As regards the Operator Manager local policy, we set the scale-out
and migration thresholds, Umax and Ss-out, to 0.7 and the scale-in parameter
c to 0.75. Both OperatorManager and ApplicationManager run once every
30 s, respectively proposing and accepting/rejecting reconfigurations. We
compare the baseline approach in which all reconfiguration requests are
always accepted by the ApplicationManager to one in which the global
policy in Section 9.3.2 is employed in order to determine which reconfig-
urations will be enacted. In particular, the token bucket stores at most 1
token at any time and the token generation rate is 1 per min only if the
achieved application response time is above βRmax, where β ∈ [0, 1], oth-
erwise no token is generated. In these experiments we set Rmax = 200 ms
and vary β.

Figure 9.4a shows the application response time and number of repli-
cas during the experiment when using the baseline approach. Since every
reconfiguration proposed by any OperatorManager is accepted (like in a
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Figure 9.4: Response time and number of replicas using different policies
for ApplicationManager: in (a) accepting all the reconfiguration requests,
in (b) and (c) generating a token only when response time is greater than
βRmax

fully decentralized policy), the application is frequently reconfigured. As
a consequence, the application is available only for 93.7% of the time. The
measured response time shows many spikes, which are caused by tuples
buffering during reconfiguration.

Figure 9.4b shows the application response time and number of oper-
ator replicas during the experiment using the full reconfiguration policy,
with β = 0.5. As the response time frequently rises above βRmax = 100 ms,
the number of granted reconfigurations is not significantly reduced with re-
spect to the baseline approach in Figure 9.4a (and so the application down-
time). Nevertheless, we can observe that, by performing less reconfigura-
tions, the total number of replicas is never reduced to 8, due to the lack of
tokens and the low priority of the scale-in action.

Figure 9.4c shows the results when β = 0.75. As tokens are now gener-
ated in a more conservative manner (being βRmax = 150 ms), the number
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of reconfigurations is significantly reduced. In the initial part of the exper-
iment, the input rate grows up to 300 tuples/s, resulting in high response
time; therefore, EDF generates tokens for performing a migration and for
increasing the total number of replicas to 10. Then, the application is stable
until a new input peak (at around 4000 s), when a scale-in followed by a
scale-out of the bottleneck operator are accepted. The application down-
time is limited (only 1.7%), which is beneficial for response time, but it
might lead to higher cost, having more active replicas.

9.5 Summary

In this chapter, we have presented Elastic and Distributed DSP Frame-
work (EDF), a hierarchical autonomous control for elastic DSP applica-
tions. Designed according to the decentralized MAPE control pattern, our
proposal revolves around a two layered approach with separation of con-
cerns and time scale between layers. At the lower level, distributed com-
ponents control the adaptation of DSP operators, so to improve their per-
formance by means of scaling and migration actions. At the higher level,
a per-application centralized component oversees the overall DSP applica-
tion performance and coordinates its deployment by accepting or declining
the proposed reconfiguration actions. Then, relying on an application that
processes real-time data generated by taxis, we have conducted an experi-
mental evaluation. The results have shown the effectiveness of our solution
in achieving good trade-off in terms of application performance and num-
ber of application reconfigurations even adopting simple control policies.
These results are encouraging and foster the design of new hierarchical
heuristics, which can efficiently deal with the DSP application deployment
problem.
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Conclusion

In this thesis, we have addressed the problem of running DSP applications
over geo-distributed environments. First, we have investigated the initial
deployment problem of DSP applications with different QoS requirements.
Our contributions regard the formalization of two deployment problems
(i.e., placement and replication problem) and the design of several QoS-
aware heuristics for quickly computing high-quality application placement
solutions. Then, we have explored the challenges of adapting the appli-
cation deployment at runtime. Indeed, to preserve the application per-
formance within acceptable bounds and avoid costly over-provisioning of
the system resources, the deployment of DSP applications should be con-
veniently reconfigured at runtime, through migration and scaling opera-
tions. Specifically, we have shown the importance of taking into account
the adaptation costs while determining reconfiguration actions, thus con-
trolling the short term application performance degradation. Our con-
tributions are twofold. First, we have formalized the elastic replication
and placement problem, which determines whether the application should
be more conveniently redeployed by explicitly considering the adaptation
costs. Then, we have developed a hierarchical approach for the autonomous
control of elastic DSP applications, which can efficiently deal with runtime
adaptation over large scale and geo-distributed infrastructures.

10.1 Major Contributions

In this thesis, we have investigated the placement and replication problem
of DSP applications using an engineering-oriented approach, which com-
prises the following steps: problem identification and modeling, design of
resolution approaches, prototype development, and experimental evalua-
tion. The main contributions of this thesis are as follows.

• We have proposed a taxonomy of the existing deployment and runtime

253



254 Chapter 10. Conclusion

adaptation approaches for DSP systems (Chapter 2). First of its kind for
DSP systems, the taxonomy summarizes the main design choices of the
existing solutions and helps to identify new research directions.

• We have provided three main contributions to the initial deployment
problem of DSP applications over heterogeneous resource. First, we
have formalized the operator placement problem (Chapter 4), obtaining
ODP. It introduces to the state of the art a tool that can be easily adopted
as a benchmark against which centralized and decentralized placement
heuristics can be evaluated.

Second, we have proposed several heuristics for efficiently solving the
operator placement problem (Chapter 5). We have proposed two main
classes of heuristics, i.e., model-based and model-free, which take into
account the QoS attributes of applications and computing and network
resources. We have evaluated the heuristics in terms of resolution time
and, differently from the existing solutions, in terms of quality of the
computed placement solution. To this end, we have used ODP as bench-
mark. As a result, we have identified in Local Search the heuristic that
achieves, on average, the best trade-off between resolution time and
performance degradation.

Third, we have formulated the optimal operator replication and place-
ment problem, obtaining ODRP (Chapter 6). Differently from existing
solutions, the proposed solution jointly optimizes the replication and
placement of the DSP operators, while maximizing the QoS attributes
of the application. ODRP also provides a general framework that can
be used to evaluate existing heuristics.

• We have provided two main contributions regarding the runtime adap-
tation of DSP application deployment. First, we have proposed a for-
mulation of the elastic operator replication and placement problem, ob-
taining EDRP (Chapter 8). This formulation computes the optimal strat-
egy to adapt at runtime the replication and placement of DSP operators
while explicitly accounting for reconfiguration costs.

Second, we have proposed a hierarchical control approach for elastic
DSP applications (Chapter 9). Most of the existing solutions are either
centralized or decentralized. Differently, our proposal revolves around
a two layered hierarchical approach with separation of concerns and
time scale between layers. As such, this approach can take the best of
centralized and fully decentralized architectures, thus improving per-
formance and scalability without compromising stability.

• We have design and implemented two extensions of Apache Storm. The
first one is Distributed Storm (Chapter 3), which supports the execution
of decentralized, QoS-aware, and self-adaptive scheduling policies on
heterogeneous infrastructures. The second one is Elastic Storm (Chap-
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ter 7), which introduces mechanisms for elasticity and stateful migra-
tion in Storm. These extensions have been released as open source
projects.

10.2 Future Research Directions

In this thesis, we have addressed several issues regarding the initial deploy-
ment and runtime adaptation of DSP application over geo-distributed in-
frastructures. However, a number of challenges remain to be faced in future
research to further improve the runtime support of DSP applications, while
better exploiting the presence of near-edge/Fog computing resources.

Multi-application Deployment Decisions. As shown in the literature
analysis (Chapter 2), optimizing the deployment of multiple concurrent ap-
plications represents a largely unexplored research direction. In a more
general setting, the infrastructure hosts multiple DSP applications, each ar-
riving and departing over time with unforeseen requirements and charac-
teristics. In this setting, it is worth investigating the trade-offs between the
possibly conflicting QoS requirements of multiple DSP applications shar-
ing the same infrastructure and the service provider objectives, e.g., profit
maximization and/or optimal resource utilization.

Enforcing stronger SLA. When multiple DSP applications run on a
shared computing infrastructure, the application provider and the infras-
tructure provider stipulate a SLA. The latter expresses service level objec-
tives (e.g., in terms of application performance) that should be met at run-
time (see Chapter 2). In this thesis, we started to explore how to meet a SLA
in a distributed manner. However, the enforcement of stronger SLAs, that
may include percentiles and higher moments of QoS attributes, deserves
further investigations, especially to address the challenges of the new en-
vironment, resulting from the convergence of IoT, Fog, and Cloud comput-
ing resources. New and more sophisticated adaptation policies should be
designed so to efficiently rule the complexity of the next-generation DSP
systems. Indeed, these systems have to execute multiple DSP applications,
which are subject to varying workloads and are characterized by stringent
and possibly conflicting QoS requirements. Moreover, being the infrastruc-
ture characterized by a large number of heterogeneous (and possibly dy-
namic) computing and network resources, DSP systems must be able to
handle failures and changes of the execution environment without intro-
ducing prolonged latency spikes or downtimes.

Resource Heterogeneity and Mobility. Today’s computing environ-
ments include computing resources characterized by a high degree of het-
erogeneity. To better exploit the ever increasing presence of these resources,
deployment policies should be accordingly designed. Recentely, some re-
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search efforts investigate the possibility of jointly running the computa-
tion on CPU and GPGPU (e.g., [111]) and on fixed and mobile resources
(e.g., [153]). The convergence of these resources in a single, highly het-
erogeneous, infrastructure comes with further challenges, such as location
awareness, power consumption, architecture dependent code. Neverthe-
less, their seamlessly integration enables the development of more efficient
DSP systems, which better exploit resources and better support the exe-
cution of different types of workloads. For example, the combined ex-
ploitation of mobile resources enables the development of new services,
that pro-actively send valuable information to users while they are mov-
ing around the city. Observe that, by providing a generic representation
of computing and network resources, our deployment models (i.e., ODP,
ODRP, EDRP) can be easily extended to consider different kind of hetero-
geneous resources.

Self-Adaptation and Hierarchical Control. Since DSP applications are
long-running and characterized by strict QoS requirements, the ability to
adapt the application deployment represents a key operation that should
be computed as quickly as possible. This thesis has investigated bene-
fits and limitations of using heuristics to compute the initial application
placement as well as to control its runtime adaptation, showing the impor-
tance of a suitable representation of applications and computing infrastruc-
tures. Therefore, this thesis encourages the design and evaluation of new
QoS-aware heuristics for geo-distributed environments, like the distributed
Cloud and Fog computing environments. The EDRP model can be used to
evaluate the self-adaptation policies already proposed in literature as well
as to design new approaches. A promising research direction regards the
design of hierarchical self-adaptive control policies. Although at its infancy,
our hierarchical control architecture has shown interesting preliminary re-
sults. New and more sophisticated policies deserve to be investigated. Im-
portantly, these policies should be evaluated in a real Fog environment,
where the computing resources are hierarchically organized, geographi-
cally distributed, and can experience availability issues. As discussed in
Chapter 2, several self-adaptation policies deal with failures of the comput-
ing infrastructure (e.g., [204]). Fault-tolerance is of key importance in the
emerging Fog computing environment, where computing nodes are less
resilient to failures and cannot be easily replaced by another machine with
similar capacity and connectivity (as in the Cloud). Moreover, as regards
self-adaptation, we observe that the approaches proposed in this thesis de-
termine reconfigurations relying on a single snapshot of the system, i.e., the
system status when the optimization model is executed. These approaches
inherently compute greedy reconfiguration strategies which might be sub-
optimal if we are interested in the overall performance over a period of
time. To overcome this issue, self-adaptation approaches should explicitly
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take into account intervals of time. Possible solutions can include model
based optimization, e.g., Markov Decision Processes and Model Predictive
Control, if the system dynamic is known (or estimated), and model free op-
timization when the model is not available, e.g., Reinforcement Learning.

Cross-level Optimization. In this thesis, we have only considered the
optimization of the application deployment, without performing optimiza-
tion at the infrastructure level. Although simple and independent heuris-
tics can be combined to acquire and release computing resources while
changing the application deployment, we believe that a cross-level opti-
mization can produce better adaptation strategies (e.g., [134]). Recently, the
Cloud computing technologies made easy to acquire and release comput-
ing resources, whereas SDN simplified the management of large scale net-
works. Both these technologies enable the infrastructure to be programmable,
thus allowing its runtime reconfiguration so as to better satisfy the applica-
tion needs. Interestingly, SDN provides mechanisms for allocating network
capacity for data flows and also enables a fine-grained control of the appli-
cation deployment. Relying on SDN, a DSP application can determine the
network paths that better satisfy the application QoS requirements (e.g.,
bandwidth, response time). Moreover, it allows to react to network con-
gestion by re-routing data streams, i.e., without changing the operators
placement or replication. We believe that the joint optimization of the ap-
plication layer and the infrastructure layer represents another interesting
research direction.
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