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Abstract

Hardware errors are projected to increase in modern computer systems due to

shrinking feature sizes and increasing manufacturing variations. The impact of

hardware faults on programs can be catastrophic, and can lead to substantial fi-

nancial and societal consequences. Error propagation is often the leading cause of

catastrophic system failures, and hence must be mitigated. Traditional hardware-

only techniques to avoid error propagation are energy hungry, and hence not suit-

able for modern computer systems (i.e., commodity systems). Researchers have

proposed selective software-based protection techniques to prevent error propa-

gation at lower costs. However, these techniques use expensive fault injection

simulations to determine which parts of a program must be protected. Fault in-

jection simulation artificially introduces a fault to program execution and observe

failures (if any) upon the completion of the program execution. Thousands of such

simulations need to be performed in order to achieve statistical significance. It is

time-consuming as even a single program execution of a common application may

take a long time. In this dissertation, I first characterize error propagation in pro-

grams that lead to different types of failures, proposed both empirical and analytical

approaches to identify and mitigate error propagation without expensive fault in-

jections. The key observation is that only a small fraction of states are responsible

for almost all error propagation in programs, and the propagation falls into identifi-

able patterns which can be modeled efficiently. The proposed techniques are nearly

as close as fault injection approaches in measuring failure rates of programs, and

orders of magnitude faster than fault injections. This allows developers to build

low-cost fault-tolerant applications in an extremely efficient manner.
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Lay Summary

Transient hardware faults become more and more prevalent nowadays. They often

lead to error propagation in programs, which may cause serious social and finan-

cial impact. Protection techniques such as hardware duplications were used in the

past but they incur huge overheads in performance and energy consumption. Re-

searchers have expected modern software to tolerate hardware faults in a low-cost

and flexible manner. Studies have found there is only a small amount of program

states that are responsible for almost all the propagations. If those states can be

identified and protected, we can improve the reliability of computer systems at low

cost.

In this thesis, we characterize error propagation in programs, and propose mod-

els to identify the vulnerability of program states using static and dynamic analysis

techniques.
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Chapter 1

Introduction

Transient hardware faults (i.e., soft errors) are predicted to increase in future com-

puter systems [20, 40]. These faults are caused by high-energy particles passing

through transistors, causing them to accumulate charge or discharge, eventually

leading to single bit flips in logic values. As a result, such faults are also known

as Single Event Upset (SEU). Due to the growing system scale, progressive tech-

nology scaling, and lowering operating voltages, even a small amount of charge

accumulated or lost in the circuit can cause a SEU in modern processors [20, 40].

Consequently, computer systems have become more and more vulnerable to hard-

ware faults. In the past, only highly reliable systems (e.g., aerospace applications)

required protections from SEUs, but nowadays even commodity systems (e.g., con-

sumer products) need to be protected due to the increasing error rates [21, 95, 120].

SEUs in hardware often result in error propagation in programs, which may

lead to catastrophic outcomes. For example, Amazon’s S3 server once went down

for a few hours in 2008, causing a financial loss of millions of dollar for the com-

pany [10]. As reported by Amazon, it was very likely to be a SEU in their hardware,

causing error propagation in the software, and finally leading to the incident [10].

Until a few years ago, error propagation was mostly masked through hardware-

only solutions such as dual or triple modular redundancy and circuit hardening.

However, these techniques are becoming increasingly challenging to deploy as

they consume significant amounts of energy, and as energy is becoming a first-

class constraint in processor design, especially in commodity systems [21]. On
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the other hand, software-implemented protection techniques are more flexible and

cost-effective as they can selectively protect the program states of interest and do

not require any expensive hardware modifications [95, 102, 120]. Therefore, re-

searchers have postulated that future processors will expose hardware faults to the

software and expect the software to tolerate the faults at low costs [95, 102, 120].

Studies have shown that only a small fraction of program states are responsi-

ble for almost all the error propagations leading to catastrophic failures [52, 124],

and so one can selectively protect these states to meet the reliability target of the

application while incurring lower energy and performance overheads than full du-

plication techniques [64, 97]. Therefore, in the development of fault-tolerant ap-

plications, it is important to understand what states in the program are vulnerable

to what kinds of failures caused by SEUs, and identify those vulnerable states so

that they can be protected with low costs.

Fault Injection (FI) has been commonly employed to characterize error prop-

agation, and identify which program states are vulnerable to failures. FI involves

perturbing the program state to emulate the effect of a hardware fault and exe-

cuting the program to completion to determine if the fault caused a certain fail-

ure [64, 147]. However, real-world programs may consist of billions of dynamic

instructions, and even a single execution of the program may take a long time. Per-

forming thousands of FIs to get statistically meaningful results for each instruction

takes too much time to be practical [65, 124]. As a result, FI is mostly performed

offline for the characterizations of application resilience. It is too slow to be de-

ployed as an online evaluation method when developing fault-tolerant applications

in a fast software development cycle. In this dissertation, we leverage FI as a ba-

sic approach to characterize error propagation in programs, and use the results to

understand how different errors propagate in the program and why. Based on the

empirical observations, we propose models and heuristics that analyze error prop-

agation and guide the protection of programs with few to no FIs.

As Figure 1.1 shows, once a fault occurs and is read by the program that is ex-

ecuting, the fault is activated and becomes an error. Consequently, the error starts

propagating in the program, leading to one of the three outcomes: (1) Benign: The

error can be masked during the propagation in the program, hence the program fin-

ishes its execution without any anomaly. (2) Crash: The error triggers a hardware
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Figure 1.1: Types of Failures

exception (i.e., illegal memory access) and causes the program to terminate before

it finishes the execution. (3) Silent Data Corruption (SDC): The error propagates

to the program output, modifying it from the correct output. Among the three

outcomes, benign, as its name suggests, is not considered to be harmful as the pro-

gram successfully completes the execution without any anomaly. Crash and SDC

are both regarded as failures, depending on the reliability target and applications.

Therefore, they are the failure types we will focus on in this dissertation.

Crashes are usually considered detectable failures because of the early termi-

nation of the program execution and the warnings issued by hardware exceptions.

The user can then simply restart the program for a correct execution. As a result,

researchers do not really pay much attention to crashes. However, their underly-

ing assumption is that failures are reported as soon as faults occur, which is also

known as the fail-stop assumption [150]. While this assumption holds most of the

time, we find that there is a small amount of errors that can actually propagate for a

long time before causing crashes. Hence, such errors violate the fail-stop assump-

tion. We call them long latency crashes, or LLCs. Consequently, the error may

propagate to the program’s state elements such as checkpoints and corrupt them
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before causing any crash, leading to failures in recovery. Studies show that LLCs

may drastically reduce the availability of systems, and hence, must be identified

and mitigated in systems that require high availability [150]. The main challenge

of identifying LLCs is that LLC are typically confined to a small fraction of the

program’s data, and finding the LLC-causing data through FI often causes search

space explosion. The key observation in this study is that we find that most LLCs

are caused by faults occurring in a few code structures that can be identified by

static and dynamic program analysis. Based on this observation, we proposed

heuristics to identify those code structures in order to protect the program from

LLCs.

SDCs, on the other hand, are considered as the most insidious type of failure

because there are no indications of the incorrect program outputs. Studies show

that the program SDC probabilities are essentially application-dependent, and vary

from less than 1% to more than 50% depending on the program [97, 147]. There-

fore, given different reliability targets and applications, SDCs must be evaluated

and mitigated on a per-program and per-target basis. As a result, it is critical to

accurately estimate the SDC probability of a program as well as its individual

instructions for evaluation and mitigation. Unfortunately, current approaches for

identifying SDCs such as FIs are too slow to integrate into fast software develop-

ment cycles. Other existing approaches for resilience estimation such as analytical

models, suffer from serious inaccuracies because error propagation is complicated

and has not been comprehensively understood [51, 100]. The dynamic nature of

program execution makes building an accurate model extremely challenging. In

this dissertation, we find that almost all the error propagations that lead to SDCs

can be abstracted into three levels. We use this insight to build TRIDENT, which

is a compiler-based model that is able to predict the SDC probabilities of both

program and individual instructions without any FIs.

While the first part of this dissertation aims to investigate error propagation in

general applications (e.g., CPU programs), the second part discusses the error re-

silience of applications that run on hardware accelerators. Hardware accelerators

such as graphic processing units (GPUs) and deep learning neural network (DNN)

accelerators have found wide adoptions nowadays due to their massive parallel ca-

pability and efficient data-flow. Recently, they have been deployed for running
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reliability- and safety-critical applications (e.g., scientific applications and self-

driving cars etc), which require strict correctness. Therefore, it is important to

understand the resilience of applications running on these accelerators. Unfortu-

nately, most studies focus on the performance aspects of the accelerators, and hence

their resilience is not well investigated. While we explored the error propagation

in general applications, we are interested in error propagation in the applications

running on those accelerators, which have a very different structure from general

applications. One of the challenges in such applications is the lack of capable

tools to perform fault injection experiments and analysis. Therefore, we first built

tools that are able to perform fault injections for the applications, and used them to

characterize their error propagations. We find that the characteristics of their error

propagation are very different from what we have seen in CPU programs. This is

because of the different architectures and program models used in accelerators. Fi-

nally, we quantify the resilience of the applications and propose efficient protection

techniques based on their unique error propagation characteristics.

1.1 Contributions
Our research contributions are as follows:

• Characterized LLCs in programs, and identified the code patterns that lead to

LLCs. Based on the characterization, we developed an automated compiler-

based technique, CRASHFINDER, to identify the code patterns in programs.

We showed CrashFinder is able to identify more than 90% of the locations

that cause LLCs without extensive FIs, and by protecting those identified

locations, most of the LLCs can be eliminated in programs.

• Built an automated model, TRIDENT, that analyzes the SDC probabilities

of both whole programs and individual instructions in the program. Given

a program, the model requires no fault injections to estimate the SDC prob-

abilities. We showed that most of the error propagations that lead to SDCs

can be described by a combination of three probabilistic modules, which

synergistically build on top of each other to model error propagation. We

evaluated TRIDENT experimentally, and found that it is able to predict the
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SDC probabilities almost as accurately as FI, but takes only a fraction of

the time that FI does, thereby making it possible to integrate it into the soft-

ware development cycle. We also extended the model to support multiple

program inputs. We showed that the extended model is able to bound SDC

probabilities of programs given multiple program inputs.

• Investigated the characteristics of error propagation in the applications run-

ning on GPUs and DNN accelerators. We first built FI tools and simulators

for the applications, and evaluated their error resilience. Based on the ob-

servations, we proposed mitigation techniques that are cost-effective for the

applications.

The investigation of error propagation in this dissertation allows developers to

design more cost-effective error detectors and protection techniques based on the

characteristics of different errors, programming models, and hardware platforms.

The studies also explain why certain vulnerabilities are observed in certain program

structures. Our proposed analytical models allow developers to estimate programs’

resilience and selectively protect programs in a fast and accurate way, which rep-

resents a fundamental advance in the way fault-tolerant applications are designed.

Moreover, the analytical nature of our proposed models explains the relations be-

tween program and resilience, providing insights to researchers for designing better

fault-tolerant applications in the future.
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Chapter 2

Related Work

There have been many papers that investigate error propagation in programs and

tolerate hardware faults through software techniques. We organize this chapter

based on the structure shown in Figure 2.1. First, we discuss the related work

that studied error propagation in CPU programs. More specifically, we are inter-

ested in the ones that investigate LLCs (Chapter 2.1.1), and SDCs (Chapter 2.1.2).

Secondly, we talk about the studies that characterized the resilience of GPU appli-

cations (Chapter 2.2.1), and DNN accelerator applications (Chapter 2.2.2).

Error Propagation

CPU Programs Accelerator 
Applications

Long-Latency 
Crashes (LLCs)

Silent Data 
Corruptions (SDCs)

Resilience of GPU 
Applications 

Resilience of DNN 
Applications

Figure 2.1: High-Level Organization of Chapter 2
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2.1 Error Propagation in CPU Programs

2.1.1 Long-Latency Crash (LLC)

In Chapter 4, we develop a technique to automatically find program locations

where LLC causing faults originate so that the locations can be protected to bound

the program’s crash latency. In the past, there have been a few studies that charac-

terized the latency of error propagation in programs. We consider the related work

below.

The first one by Gu et. al. [9] injected faults into the Linux kernel and found

that less than 1% of the errors resulted in LLCs. They further found that many of

the severe failures that result in extended downtimes in the system were caused by

these LLCs, due to error propagation. The authors give examples of faults that re-

sulted in the LLCs, but they do not attempt to categorize the code patterns that were

responsible for the LLCs. The second study is by Yim et al. [150], who studied

the correlation between LLC-causing errors and the fault location in the program.

However, they perform a coarse-grained categorization of the fault locations based

on where the data resides (e.g., stack, heap etc.). Such a coarse-grained categoriza-

tion is unfortunately not very useful when one wants to protect specific variables or

program locations, as protecting the entire stack/heap segment is too expensive. Al-

though they provide some insights on the characteristics of possible LLC-causing

errors, they do not develop an automated way to predict which faults would lead to

an LLC and which would not. It is also worth noting that neither of the above pa-

pers achieves exhaustive characterization of the LLC-causing faults. Rashid et. al.

[20] have built an analytical trace-based model to predict the propagation of inter-

mittent hardware errors in a program. The model can be used to predict the latency

of crash causing faults in the program, and hence find the LLC locations. They

find that less than 0.5% of faults cause LLCs using the model. While useful, their

model requires building the program’s Dynamic Dependence Graph (DDG), which

can be prohibitively expensive for large programs as it is directly proportional to

the number of instructions executed by it. Further, they make many simplifying

assumptions in their model which may not hold in the real world. Similarly, Lan-

zaro et. al. [84] built an automated tool which is able to analyze arbitrary memory
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corruptions based on execution trace when faults present in system. While their

technique is useful in terms of analyzing error propagation, it incurs prohibitive

overheads as it requires the entire trace to be captured at runtime. Further, they fo-

cus on software faults as opposed to hardware faults. Finally, they do not make any

attempt to identify LLC-causing faults. Chandra et. al. [29] study program errors

that violate the fail-stop model and result in corrupting the data written to perma-

nent storage, or communicated to other processes. They find that between 2% to

7% of faults cause such violations, and propose using a transaction-based mecha-

nism to prevent the propagation of these faults. While transaction-based techniques

are useful, they require significant software engineering effort, as the application

needs to be rewritten to use transactions. This is very difficult for most commodity

systems. In contrast to the above techniques, our technique identifies specific pro-

gram locations that result in LLCs, and can hence support fine-grained protection.

Further, it uses predominantly static analysis coupled with dynamic analysis and

a selective fault injection experiment, making it highly scalable and efficient com-

pared to the above approaches. Finally, our technique, CRASHFINDER, does not

require any programmer intervention or application rewriting and is hence practical

to deploy on existing software.

2.1.2 Silent Data Corruption (SDC)

In Chapter 5, we construct a three-level model, TRIDENT, that captures error

propagation at the static data dependency, control-flow and memory levels, based

on the observations of error propagations in programs. TRIDENT is implemented

as part of a compiler, and can predict both the overall SDC probability of a given

program, and the SDC probabilities of individual instructions of programs, without

fault injections.

There is a significant body of work on identifying error propagation that leads

to SDC either through FI [42, 58, 65, 66, 90, 147], or through modeling error prop-

agation in programs [51, 52, 130]. The main advantage of FI is that it is simple,

but it has limited predictive power. Further, its long running time often limits the

FI approach from deriving program vulnerabilities at finer granularity (e.g., SDC

probabilities of individual instructions). The main advantage of modeling tech-
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niques is that they have predictive power and are significantly faster, but existing

techniques suffer from poor accuracy due to important gaps in the models. The

main question we answer in the TRIDENT project is that whether we can combine

the advantages of the two approaches by constructing a model that is both accu-

rate and scalable. Shoestring [52] was one of the first papers to attempt to model

the resilience of instructions without using fault injection. Shoestring stops tracing

error propagations after control-flow divergence, and assumes that any fault that

propagates to a store instruction leads to an SDC. Hence, it is similar to removing

fc and fm in TRIDENT and considering only fs , which we show is not very ac-

curate. Further, Shoestring does not quantify SDC probabilities of programs and

instructions, unlike TRIDENT. Gupta et al. [61] investigate the resilience charac-

teristics of different failures in large-scale systems. However, they do not propose

automated techniques to predict failure rates. Lu et al. [97], Li et al. [88] identify

vulnerable instructions by characterizing different features of instructions in pro-

grams. While they develop efficient heuristics in finding vulnerable instructions

in programs, their techniques do not quantify error propagation, and hence can-

not accurately pinpoint SDC probabilities of individual instructions. Sridharan et

al. [100] introduce PVF, an analytical model which eliminates microarchitectural

dependency from architectural vulnerability to approximate SDC probabilities of

programs. While the model requires no FIs and is hence fast, it has poor accuracy

in determining SDC probabilities as it does not distinguish between crashes and

SDCs. Fang et al. [51] introduce ePVF, which derives tighter bounds on SDC prob-

abilities than PVF, by omitting crash-causing faults from the prediction of SDCs.

However, both techniques focus on modeling the static data dependency of instruc-

tions, and do not consider error propagation beyond control-flow divergence, which

leads to large gaps in the predictions of SDCs (as we showed in Chapter 5).

Furthermore, we study the variation of SDC probabilities across different in-

puts of a program, and identify the reasons for the variations in Chapter 6 . Based

on the observations, we propose a model, VTRIDENT, which predicts the varia-

tions in programs’ SDC probabilities without any FIs, for a given set of inputs.

There has been little work investigating error propagation behaviours across

different inputs of a program. Czek et al. [43] were among the first to model

the variability of failure rates across program inputs. They decompose program
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executions into smaller unit blocks (i.e., instruction mixes), and use the volatility

of their dynamic footprints to predict the variation of failure rates, treating the

error propagation probabilities as constants in their unit blocks across different

inputs. Their assumption is that similar executions (of the unit blocks) result in

similar error propagations, so the propagation probabilities within the unit blocks

do not change across inputs. Thus, their model is equivalent to considering just the

execution volatility of the program (Section 6.2), which is not very accurate as we

show in Section 6.3.

Folkesson et al. [54] investigate the variability of the failure rates of a single

program (Quicksort) with its different inputs. They decompose the variability into

the execution profile, and its data usage profile. The latter requires the identifi-

cation of critical data and its usage within the program - it is not clear how this

is done. They consider limited propagation of errors across basic blocks, but not

within a single block. This results in their model significantly underpredicting the

variation of error propagation. Finally, it is difficult to generalize their results as

they consider only one (small) program.

Di Leo et al. [46] investigate the distribution of failure types under hardware

faults when the program is executed with different inputs. However, their study

focuses on the measurement of the volatility in SDC probabilities, rather than on

predicting it. They also attempt to cluster the variations and correlate the clusters

with the program’s execution profile. However, they do not propose a model to

predict the variations, nor do they consider sources of variation beyond the execu-

tion profile - again, this is similar to using only the execution volatility to explain

the variation of SDC probabilities. Tao et al. [139] propose efficient detection

and recovery mechanisms for iterative methods across different inputs. Mahmoud

et al. [98] leverage software testing techniques to explore input dependence for

approximate computing. However, neither of them focus on hardware faults in

generic programs. Gupta et al. [61] measure the failure rate in large-scale systems

with multiple program inputs during a long period, but they do not propose tech-

niques to bound the failure rates. In contrast, our work investigates the root causes

behind the SDC volatility under hardware faults, and proposes a model to bound it

in an accurate and scalable fashion.

Other papers that investigate error propagation confine their studies to a single
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input of each program. For example, Hari et al. [65, 66] group similar execu-

tions and choose the representative ones for FI to predict SDC probabilities given

a single input of each program. Li et al. [88] find patterns of executions to prune

the FI space when computing the probability of long-latency propagating crashes.

Lu et al. [97] characterize error resilience of different code patterns in applica-

tions, and provide configurable protection based on the evaluation of instruction

SDC probabilities. Feng et al. [52] propose a modeling technique to identify likely

SDC-causing instructions. Our prior work. TRIDENT [59], which VTRIDENT

is based on, also restricts itself to single inputs. These papers all investigate pro-

gram error resilience characteristics based on static and dynamic analysis, without

large-scale FI. However, their characterizations are based on the observations de-

rived from a single input of each program, and hence their results may be inaccurate

for other inputs.

2.2 Error Propagation in Hardware Accelerator
Applications

2.2.1 GPU Applications

In Chapter 7, we perform an empirical study to understand and characterize error

propagation in GPU applications. We build a compiler-based fault-injection tool

for GPU applications to track error propagation, and define metrics to characterize

propagation in GPU applications. We consider the following related work in the

area of GPU fault injection and fault-tolerance techniques.

Yim et al. [151] built one of the first fault injectors for GPGPU applications.

However, their injector operates at the source code level, and only considers faults

that are visible at the source level. Fang et. al. [50] designed a GPGPU fault

injector, GPU-Qin, that operates on the CUDA assembly code (SASS). They use

the CUDA debugger (CUDA-gdb) to inject faults, which takes significantly longer

than performing fault injections by code instrumentation (Section III). In follow up

work, Hari et. al. [63] built SASSIFI, a GPGPU fault injector that transforms the

SASS code of the program to inject faults similar to LLFI-GPU. Both GPU-Qin

and SASSIFI operate on the SASS assembly code level, which makes it difficult
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to map back the faults to the source code. In contrast, LLFI-GPU operates at the

LLVM IR level, which is much closer to the program’s source code. This makes it

possible to perform program analysis on the program and map the fault injection

results back to the source code, thereby helping programmers make their code error

resilient.

There have been a few papers on building fault tolerance techniques on GPGPU

platforms. Jeon et. al. [76] duplicated kernel threads that have the same input to

detect errors. Dimitrov et. al. [48] leverage both instruction level and thread-level

parallelism to duplicate application code. Tan et. al. [137] proposed an analytical

method to evaluate the error-resilience of GPU platforms. Pena et. at. [110] ex-

plored low-cost data protection and recovery mechanisms for GPGPU platforms

based on API interception. Finally, Yim et al. [151] proposed a technique to detect

errors by duplicating code at within the loop bodies of GPGPU programs. While

these are useful, none of the above papers study error propagation in GPGPU pro-

grams, which is our focus.

2.2.2 DNN Accelerators and Applications

In Chapter 8, we experimentally evaluate the resilience characteristics of DNN

systems (i.e., DNN software running on specialized accelerators). We find that the

error resilience of a DNN system depends on the data types, values, data reuses, and

types of layers in the design. Based on our observations, we propose two efficient

protection techniques for DNN systems. We consider the following related work.

There were a few studies years ago on the fault tolerance of neural networks [9,

17, 111]. While these studies performed fault injection experiments on neural net-

works and analyzed the results, the networks they considered had very different

topologies and many fewer operations than today’s DNNs. Further, these studies

were neither in the context of the safety critical platforms such as self-driving cars,

nor did they consider DNN accelerators for executing the applications. Hence,

they do not provide much insight about error propagation in modern DNN sys-

tems. Reis et al. [115] and Oh et al. [106] proposed software techniques that du-

plicate all instructions to detect soft errors. Due to the high overheads of these

approaches, researchers have investigated selectively targeting the errors that are
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important to an application. For example, Hari et al. analyzed popular benchmarks

and designed application-specific error detectors. Feng et al. [52] proposed a static

analysis method to identify vulnerable parts of the applications for protection. Lu

et al. [97] identified SDC-prone instructions to protect using a decision tree classi-

fier, while Laguna et al. [32] used a machine learning approach to identify sensitive

instructions in scientific applications. While these techniques are useful to mitigate

soft errors in general purpose applications, they cannot be easily applied to DNN

systems which implement a different instruction set and operate on a specialized

microarchitecture. Many studies [34, 35, 62] proposed novel microarchitectures

for accelerating DNN applications. These studies only consider the performance

and energy overheads of their designs and do not consider reliability. In recent

work, Fernades et. al. [53] evaluated the resilience of histogram of oriented gra-

dient applications for self-driving cars, but they did not consider DNNs. Reagen

et.al. [113] and Chatterjee et.al. [32] explored energy-reliability limits of DNN sys-

tems, but they focused on different networks and fault models. The closest related

work is by Temam et. al. [140], which investigated the error resilience of neural

network accelerators at the transistor-level. Our work differs in three aspects: (1)

Their work assumed a simple neural network prototype, whereas we investigate

modern DNN topologies. (2) Their work does not include any sensitivity study

and is limited to the hardware datapath of a single neural network accelerator. Our

work explores the resilience sensitivity to different hardware and software param-

eters. (3) Their work focused on permanent faults, rather than soft errors. Soft

errors are separately regulated by ISO 26262, and hence we focus on them.
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Chapter 3

Background

In this chapter, we first introduce our fault model for studying error propagation in

CPU programs. The fault model applies to Chapter 4, 5, 6 and 7. For Chapter 8,

we present the fault model in the chapter. We then define the terms we have in

this thesis and introduce LLVM compiler that we use to study error propagation

in both CPU and GPU programs. Finally, we summarize GPU architecture and

programming model before discussing DNN accelerators and applications.

3.1 Fault Model
We consider transient hardware faults that occur in the computational elements of

the processor, including pipeline registers and functional units. We do not con-

sider faults in the memory or caches, as we assume that these are protected with

error correction code (ECC). Likewise, we do not consider faults in the processor’s

control logic as we assume that it is protected. Neither do we consider faults in

the instructions’ encodings. Finally, we assume that the program does not jump

to arbitrary illegal addresses due to faults during the execution, as this can be de-

tected by control-flow checking techniques [105]. However, the program may take

a faulty legal branch (the execution path is legal but the branch direction can be

wrong due to faults propagating to it). Our fault model is in line with other work

in the area [42, 52, 65, 97].
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3.2 Terms and Definitions
We use the following terms in this thesis.

• Fault occurrence: The event corresponding to the occurrence of the hard-

ware fault. The fault may or may not result in an error.

• Fault activation: The event corresponding to the manifestation of the fault

to the software, i.e., the fault becomes an error and corrupts some portion of

the software state (e.g., register, memory location). The error may or may

not result in a crash.

• Crash: The raising of a hardware trap or exception due to the error, because

the program attempted to perform an action it should not have (e.g., read

outside its memory segments).

• Crash latency: The number of dynamic instructions executed by the pro-

gram from fault activation to crash. This definition is slightly different from

prior work which has used CPU cycles to measure the crash latency. The

main reason we use dynamic instructions rather than CPU cycles is that

we wish to obtain a platform independent characterization of long latency

crashes.

• Long latency crashes (LLCs): Crashes that have crash latency of greater

than 1,000 dynamic instructions. Prior work has used a wide range of values

for long latency crashes, ranging from 10,000 CPU cycles [112] to as many

as 10 million CPU cycles [150]. We use 1,000 instructions as our threshold

as (1) each instruction corresponds to multiple CPU cycles in our system,

and (2) we found that in our benchmarks, the length of the static data depen-

dency sequences are far smaller, and hence setting 1,000 instructions as the

threshold already filters out 99% of the crash-causing faults (Section 4.3),

showing that 1000 instructions is a reasonable threshold.

• Silent Data Corruption (SDC): A mismatch between the output of a faulty

program run and that of an error-free execution of the program.
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• Benign Faults: Program output matches that of the error-free execution even

though a fault occurred during its execution. This means either the fault was

masked or overwritten by the program.

• Error propagation: Error propagation means that the fault was activated,

and has affected some other portion of the program state, say ’X’. In this

case, we say the fault has propagated to state X. We focus on the faults

that affect the program state and therefore consider error propagation at the

application level.

• SDC Probability: We define the SDC probability as the probability of an

SDC given that the fault was activated – other work uses a similar defini-

tion [52, 66, 88, 147].

3.3 LLVM Compiler
There are many FI frameworks in the literature [7, 26, 78, 132], which focus on

different platforms, components, and faults. We use the LLVM compiler [85] to

perform our program analysis and FI experiments and to implement our model.

Our choice of LLVM is motivated by three reasons. First, LLVM uses a typed in-

termediate representation (IR) that can easily represent source-level constructs. In

particular, it preserves the names of variables and functions, which makes source

mapping feasible. This allows us to perform a fine-grained analysis of which pro-

gram locations cause certain failures and map them to the source code. Second,

LLVM IR is a platform-neutral representation that abstracts out many low-level

details of the hardware and assembly language. This greatly aids in portability

of our analysis to different architectures and simplifies the handling of the special

cases in different assembly language formats. Finally, LLVM IR has been shown

to be accurate for doing FI studies [147], and there are many fault injectors devel-

oped for LLVM [12, 90, 121, 147]. Many of the papers we compare our technique

with in this chapter also use LLVM infrastructure [51, 52]. Therefore, when we

say instruction in CPU or GPU programs, we mean an instruction at the LLVM IR

level.
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3.4 GPU Architecture and Programming Model
We focus on CUDA (Compute Unified Device Architecture) GPU programs in

this thesis as CUDA the most popular programming model used by GPU develop-

ers [2]. CUDA is a parallel computing platform and application programming inter-

face model created by Nvidia [2]. CUDA kernels, which are the parts of the code

that run on GPU hardware, adopt the single instruction multiple threads (SIMT)

model to exploit the massive parallelism of GPU devices. From a software perspec-

tive, the CUDA programming model abstracts the SIMT model into a hierarchy of

kernels, blocks and threads. The CUDA kernels consist of blocks, which consist

of threads. This hierarchy allows various levels of parallelism such as fine-grained

data parallelism, coarse-grained data parallelism and task parallelism. From a hard-

ware perspective, blocks of threads run on streaming mutiprocessors (SMs) which

have on-chip shared memory for threads inside the same block. Within a block,

threads are launched in fixed groups of 32 threads, which are called warps. Threads

in a warp execute the same sequence of instructions but with different data values.

GPU has its own memory space that is distinct from and not synchronized with

the host CPU’s memory. In the CUDA programming model, there are four kinds of

memory: (1) global, (2) constant, (3) texture, and (4) shared. Global, constant, and

texture memory accesses are generally slower from large device memory. Shared

memory space, which can be software managed, is much smaller and built on chip,

hence it is much faster to access. CUDA applications need to be aware of the

memory hierarchy to access GPU memory efficiently.

3.5 DNN Accelerators and Applications

3.5.1 Deep Learning Neural Networks

A deep learning neural network is a directed acyclic graph consisting of multiple

computation layers [86]. A higher level abstraction of the input data or a feature

map (fmap) is extracted to preserve the information that are unique and important

in each layer. There is a very deep hierarchy of layers in modern DNNs, and hence

their name.

We consider convolutional neural networks of DNNs, as they are used in a
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broad range of DNN applications and deployed in self-driving cars, which are our

focus. In such DNNs, the primary computation occurs in the convolutional layers

(CONV) that perform multi-dimensional convolution calculations. The number of

convolutional layers can range from three to a few tens of layers [67, 81]. Each

convolutional layer applies a kernel (or filter) on the input fmaps (ifmaps) to ex-

tract underlying visual characteristics and generate the corresponding output fmaps

(ofmaps).

Each computation result is saved in an activation (ACT) after being processed

by an activation function (e.g., ReLU), which is in turn, the input of the next layer.

An activation is also known as a neuron or a synapse - in this work, we use ACT to

represent an activation. ACTS are connected based on the topology of the network.

For example, if two ACTS, A and B, are both connected to an ACT C in the next

layer, then ACT C is calculated using ACT A and B as the inputs. In convolutional

layers, ACTS in each fmap are usually fully connected to each other, whereas the

connection of ACTS between each fmap in other layers are usually sparse. In

some DNNs, a small number (usually less than 3) of fully-connected layers (FC)

are typically stacked behind the convolutional layers for classification purposes.

In between the convolutional and fully-connected layers, additional layers can be

added, such as the pooling (POOL) and normalization (NORM) layers. POOL

selects the ACT of the local maximum in an area to be forwarded to the next layer

and discards the rest in the area, so the size of fmaps will become smaller after

each POOL. NORM averages ACT values based on the surrounding ACTS. Thus

ACT values will also be modified after the NORM layer.

Once a DNN topology is constructed, the network can be fed with training in-

put data, and the associated weights, abstracted as connections between ACTS,

will be learned through a back-propagation process. This is referred to as the

training phase of the network. The training is usually done once, as it is very

time-consuming, and then the DNN is ready for image classification with testing

input data. This is referred to as the inferencing phase of the network and is carried

out many times for each input data set. The input of the inferencing phase is often

a digitized image, and the output is a list of output candidates of possible matches

such as car, pedestrian, animal, each with a confidence score. Self-driving cars

deploy DNN applications for inferencing, and hence, we focus on the inferencing
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phase of DNNs.

3.5.2 DNN Accelerator

Many specialized accelerators [34, 35, 62] have been proposed for DNN inferenc-

ing, each with different features to cater to DNN algorithms. However, there are

two properties common to all DNN algorithms that are used in the design of all

DNN accelerators: (1) MAC operations in each feature map have very sparse de-

pendencies, which can be computed in parallel, and (2) there are strong temporal

and spatial localities in data within and across each feature map, which allow the

data to be strategically cached and reused. To leverage the first property, DNN

accelerators adopt spatial architectures [143], which consist of massively parallel

processing engines (PEs), each of which computes MACs. Figure 3.1 shows the

architecture of a general DNN accelerator. A DNN accelerator consists of a global

buffer and an array of PEs. The accelerator is connected to DRAM where data is

transferred from. A CPU is usually used to off-load tasks to the accelerator. The

overall architecture is shown in Figure 3.1A. The ALU of each PE consists of a

multiplier and an adder as execution units to perform MACs — this is where the

majority of computations happen in DNNs. A general structure of the ALU in each

PE is shown in Figure 3.1B.

Figure 3.1: Architecture of general DNN accelerator

To leverage the second property of DNN algorithms, special buffers are added

on each PE as local scratchpad to cache data for reuse. Each DNN accelerator may

implement its own dataflow to explore data localities. We classify the localities in
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DNNs into three major categories:

• Weight Reuse: Weight data of each kernel can be reused in each fmap as

the convolutions involving the kernal data are used many times on the same

ifmap.

• Image Reuse: Image data of each fmap can be reused in all convolutions

where the ifmap is involved, because different kernels operate on the same

sets of ifmap in each layer.

• Output Reuse: Computation results of MACs can be buffered and con-

sumed on-PE without transferring off the PEs.

Table 3.1 illustrates nine different DNN accelerators that have been proposed

in prior work and the corresponding data localities they exploit in their dataflows.

As can be seen, each accelerator exploits one of more localities in its dataflow.

Eyeriss [35] considers all of the three data localities in its dataflow.

We separate faults that originate in the datapath (i.e., latches in execution units)

from those that originate in buffers (both on- and off-PEs), because they propagate

differently: faults in the datapath will be only read once, whereas faults in buffers

may be read multiple times due to reuse and hence the same fault can be spread to

multiple locations within short time windows.

3.5.3 Consequences of Soft Errors

The consequences of soft errors that occur in DNN systems can be catastrophic

as many of them are safety-critical, and error mitigation is required to meet cer-

tain reliability targets. For example, in self-driving cars, a soft error can lead to

misclassification of objects, resulting in a wrong action taken by the car. In our

fault injection experiments, we found many cases where a truck can be misclas-

sified under a soft error. We illustrate this in Figure 3.2. The DNN in the car

should classify the coming object as a transporting truck in a fault-free execution

and apply the brakes in time to avoid a collision (Figure 3.2A). However, due to

a soft error in the DNN, the truck is misclassified as a bird (Figure 3.2B), and the

braking action may not be applied in time to avoid the collision, especially when
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Table 3.1: Data Reuses in DNN Accelerators

Weight
Reuse

Image
Reuse

Output
Reuse

Zhang et al. [153], Diannao [34],
Dadiannao [36]

N N N

Chakradhar et al. [28], Sri-
ram et al. [131], Sankaradas et
al. [122], nn-X [57], K-Brain [107],
Origami [27]

Y N N

Gupta et al. [60], Shidiannao [49],
Peemen et al. [109]

N N Y

Eyeriss [35] Y Y Y

the car is operating at high speed. This is an important concern as it often results

in the violation of standards such as ISO 26262 dealing with the functional safety

of road vehicles [119], which requires the System on Chip (SoC) carrying DNN

inferencing hardware in self-driving cars to have a soft error FIT rate less than 10

FIT [13], regardless of the underlying DNN algorithm and accuracy. Since a DNN

accelerator is only a fraction of the total area of the SoC, the FIT allowance of a

DNN accelerator should be much lower than 10 in self-driving cars. However, we

find that a DNN accelerator alone may exceed the total required FIT rate of the

SoC without protection (Section 8.4.2).

Figure 3.2: Example of SDC that could lead to collision in self-driving cars
due to soft errors
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Chapter 4

Fine-Grained Characterization of
Faults Causing Long Latency
Crashes in Programs

In this chapter, we investigate into an important but neglected problem in the de-

sign of dependable software systems, namely identifying faults that propagate for

a long time before causing crashes, or long-latency crashes (LLCs). We first de-

fine the problem, then characterize the code patterns that lead to LLCs through an

empirical fault injection study. Based on the observations, we propose efficient

heuristics to identify these code patterns for protection in order to eliminate LLCs

in programs. The identification is through static and dynamic analyses of a given

program without requiring to perform extensive fault injections. Hence, the pro-

posed technique is much faster than traditional fault injection methods. Finally, we

evaluate the proposed technique and present the results.

4.1 Introduction
A hardware fault can have many possible effects on a program. First, it may be

masked or be benign. In other words, the fault may have no effect on the program’s

final output. Second, it may cause a crash (i.e., hardware exception) or hang (i.e.,

program time out). Finally, it may cause Silent Data Corruptions (SDCs), or the
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program producing incorrect outputs. Of the above outcomes, SDCs are consid-

ered the most severe, as there is no visible indication that the application has done

something wrong. Therefore, a number of prior studies have focused on detecting

SDC-causing program errors, by selectively identifying and protecting elements of

program state that are likely to cause SDCs [52, 64, 97, 141].

Compared to SDCs, crashes have received relatively less attention from the

perspective of error detection. This is because crashes are considered to be the

detection themselves, as the program can be recovered from a checkpoint (if one

exists) or restarted after a crash. However, all of these studies make an important

assumption, namely that the crash occurs soon after the fault is manifested in the

program. This is important to ensure that the program is prevented from writing

corrupted state to the file system (e.g., checkpoint), or sending wrong messages to

other processes [15]. While this assumption is true for a large number of faults,

studies have shown that a small but non-negligible fraction of faults persist for a

long time in the program before causing a crash, and that these faults can cause

significant reliability problems such as extended downtimes [58, 146, 150]. We

call these long-latency crashes (LLCs). Therefore, there is a compelling need to

develop techniques for protecting programs from LLC causing faults.

Prior work has experimentally assessed LLCs through fault injection experi-

ments [58]. However, they do not provide much insight into why some faults cause

LLCs. This is important because (1) fault injection experiments require a lot of

computation time, especially to identify relatively rare events such as LLCs, and

(2) fault injection cannot guarantee completeness in identifying all or even most

LLC causing locations. The latter is important in order to ensure that crash latency

is bounded in the program by protecting LLC causing program locations. Yim et

al. [150] analyze error propagation latency in the program, and develop a coarse-

grained categorization of program locations based on whether a fault in the location

can cause LLCs. The categorization is based on where the program data resides,

such as text segment, stack segment or heap segment. While this is useful, it does

not help programmers decide which parts of the program need to be protected, as

protecting all parts of the program that manipulate the heap data or stack data can

lead to prohibitive performance overheads.

In contrast to the above work, we present a technique to perform fine grained
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classification of program’s data at the level of individual variables and program

statements, based on whether a fault in the data item causes an LLC. The main

insight underlying our work is that very few program locations are responsible for

LLCs, and that these locations conform to a few dominant code patterns. Our tech-

nique performs static analysis of the program to identify the LLC causing code

patterns. However, not every instance of the LLC-causing code pattern leads to an

LLC. Our technique further uses dynamic analysis coupled with a very selective

fault injection experiment, to filter the false positives and isolate the few instances

of the patterns that lead to LLCs. We have implemented our technique in a com-

pletely automated tool called CRASHFINDER, which is integrated with the LLVM

compiler infrastructure [85]. To the best of our knowledge, we are the first to pro-

pose an automated and efficient method to systematically identify LLC causing

program locations for protection in a fine-grained fashion.

We make the following contributions in this work.

• Identify the dominant code patterns that can cause LLCs in programs through

a large-scale fault injection experiment we conducted on a total of ten bench-

mark applications,

• Develop an automated static analysis technique to identify the LLC-causing

code patterns in programs, based on the fault injection study,

• Propose a dynamic analysis and selective fault injection-based approach to

filter out the false-positives identified by the static analysis technique, and

identify LLCs.

• Implement the static and dynamic analysis techniques in an automated tool.

We call this CRASHFINDER.

• Evaluate CRASHFINDER on benchmark applications from the SPEC [68],

PARBOIL [133], PARSEC [18] and SPLASH-2 [148] benchmark suites. We

find that CRASHFINDER can accurately identify over 90% of the LLC caus-

ing locations in the program, with no false-positives, and is about nine orders

of magnitude faster than performing exhaustive fault injections to identify all

LLCs in a program.
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Figure 4.1: Long Latency Crash and Checkpointing

4.2 Why bound the crash latency?
We now explain our rationale for studying LLCs and why it is important to bound

the crash latency in programs. We note that similar observations have been made

in prior work [58, 150], and that studies have shown that having unbounded crash

latency can result in severe failures. We consider one example.

Assume that the program is being checkpointed every 8,000 instructions so

that it can be recovered in the case of a failure (we set aside the practicality of

performing such fine grained checkpointing for now). We assume that the check-

points are gathered in an application independent manner, i.e., the entire state of

the program is captured in the checkpoint. If the program encounters an LLC

of more than 10,000 instructions, it is highly likely that one or more checkpoints

will be corrupted (by the fault causing the LLC). This situation is shown in Fig-

ure 4.1. However, if the crash latency is bounded to 1,000 instructions (say), then

it is highly unlikely for the fault to corrupt more than one checkpoint. Note that

the latency between the fault activation and the fault occurrence does not matter

in this case, as the checkpoint is corrupted only when the fault actually gets acti-

vated. Therefore, we focus on the crash latency in this chapter, i.e., the number of

dynamic instructions from the fault activation to the crash.

Identifying program locations that are prone to LLC is critical to improve sys-

tem reliability so that one can bound crash latency by selectively protecting LLC-

prone locations with minimal performance overheads. For example, one can du-

plicate the backward slices of the LLC-prone locations, or use low-cost detectors
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for these locations like what prior work has done [123]. In this chapter, we fo-

cus on identifying such LLC-causing program locations, and defer the problem of

protecting the locations to future work.

4.3 Initial Fault Injection Study
In this section, we perform an initial fault injection study for characterizing the

LLC causing locations in a program. The goal of this study is to measure the

frequency of LLCs, and understand the reasons for them in terms of the program’s

code. In turn, this will allow us to formulate heuristics for identifying the LLC-

causing code patterns in Section 4.4. We first explain our experimental setup for

this study, and then discuss the results.

4.3.1 Fault Injection Experiment

To perform the fault injection study, we use LLFI [147], an open-source fault in-

jector that operates at the LLVM compiler’s IR level. We inject faults into the

destination registers of LLVM IR instructions, as per our fault model in Section 3.

We first profile each program to get the total number of dynamic instructions. We

then inject a single bit flip in the destination register of a single dynamic instruction

chosen at random from the set of all dynamic instructions executed by the program.

Recent study [31] has shown that the fault injection method is representative. Our

benchmarks are chosen from the SPEC [68], PARBOIL [133], PARSEC [18] and

SPLASH-2 suites [148]. We choose ten programs at random from these suites, and

inject a total of 1,000 faults in each, for a total of 10,000 fault injection experi-

ments. The details of the benchmarks are explained in Section 4.6.1.

Note that our way of injecting faults using LLFI ensures that the fault is ac-

tivated right away as it directly corrupts the program’s state during the injection.

Therefore, we do not measure activation as the set of activated faults is the same

as the set of injected faults. We categorize the results into Crashes, SDCs, Hangs

and Benign faults in our experiment. Because our focus in this chapter is on LLCs,

we record the crash latency for crash-causing faults in terms of the number of dy-

namic LLVM IR instructions between the fault injection and the crash. However,

when the program crashes, its state will be lost, and hence we periodically write
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to permanent storage the number of dynamic instructions executed by the program

after the fault injection. The counting of the dynamic instructions is done using the

tracing feature of LLFI, which we have enabled in our experiments.

4.3.2 Fault Injection Results

We classify the results of the fault injection experiments into SDC, crash and be-

nign. Hangs were negligible in our experiment and are not reported. Figure 4.2

shows the aggregated fault injection results across the benchmarks. We find that

on average, crashes constitute about 35% of the faults, SDC constitute 4.2%, and

the remaining are benign faults (about 60%). We focus on crashes in the rest of

this chapter, as our focus is on LLCs.

Figure 4.2: Aggregate Fault Injection Results across Benchmarks

Figure 4.3 shows the distribution of crash latencies for all the faults that led

to crashes in the injections. On average, the percentage of LLCs is about 0.38%

across the ten benchmarks. Recall that we set 1,000 dynamic instructions as the

threshold for determining whether a crash is an LLC. Therefore, LLCs constitute a

relatively small fraction of the total crashes in programs. This is why it is important

to devise fine-grained techniques to identify them, as even a relatively large fault

injection experiment such as ours exposes very few LLCs in the program (38 in

absolute numbers). The percentages of LLCs among all the crash causing faults,

vary from 0% to 3.6% across programs due to benchmark specific characteristics.

The reasons for these variations are discussed in Section 4.7.
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Figure 4.3: Latency Distribution of Crash-Causing Errors in Programs: The
purple bars represent the LLCs as they have a crash latency of more than
1000 instructions. The number shown at the top of each bar shows the
percentage of crashes that resulted in LLCs. The error bars for LLCs
range from 0%(cutcp) to 1.85%(sjeng).

We also categorized the LLCs based on the code patterns in which the LLC lo-

cations occurred. In other words, we study the kinds of program constructs which

when fault injected, are likely to cause LLCs. We choose the largest five applica-

tions from the ten benchmarks for studying the code characteristics since the larger

the programs, the more code patterns they may reveal. Thus we choose sjeng,

hmmer, href, libquantum and mcf for our detailed investigation.

Figure 4.4 shows the distribution of the LLC-causing code patterns we found

in our experiments. The patterns themselves are explained in Section 4.3.3. We

find that about 95% of the LLC causing code falls into three dominant patterns,

namely (1) Pointer Corruption (20%), (2) Loop Corruption (56%), and (3) State

Corruption (19%). Therefore we focus on these three patterns in the rest of this

chapter.

4.3.3 Code Patterns that Lead to LLCs

As mentioned in the previous section, we find that LLCs fall into three dominant

patterns namely, pointer related LLC, loop related LLC and state related LLC. We
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Figure 4.4: Distribution of LLC Categories across 5 Benchmarks (sjeng,
libquantum, hmmer, h264ref and mcf). Three dominant categories ac-
count for 95% of the LLCs.

explain each category with code examples in the following subsections. Although

these observations were made at the LLVM IR level, we use C code for clarity to

explain them.

Pointer Corruption LLC occurs when a fault is injected into pointers that are

written to memory. An erroneous pointer value is stored in the memory, and this

value can be used as a memory operation later on to cause crash. Because the

pointer may not be read for a long time, this pattern has the potential to cause an

LLC. Figure 4.5A shows the case we observed in sjeng from our fault injection

experiment. In the function reloadMT, *p0 and next are assigned to a global static

variable, state, at line 7 and line 8 respectively. The fault is injected on the pointer,

*p0, at line 10. As a result, an erroneous pointer value is saved in the memory and

it is used as a memory operation in the function randomMT at line 18 after a long

time. This leads to an LLC.

Loop Corruption LLC When faults are injected into loop conditions or array

indices inside the loop, the array manipulated by the loop (if any) may aggressively

corrupt the stack, and cause LLC. We categorize this as Loop Corruption LLC.

There are two cases in which this LLC can occur.

The first case is when a fault occurs in the array index of an array written within

the loop. This fault can corrupt a large area of stack since an erroneous array index

30



Figure 4.5: Code examples showing the three kinds of LLCs that occurred in
our experiments.

is used for array address offset calculations in every iteration of the loop. This

large-scale corruption to the stack significantly increases the chance of corrupting

address values (i.e., pointers, return address etc) on the stack, which in turn can

result in a crash much later. For example, in Figure 4.5B, when a fault is injected

into next making a corrupted value saved back to it at the line 5, the struct array

perm[] at line 9 corrupts values on the stack. When the corrupted value is used for

memory operations later in the program, an LLC is observed.

The second case occurs when faults are injected into termination conditions of

the loop, causing a stack overflow to occur. This is shown in Figure 4.5C. Assume

that a fault is injected into piece count at line 3, and makes it a large value. This

will cause the for loop at line 5 to execute for a much larger number of iterations,

thereby corrupting the stack and eventually leading to a LLC.
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State Corruption LLC occurs when faults are injected into state variables or

lock (synchronization) variables in state machine structures. These variables are

declared as static or global variables and are used to allocate or deallocate partic-

ular pieces of memory. If these states are corrupted, crashes may happen between

states, thus causing LLC. For the code shown in Figure 4.5D, when we inject a

fault in opstatus at line 7, the variable opstatus becomes a nonzero value (from

zero) when the state goes to quantum objcode stop. Later in the function quan-

tum objcode put when the state is updated to quantum objcode stop, the opstatus

variable is examined to decide whether a particular memory area should be ac-

cessed (line 23). Due to the fault injected, we observed that objcode is accessed at

line 28 while in the state quantum objcode stop. This leads to a LLC as it accesses

the unallocated memory area objcode, which is illegal.

4.4 Approach
In this section, we describe our proposed technique CRASHFINDER, to find all the

LLCs in a program. CRASHFINDER consists of three phases, as Figure 4.6 shows

In the first phase, it performs a static analysis of the program’s source code to

determine the potential locations that can cause LLCs. The analysis is done based

on the code patterns in Section 4.3.3. We refer to this phase of CRASHFINDER

as CRASHFINDER STATIC. In the second phase, it performs dynamic analysis of

the program (under a given set of inputs) to determine which dynamic instances of

the static locations are likely to result in LLCs. We call this phase CRASHFINDER

DYNAMIC. In the last phase, it injects a selected few faults to the dynamic instances

chosen by CRASHFINDER DYNAMIC. We refer to this phase of CRASHFINDER as

selective fault injection. We describe the three phases in the three subsections.

4.4.1 Phase 1: Static Analysis (CRASHFINDER STATIC)

CRASHFINDER STATIC is the static analysis portion of our technique that statically

searches the program’s code for the three patterns corresponding to those identified

in Section 4.3.3. We found that these three patterns are responsible for almost all

the LLCs in the program, and hence it suffices to look for these patterns to cover
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Figure 4.6: Workflow of CRASHFINDER

the LLCs. However, not every instance of these patterns may lead to an LLC, and

hence we may get false-positives in this phase. False-positives are those locations

that conform to the LLC causing patterns but do not lead to an LLC, and will be

addressed in the next phase.

The algorithm of CRASHFINDER STATIC takes the program’s source code

compiled to the LLVM IR as an input and outputs the list of potential LLC causing

locations. Specifically, CRASHFINDER STATIC looks for the following patterns in

the program:

Pointer Corruption LLC

CRASHFINDER STATIC finds pointers that are written to memory in the program.

More specifically, it examines static data dependency sequences of all pointers, and

only consider the ones that end with store instruction.

Loop Corruption LLC

In this category, CRASHFINDER STATIC finds loop termination variables in loop

headers and array index assignment operations. For loop termination variable(s),

it looks for the variable(s) that is used for comparison with the loop index variable

in loop headers. For array index assignment, CRASHFINDER STATIC first locates

binary operations with a variable and a constant as operands, then checks if the

result being stored is used as offset in array address calculation. If yes, then we can

infer that the variable being updated will be used as the address offset of an array.
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In LLVM, offset calculations are done through a special instruction and are hence

easy to identify statically.

State Corruption LLC

CRASHFINDER STATIC finds static and global variables used to store state or locks.

Because these may depend on the application’s semantics, we devise a heuristic to

find such variables. If a static variable is loaded and directly used in comparison

and branches, we assume that it is likely to be a state variable or a lock variable.

We find that this heuristic allow us to cover most of these cases without semantic

knowledge of the application.

4.4.2 Phase 2: Dynamic Analysis (CRASHFINDER DYNAMIC)

In this phase, our technique attempts to eliminate the false positives from the static

locations identified in phase 1. One straw man approach for doing so is to inject

faults in every dynamic instance of the static locations to determine if it leads to

an LLC. However, a single static instruction may correspond to hundreds of thou-

sands of dynamic instances in a typical program, especially if it is within a loop.

Further, each of these dynamic instances needs to be fault injected multiple times

to determine if it will lead to an LLC, and hence a large number of fault injections

will need to be performed. All this adds up to considerable performance overheads,

and hence the above straw man approach does not scale.

We propose an alternate approach to cut down the number of fault injection

locations to filter out the false positives. Our approach uses dynamic analysis to

identify a few dynamic instances to consider for injection among the set of all the

identified static locations. The main insight we leverage is that there are repeated

control-flow sequences in which the dynamic instances occur, and it is sufficient

to sample dynamic instances in each unique control-flow sequence to obtain a rep-

resentative set of dynamic instances for fault injection. This is because the crash

latency predominantly depends on the control-flow sequence executed by the pro-

gram after the injection at a given program location. Therefore, it suffices to obtain

one sample from each unique control flow pattern in which the dynamic instance

occurs. We determine the control flow sequences at the level of function calls. That
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Figure 4.7: Dynamic sampling heuristic. (a) Example source code (ocean
program), (b) Execution trace and sample candidates.
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is we sample the dynamic instances with different function call sequences, and ig-

nore the ones that have the same function call sequences. We show in Section 4.7

that this sampling heuristic works well in practice.

We consider an example to illustrate the sampling heuristic to determine which

dynamic instances to choose. Figure 4.7(b) shows the dynamic execution trace gen-

erated by the code in Figure 4.7(a). For example, we want to sample the dynamic

instances corresponding to the variable t1a at line 17 in Figure 4.7(a). Firstly, be-

cause t1a is within a loop in function relax, it corresponds to multiple dynamic

instances in the trace. We only consider one of them as candidate for choosing

samples (we call it a sample candidate), since they have same function call se-

quences (no function calls) in between. Secondly, function relax is called within

a loop in function multig at lines 5 and 7. As can be seen in the Figure 4.7, there

are two recurring function call sequences circumscribing the execution of the static

location corresponding to the sample candidates, namely relax() copy red() and

relax() copy black(). We collect one sample of each sequence regardless of how

many times they occur. In this case, only sample candidate 1 and 2 are selected

for later fault injections. We find that this dramatically reduces the fault injection

space thereby saving considerable time.

4.4.3 Phase 3: Selective Fault Injections

The goal of this phase is to filter out all the false-positives identified in the previous

phase through fault injections. Once we have isolated a set of dynamic instances

from CRASHFINDER DYNAMIC to inject for the static location, we configure our

fault injector to inject two faults into each dynamic instance, one fault at a time.

We choose one high-order bit and and one low-order bit at random to inject into, as

we found experimentally that LLCs predominantly occur either in the high-order

bits or the low-order bits, and hence one needs to sample both.

We then classify the location as an LLC location (i.e., not a false positive) if

any one of the injected faults results in an LLC. Otherwise, we consider it a false-

positive, and remove it from the list of LLC locations. Note that this approach is

conservative as performing more injections can potentially increase the likelihood

of finding an LLC, and hence it is possible that we miss some LLCs. However, as
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we show in Section 4.7, our approach finds most LLCs even with only two fault

injections per each dynamic instance. We also show that increasing the number

of fault injections beyond 2 for each dynamic instance does not yield substantial

benefits, and hence we stick to 2 injections per instance.

4.5 Implementation
We implemented CRASHFINDER STATIC as a pass in the LLVM compiler [85] to

analyze the IR code and extract the code patterns. We implemented the CRASHFINDER

DYNAMIC also as an LLVM pass that instruments the program to obtain its control-

flow. CRASHFINDER DYNAMIC then analyzes the control-flow patterns and deter-

mines what instances to choose for selective fault injection. We use the LLFI fault

injection framework [147] to perform the fault injections. Finally, we used our

crash latency measurement library to determine the crash latencies after injection.

To use CRASHFINDER 1, all the user needs to do is to compile the application

code with the LLVM compiler using our module. No annotations are needed. The

user also needs to provide us with representative inputs so that CRASHFINDER can

execute the application, collect the control-flow patterns and choose the dynamic

instances to inject faults.

4.6 Experimental Setup
We empirically evaluate CRASHFINDER in terms of accuracy and performance.

We use a fault injection experiment to measure the accuracy, and use execution time

of the technique to measure its performance. We evaluate both CRASHFINDER

and CRASHFINDER STATIC separately to understand the effect of different parts of

the technique (CRASHFINDER includes CRASHFINDER STATIC, CRASHFINDER

DYNAMIC and the selective fault injection). We compare both the accuracy and

the performance of both techniques to those of exhaustive fault injections that are

needed to find all the LLCs in a program 2. Our experiments are all carried out on

an Intel Xeon E5 machine, with 32 GB RAM running Ubuntu Linux 12.04.
1CRASHFINDER and its source code can be freely downloaded from

https://github.com/DependableSystemsLab/Crashfinder
2Our goal is to find all LLC causing locations in the program so that we can selectively protect

them and bound the crash latency.
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We first present the benchmarks used (Section 4.6.1, followed by the research

questions (Section 4.6.2). We then present an overview of the methodology we

used to answer each of the research questions (Section 4.6.3).

4.6.1 Benchmarks

We choose a total of ten benchmarks from various domains for evaluating CRASHFINDER.

The benchmark applications are from SPEC [68], PARBOIL [133], PARSEC [18]

and SPLASH-2 [148]. All the benchmark application are compiled and linked into

native executables using LLVM, with standard optimizations enabled. We show

the detailed information of the benchmarks in Table 7.1.

Table 4.1: Characteristics of Benchmark Programs

Benchmark Benchmark
Suite

Description

libquantum SPEC A library for the simulation of a quantum
computer

h264ref SPEC A reference implementation of H.264/AVC
(Advanced Video Coding)

blackscholes PARSEC Option pricing with Black-Scholes Partial
Differential Equation (PDE)

hmmer SPEC Uses statistical description of a sequence
family’s consensus to do sensitive database
searching

mcf SPEC Solves single-depot vehicle scheduling prob-
lems planning transportation

ocean SPLASH-2 Large-scale ocean movements simulation
based on eddy and boundary currents

sad PARBOIL Sum of absolute differences kernel, used in
MPEG video encoders

sjeng SPEC A program that plays chess and several chess
variants

cutcp PARBOIL Computes the short-range component of
Coulombic potential at each grid point

stencil PARBOIL An iterative Jacobi stencil operation on a reg-
ular 3-D grid

4.6.2 Research Questions

We answer the following research questions(RQs) in our experiments.

RQ1: How much speedup do CRASHFINDER STATIC and CRASHFINDER

achieve over exhaustive injection ?

RQ2: What is the precision of CRASHFINDER STATIC and CRASHFINDER?
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RQ3: What is the recall of CRASHFINDER STATIC and CRASHFINDER?

RQ4: How well do the sampling heuristics used in CRASHFINDER work in

practice ?

4.6.3 Experimental Methodology

We describe our methodology for answering each of the RQs below. We perform

fault injections using the LLFI fault injector [147] as described earlier.

Performance

In order to answer RQ1, we measure the total time taken for executing CRASHFINDER

STATIC, CRASHFINDER and the exhaustive fault injections. More specifically, for

each benchmark, we measure the total time used for (1) CRASHFINDER STATIC,

(2) CRASHFINDER, which includes CRASHFINDER STATIC, CRASHFINDER DY-

NAMIC and selective fault injections to identify LLCs and, (3) exhaustive fault

injections to find LLCs.

Precision

The precision is an indication of the false-positives produced by CRASHFINDER

STATIC and CRASHFINDER. To measure the precision, we inject 200 faults ran-

domly at each static program location identified by CRASHFINDER STATIC or

CRASHFINDER, and measure the latency. If none of the injections at the loca-

tion result in an LLC, we declare it to be a false positive. Note that we choose 200

fault injections per location to balance time and comprehensiveness. If we increase

the number of faults, we may find more LLC causing locations, thus decreasing

the false positives. Thus, this method gives us a conservative upper bound on the

false-positives of the technique.

Recall

The recall is an indication of the false-negatives produced by CRASHFINDER STATIC

and CRASHFINDER. To measure the recall of CRASHFINDER STATIC and CRASHFINDER,

we randomly inject 3,000 faults for each benchmark and calculate the fraction of

the observed LLCs that were covered by CRASHFINDER STATIC and CRASHFINDER
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respectively. Thus 30,000 faults in total are injected over ten benchmark applica-

tions for this experiment. Note that this is in addition to the 1,000 fault injection

experiments performed in the initial study, which were used to develop the two

techniques. We do not include the initial injections in the recall measurement to

avoid biasing the results.

Heuristics for Sampling

As mentioned in Section 4.4, there are two heuristics used by CRASHFINDER to

reduce the space of fault injections it has to perform. The first is to limit the chosen

instances to unique dynamic instances of control-flow patterns in which the static

instructions appear, and the second is to limit the number of faults injected in the

dynamic instances to two faults per instance. These heuristics may lead to loss in

coverage. We investigate the efficacy of these heuristics by varying the parameters

used in them and measure the resulting recall.

4.7 Results
This section presents the results of our experiments for evaluating CRASHFINDER

STATIC and CRASHFINDER. Each subsection corresponds to a research question

(RQ).

4.7.1 Performance (RQ1)

We first present the results of running CRASHFINDER and CRASHFINDER STATIC

in terms of the number of instructions in each benchmark, and then examine how

much speedup can CRASHFINDER achieve over exhaustive fault injections.

Table 4.2 shows the numbers of instructions for each benchmark. In the ta-

ble, columns Total S.I and Total D.I show the total numbers of static instructions

and dynamic instructions of each benchmark. Columns CRASHFINDER STATIC

S.I and CRASHFINDER STATIC D.I indicate the numbers of static instructions and

dynamic instructions corresponding to the static instructions that were found by

CRASHFINDER STATIC as LLC causing locations. Columns CRASHFINDER S.I

and CRASHFINDER D.I show the numbers of static instructions and dynamic in-

stances of the static locations that CRASHFINDER identified as LLC causing lo-
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Table 4.2: Comparison of Instructions Given by CRASHFINDER and
CRASHFINDER STATIC

Total S.I. Total
D.I.
(in mil-
lion)

CF
Static
S.I (%)

CF
Static
D.I (%)

CF S.I
(%)

CF D.I
(%)

libquantum 15319 870 1.85% 9.27% 0.18% 0.011%
h264ref 189157 116 0.85% 3.92% 0.14% 0.150%
blackscholes 758 0.13 3.29% 1.81% 0.66% 0.004%
hmmer 92287 4774 0.51% 3.53% 0.13% 0.437%
mcf 4086 6737 6.29% 8.75% 2.62% 1.383%
ocean 21300 1061 3.46% 3.11% 0.53% 0.003%
sad 3176 1982 4.47% 5.56% 0.69% 0.473%
sjeng 33931 137 1.70% 15.55% 0.16% 0.567%
cutcp 3868 11389 3.13% 6.35% 0.39% 0.001%
stencil 2193 7168 4.38% 0.84% 0.41% 0.819%
Average 36608 3423 2.99% 5.87% 0.89% 0.385%

cations. As can be seen from the table, on average, CRASHFINDER STATIC iden-

tified 2.99% of static instructions as LLC causing, which corresponds to about

5.87% of dynamic instructions. In comparison, CRASHFINDER further winnowed

the number of static LLC-causing locations to 0.89%, and the number of dynamic

instructions to just 0.385%, thereby achieving a significant reduction in the dy-

namic instructions. The implications of this reduction are further investigated in

Section 4.8.

Figure 4.8 shows the orders of magnitude of time reduction achieved by using

CRASHFINDER STATIC and CRASHFINDER to find LLCs, compared to exhaustive

fault injections, for each benchmark. In the figure, CRASHFINDER STATIC refers

to the time taken to run CRASHFINDER STATIC. CRASHFINDER refers to the

time taken to run all three components of CRASHFINDER, namely CRASHFINDER

STATIC, CRASHFINDER DYNAMIC and the selective fault injection phase. Note

that the exhaustive fault injection times are an estimate based on the number of

dynamic instructions that need to be injected, and the time taken to perform a

single injection. We emphasize that the numbers shown represent the orders of

magnitude in terms of speedup. For example, a value of 12 in the graph, means
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that the corresponding technique was 1012 times faster than performing exhaustive

fault injections. In summary, on average CRASHFINDER STATIC achieves a total

of 13.47 orders of magnitude of time reduction whereas CRASHFINDER achieves

9.29 orders of magnitude of time reduction over exhaustive fault injecton to find

LLCs.

We also measured the wall clock time of the different phases of CRASHFINDER.

The geometric means of time taken for CRASHFINDER STATIC are 23 seconds, for

CRASHFINDER DYNAMIC the time taken is 3.1 hours, while it takes about 3.9 days

for the selective fault injection phase. Overall, it takes about 4 days on average for

CRASHFINDER to complete the entire process. While this may seem large, note

that both the CRASHFINDER DYNAMIC and selective fault injection phases can be

parallelized to reduce the time. We did not however do this in our experiments.

Figure 4.8: Orders of Magnitude of Time Reduction by CRASHFINDER

STATIC and CRASHFINDER compared to exhaustive fault injections

4.7.2 Precision (RQ2)

Figure 4.9 shows the precision of CRASHFINDER STATIC and CRASHFINDER for

each benchmark. The average precision of CRASHFINDER STATIC and CRASHFINDER

are 25.42% and 100% respectively. The reason CRASHFINDER has a precision of

100% is that all the false-positives produced by the static analysis phase (CRASHFINDER
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Figure 4.9: Precision of CRASHFINDER STATIC and CRASHFINDER for
finding LLCs in the program

STATIC) are filtered out by the latter two phases, namely CRASHFINDER DY-

NAMIC, and selective fault injections. The main reason why CRASHFINDER STATIC

has low precision is because it cannot statically determine the exact runtime behav-

ior of variables. For example, a pointer can be saved and loaded to/from memory

in very short intervals, and would not result in an LLC. This behavior is determined

by its runtime control flow, and cannot be determined at compile time, thus result-

ing in false positives by CRASHFINDER STATIC. However, CRASHFINDER does

not have this problem as it uses dynamic analysis and selective fault injection.

4.7.3 Recall (RQ3)

Figure 4.10 shows the recall of CRASHFINDER STATIC and CRASHFINDER. The

average recall of CRASHFINDER STATIC and CRASHFINDER are 92.47% and

90.14% respectively. Based on the results, we can conclude that (1) CRASHFINDER

STATIC is able to find most of the LLC causing locations showing that the code pat-

terns we identified are comprehensive and, (2) our heuristics used in CRASHFINDER

DYNAMIC and selective fault injections do not filter out many legitimate LLC loca-

tions since there is only a 2.33% difference between the recalls of CRASHFINDER
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Figure 4.10: Recall of CRASHFINDER STATIC and CRASHFINDER

STATIC and CRASHFINDER (however, they filter out most of the false positives as

evidenced by the high precision of CRASHFINDER compared to CRASHFINDER

STATIC). We will discuss this further in the next subsection.

There are two reasons why CRASHFINDER STATIC does not achieve 100%

recall: (1)There are a few cases as mentioned in Section 4.3 that do not fall into

the three dominant patterns. (2) While CRASHFINDER STATIC is able to find most

of the common cases of LLCs, it does not find some cases where the dependency

chain spans multiple function calls. For example, the return value of an array

index calculation can be propagated through complex function calls and finally

used in the address offset operations in a loop. This makes the pointer analysis

in LLVM return too many candidates for the pointer target, and so we truncate the

dependence chain. However, there is no fundamental reason why we cannot handle

these cases. Even without handling the cases, CRASHFINDER finds 92.47% of the

cases leading to LLCs in the program.

Note that we did not observe any LLCs in the two benchmark programs stencil

and cutcp. This may be because they have fewer LLC causing locations, and/or

they have a small range of bits which may result in LLCs. This was also the case

in the initial study 4.3.
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4.7.4 Efficacy of Heuristics (RQ4)

As mentioned earlier, there are two heuristics used by CRASHFINDER DYNAMIC

to speed up the injections. First, in the dynamic analysis phase (CRASHFINDER

DYNAMIC), only a few instruction instances are chosen for injection. Second, in

the selective fault injection phase, only a few bits in each of the chosen locations

are injected. We examine the effectiveness of these heuristics in practice.

In order to understand the LLC-causing errors that are covered by CRASHFINDER

STATIC but not CRASHFINDER, we manually inspected these injections. We found

that all of the missed errors are due to the second heuristic used by the selective

fault injection phase. None of the missed errors were due to the first heuristic

employed by CRASHFINDER DYNAMIC.

The heuristic for choosing bit positions for selective injections picks two ran-

dom positions in the word to inject faults into, one from the high-level bits and

one from the low-level bits. Unfortunately, this may miss other positions that lead

to LLCs. We evaluated the effect of increasing the number of sampled bits to 3

and 5, but even this did not considerably increase the number of LLCs found by

CRASHFINDER. This is because most of the missed errors can only be reproduced

by injecting into very specific bit positions, and finding these positions will re-

quire near exhaustive injections on the words found by CRASHFINDER DYNAMIC,

which will prohibitively increase the time taken to complete the selective fault in-

jection phase. Therefore, we choose to retain the heuristic as it is, especially be-

cause the difference between CRASHFINDER STATIC and CRASHFINDER is only

2.33%.

With the above being said, the heuristic-based approach used here is an approx-

imation. Hence, there may be multiple sources of inaccuracy in these heuristics.

We will further quantify the limits of the heuristic based approach in future work.

4.8 Discussion
In this section, we discuss some of the implications of CRASHFINDER on se-

lective protection and checkpointing. We also discuss some of the limitations of

CRASHFINDER and improvements.
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4.8.1 Implication for Selective Protection

One of the main results from evaluating CRASHFINDER is that we find that a

very small number of instructions are responsible for most of the LLCs in the

program. As per Table 4.2, only 0.89% of static instructions are responsible for

more than 90% of the LLC causing errors in the program (based on the recall

of CRASHFINDER). Further, CRASHFINDER is able to precisely pinpoint these

instructions, thereby allowing these to be selectively protected.

An example of a selective protection technique is value range checking in soft-

ware [64]. A range check is typically inserted after the instruction that produces the

data item to be checked. For example, the assertion(ptr address<0x001b, true) in-

serted after the static instruction producing ptr address will check the value of the

variable whenever the instruction is executed. Since the total number of executions

of all such LLC causing instructions is only 0.385% (Table 4.2), the overhead of

these checks is likely to be extremely low. We will explore this direction in future

work.

4.8.2 Implication for Checkpointing Techniques

Our study also establishes the feasibility of fine-grained checkpointing techniques

for programs, as such checkpointing techniques would incur frequent state cor-

ruptions in the presence of LLCs. For example, Chandra et al. [30] found that

the frequency of checkpoint corruption when using a fine-grained checkpointing

technique ranges between 25 and 40% due to LLCs. They therefore conclude

that one should not use such fine-grained checkpointing techniques, and instead

use application-specific coarse-grained checkpointing in which the corresponding

probability of checkpoint corruption is 1% to 19%. However, by deploying our

technique and selectively protecting the LLC causing locations in the program,

one could restrict the crash latency, thus minimizing the chances of checkpoint

corruption. Based on the 90% recall of CRASHFINDER, we can achieve a 10-fold

reduction in the number of LLC causing locations, thus bringing the checkpoint

corruption probability of fine-grained checkpointing down. This would make fine-

grained checkpointing feasible, thus allowing faster recovery from errors. This is

also a direction we plan to explore in the future.
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4.8.3 Limitations and Improvements

One of the main limitations of CRASHFINDER is that it takes a long time (on

average 4 days) to find the LLC causing errors in the program. The bulk of this

time is taken by the selective fault injection phase, which has to inject faults into

thousands of dynamic instances found by CRASHFINDER DYNAMIC to determine

if they are LLCs. While this is still orders of magnitude faster than performing

exhaustive fault injections, it is still a relatively high one-time cost to protect the

program. One way to speed this up would be to parallelize it, but that comes at the

cost of increased computation resources.

An alternate way to speed up the technique is to improve the precision of

CRASHFINDER STATIC. As it stands, CRASHFINDER STATIC takes only a few

seconds to analyze even large programs and find LLC causing locations in them.

The main problem however is that CRASHFINDER STATIC has a very low preci-

sion (of 25.4%). However, this may be acceptable in some cases, where we can

protect a few more locations and incur higher overheads in doing so. Even with

this overprotection, we still only protect less than 6% of the program’s dynamic in-

structions (Table 4.2). However, one can improve the precision further by finding

all possible aliases and control flow paths at compile time [117], and filtering out

the patterns that are unlikely to cause LLCs.

Another limitation is that the recall of CRASHFINDER is only about 90%. Al-

though this is still a significant recall, one can improve it further by (1) building a

more comprehensive static analyzer to cover the uncovered cases that do not be-

long to the dominant LLC-causing patterns, and (2) improving the heuristic used

in the selective fault injection phase, by increasing the number of fault injections in

the selective fault injection phase, albeit at the cost of increased performance over-

heads (as we found in RQ4, this heuristic was responsible for most of the difference

in recall between CRASHFINDER and CRASHFINDER STATIC).

Finally, though the benchmark applications are chosen from a variety of do-

mains such as scientific computing, multimedia, statistics and games, there are

other domains that are not covered such as database programs, or system software

applications. Further, they are all single-node applications. We defer the extension

of CRASHFINDER for distributed applications to our future work.
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4.9 Summary
In this chapter, we identify an important but neglected problem in the design of de-

pendable software systems, namely identifying faults that propagate for a long time

before causing crashes, or LLCs. Unlike prior work which has only performed a

coarse grained analysis of such faults, we perform a fine grained characterization of

LLCs. Interestingly, we find that there are only three code patterns in the program

that are responsible for almost all LLCs, and that these patterns can be identified

efficiently through static analysis. We build a static analysis technique to find these

patterns, and augment it with a dynamic analysis and selective fault-injection based

technique to filter out the false positives. We implement our technique in a com-

pletely automated tool called CRASHFINDER. We find that CRASHFINDER is able

to achieve 9 orders of magnitude speedup over exhaustive fault injections to iden-

tify LLCs, has no false-positives, and successfully identifies over 90% of the LLC

causing locations in ten benchmark programs.
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Chapter 5

Modeling Soft-Error Propagation
in Programs

This chapter describes a fast and accurate modeling technique that quantitively

estimates the Silent Data Corruptions (SDCs) probabilities of a given program

and its individual instructions without any fault injections. We name our model

TRIDENT. Different from the heuristic-based technique we have discussed in

Chapter 4, the technique proposed in this chapter is an analytical model which

systematically tracks error propagation in the entire propagation space of program

executions. We first describe the challenges in identifying SDCs in programs be-

fore presenting the details of the model. We then design experiments to evaluate

the accuracy and performance of the model. Finally, we discuss an use-case where

developers can use the model to guide the selective protection in programs.

5.1 Introduction
One consequence of such hardware errors is incorrect program output, or silent

data corruptions (SDCs), which are very difficult to detect and can hence have

severe consequences [129]. Studies have shown that a small fraction of the program

states are responsible for almost all the error propagations resulting in SDCs, and

so one can selectively protect these states to meet the target SDC probability while

incurring lower energy and performance costs than full duplication techniques [52,
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130]. Therefore, in the development of fault-tolerant applications (Figure 5.1A), it

is important to estimate the SDC probability of a program – both in the aggregate,

and on an individual instruction basis - to decide whether protection is required,

and if so, to selectively protect the SDC-causing states of the program. This is the

goal of our work.

Fault Injection (FI) has been commonly employed to estimate the SDC proba-

bilities of programs. FI involves perturbing the program state to emulate the effect

of a hardware fault and executing the program to completion to determine if the

fault caused an SDC. However, real-world programs may consist of billions of dy-

namic instructions, and even a single execution of the program may take a long

time. Performing thousands of FIs to get statistically meaningful results for each

instruction takes too much time to be practical [65, 66]. As a result, researchers

have attempted to analytically model error propagation to identify vulnerable in-

structions [52, 97, 130]. The main advantage of these analytical models is scalabil-

ity, as the models usually do not require FIs, and they are fast to execute. However,

most existing models suffer from a lack of accuracy, as they are limited to mod-

eling faults in the normal (i.e., fault-free) control-flow path of the program. Since

program execution is dynamic in nature, a fault can propagate to not only the data-

dependencies of an instruction, but also to the subsequent branches (i.e., control

flow) and memory locations that are dependent on it. This causes deviation from

the predicted propagation, leading to inaccuracies. Unfortunately, tracking the de-

viation in control-flow and memory locations due to a fault often leads to state

space explosion.

This chapter proposes a model, TRIDENT, for tracking error propagation in

programs that addresses the above two challenges. The key insight in TRIDENT

is that error propagation in dynamic execution can be decomposed into a combi-

nation of individual modules, each of which can be abstracted into probabilistic

events. TRIDENT can predict both the overall SDC probability of a program and

the SDC probability of individual instructions based on dynamic and static analy-

sis of the program without performing FI. We implement TRIDENT in the LLVM

compiler [85] and evaluate its accuracy and scalability vis-a-vis FI. To the best of

our knowledge, we are the first to propose a model to estimate the SDC probability

of individual instructions and the entire program without performing any FIs.
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Figure 5.1: Development of Fault-Tolerant Applications

Our main contributions in this chapter are as follows:

• Propose TRIDENT, a three-level model for tracking error propagation in

programs. The levels are static-instruction, control-flow and memory levels,

and they build on each other. The three-level model abstracts the data-flow

of programs in the presence of faults.

• Compare the accuracy and scalability of TRIDENT with FI, to predict the

SDC probability of individual instructions and that of the entire program.

• Demonstrate the use of TRIDENT to guide selective instruction duplication

for configurable protection of programs from SDCs under a performance

overhead.

The results of our experimental evaluation are as follows:

• The predictions of SDC probabilities using TRIDENT are statistically in-

distinguishable from those obtained through FI, both for the overall program

and for individual instructions. On average, the overall SDC probability

predicted by TRIDENT is 14.83% while the FI measured value is 13.59%

across 11 programs.

• We also create two simpler models to show the importance of modeling

control-flow divergence and memory dependencies - the first model con-

siders neither, while the second considers control-flow divergence but not
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memory dependencies. The two simpler models predict the average SDC

probabilities across programs as 33.85% and 23.76% respectively, which is

much higher than the FI results.

• Compared to FI, whose cost is proportional to the number of injections, TRI-

DENT incurs a fixed cost, and a small incremental cost for each instruction

sampled in the program. For example, TRIDENT takes about 16 minutes to

calculate the individual SDC probabilities of about 1,000 static instructions,

which is significantly faster than the corresponding FI experiments (which

often take hours or even days).

• Using TRIDENT to guide selective instruction duplication reduces the over-

all SDC probability by 65% and 90% at 11.78% and 23.31% performance

overheads, respectively (these represent 1/3rd and 2/3rd of the full-duplication

overhead for the programs respectively). These reductions are higher than

the corresponding ones obtained using the simpler models.

5.2 The Challenge
We use the code example in Figure 5.2A to explain the main challenge of modeling

error propagation in programs. The code is from Pathfinder [33], though we make

minor modifications for clarity and remove some irrelevant parts. The figure shows

the control-flow graphs (CFGs) of two functions: init() and run(). There is a loop

in each function: the one in init() updates an array, and the one in run() reads

the array for processing. The two functions init() and run() are called in order at

runtime. In the CFGs, each box is a basic block and each arrow indicates a possible

execution path. In each basic block, there is a sequence of statically data-dependent

instructions, or a static data-dependent instruction sequence.

Assume that a fault occurs at the instruction writing to $1 in the first basic block

in init(). The fault propagates along its static data-dependent instruction sequence

(from load to cmp). At the end of the sequence, if the fault propagates to the

result of the comparison instruction, it will go beyond the static data dependency

and cause the control-flow of the program to deviate from the fault-free execution.

For example, in the fault-free execution, the T branch is supposed to be taken, but
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Figure 5.2: Running Example

due to the fault, the F branch is taken. Consequently, the basic blocks under the

T branch including the store instruction will not be executed, whereas subsequent

basic blocks dominated by the F branch will be executed. This will load the wrong

value in run(), and hence the fault will continue to propagate and it may reach the

program’s output resulting in an SDC.

We identify the following three challenges in modeling error propagation: (1)

Statically modeling error propagation in dynamic program execution requires a

model that abstracts the program data-flow in the presence of faults. (2) Due to the

random nature of soft errors, a fault may be activated at any dynamic branch and

cause control-flow divergence in execution from the fault-free execution. In any di-

vergence, there are numerous possible execution paths the program may take, and

tracking all of these paths is challenging. One can emulate all possible paths among

the dynamic executions at every dynamic branch and figure out which fault prop-

agates where in each case. However, this rapidly leads to state space explosion.

(3) Faults may corrupt memory locations and hence continue to propagate through

memory operations. Faulty memory values can be read by (multiple) load instruc-

tions at runtime and written to other memory locations as execution progresses.

There are enormous numbers of store and load instructions in a typical program

execution, and tracing error propagations among these memory dependencies re-

quires constructing a huge data dependency graph, which is very expensive.

As we can see in the above example, if we do not track error propagations be-
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yond the static data dependencies and instead stop at the comparison instruction,

we may not identify all the cases that could lead to SDCs. Moreover, if control-flow

divergence is ignored when modeling, tracking errors in memory is almost impos-

sible, as memory corruptions often hide behind control-flow divergence, as shown

in the above example. Existing modeling techniques capture neither of these im-

portant cases, and their SDC prediction accuracies suffer accordingly. In contrast,

TRIDENT captures both the control-flow divergences and the memory corruptions

that potentially arise as a result of the divergence.

5.3 TRIDENT
In this section, we first introduce the inputs and outputs of our proposed model,

TRIDENT, and then present the overall structure of the model and the key in-

sights it leverages. Finally we present the details of TRIDENT using the running

example.

5.3.1 Inputs and Outputs

The workflow of TRIDENT is shown in Figure 5.1B. We require the user to supply

three inputs: (1) The program code compiled to the LLVM IR, (2) a program input

to execute the program and obtain its execution profile (similar to FI methods,

we also require a single input to obtain runtime information), and (3) the output

instruction(s) in the program that are used for determining if a fault resulted in

an SDC. For example, the user can specify printf instructions that are responsible

for the program’s output and used to determine SDCs. On the other hand, printfs

that log debugging information or statistics about the program execution can be

excluded as they do not typically determine SDCs. Without this information, all

the output instructions are assumed to determine SDCs by default.

TRIDENT consists of two phases: (1) Profiling and (2) inferencing. In the

profiling phase, TRIDENT executes the program, performing dynamic analysis

of the program to gather information such as the count and data dependency of

instructions. After collecting all the information, TRIDENT starts the inferencing

phase which is based on static analysis of the program. In this phase, TRIDENT

automatically computes (1) the SDC probabilities of individual instructions, and
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(2) the overall SDC probability of the program. In the latter case, the user needs

to specify the number of sampled instructions when calculating the overall SDC

probability of the program, in order to balance the time for analysis with accuracy.

5.3.2 Overview and Insights

Because error propagation follows program data-flow at runtime, we need to model

program data-flow in the presence of faults at three levels: (1) Static-instruction

level, which corresponds to the execution of a static data-dependent instruction se-

quence and the transfer of results between registers. (2) Control-flow level, when

execution jumps to another program location. (3) Memory level, when the re-

sults need to be transferred back to memory. TRIDENT is divided into three

sub-models to abstract the three levels, respectively, and we use fs , fc and fm to

represent them. The main algorithm of TRIDENT tracking error propagation from

a given location to the program output is summarized in Algorithm 1.

Static-Instruction Sub-Model ( fs ): First, fs is used to trace error propagation of

an arbitrary fault activated on a static data-dependent instruction sequence. It de-

termines the propagation probability of the fault from where it was activated to the

end of the sequence. For example, in Figure 5.2B, the model computes the proba-

bility of the fault propagating to the result of the comparison instruction given that

the fault is activated at the load instruction (Line 4 in Algorithm 1). Previous mod-

els trace error propagation in data dependant instructions based on the dynamic

data dependency graph (DDG) which records the output and operand values of

each dynamic instruction in the sequence [51, 130]. However, such detailed DDGs

are very expensive to generate and process, and hence the models do not scale. fs

avoids generating detailed dynamic traces and instead computes the propagation

probability of each static instruction based on its average case at runtime to deter-

mine the error propagation in a static data-dependent instruction sequence. Since

each static instruction is designed to manipulate target bits in a pre-defined way,

the propagation probability of each static instruction can be derived. We can then

aggregate the probabilities to calculate the probability of a fault propagating from

a given instruction to another instruction within the same static data-dependent

instruction sequence.
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Control-Flow Sub-Model ( fc ): As explained, a fault may propagate to branches

and cause the execution path of the program to diverge from its fault-free execu-

tion. We divide the propagation into two phases after divergence: The first phase,

modeled by fc , attempts to figure out which dynamic store instructions will be

corrupted at what probabilities if a conditional branch is corrupted (Lines 3-5 in

Algorithm 1). The second phase traces what happens if the fault propagates to

memory, and is modeled by fm . The key observation is that error propagation to

memory through a conditional branch that leads to control-flow divergence can be

abstracted into a few probabilistic events based on branch directions. This is be-

cause the probabilities of the incorrect executions of store instructions are decided

by their execution paths and the corresponding branch probabilities. For exam-

ple, in the function init() in Figure 5.2A, if the comparison instruction takes the

F branch, the store instruction is not supposed to be executed, but if a fault mod-

ifies the direction of the branch to the T branch, then it will be executed and lead

to memory corruption. A similar case occurs where the comparison instruction is

supposed to take the T branch. Thus, the store instruction is corrupted in either

case.

Memory Sub-Model ( fm ): fm tracks the propagation from corrupted store in-

structions to the program output, by tracking memory dependencies of erroneous

values until the output of the program is reached. During the tracking, other sub-

models are recursively invoked where appropriate. fm then computes the propaga-

tion probability from the corrupted store instruction to the program output (Lines

7-9 in Algorithm 1). A memory data-dependency graph needs to be generated for

tracing propagations at the memory level because we have to know which dynamic

load instruction reloads the faulty data previously written by an erroneous store in-

struction (if any). This graph can be expensive to construct and traverse due to the

huge number of the dynamic store and load instructions in the program. However,

we find that the graph can be pruned by removing redundant dependencies between

symmetric loops, if there are any. Consider as an example the two loops in init()

and run() in Figure 5.2A. The first loop updates an array, and the second one reads

from the same array. Thus, there is a memory dependence between every pair

of iterations of the two loops. In this case, instead of tracking every dependency

between dynamic instructions, we only track the aggregate dependencies between
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the two loops. As a result, the memory dependence graph needs only two nodes to

project the dependencies between the stores and loads in their iterations.

Algorithm 1: The Core Algorithm in TRIDENT

1 sub-models fs , fc , and fm ;
Input : I: Instruction where the fault occurs
Output: PSDC: SDC probability

2 ps = fs (I);
3 if inst. sequence containing I ends with branch Ib then
4 // Get the list of stores corrupted and their prob.
5 [¡Ic, pc¿, ...] = fc (Ib);
6 // Maximum propagation prob. is 1
7 Foreach(¡Ic, pc¿): PSDC += ps * pc * fm (Ic);
8 else if inst. sequence containing I ends with store Is then
9 PSDC = ps* fm (Is);

5.3.3 Details: Static-Instruction Sub-Model ( fs )

Once a fault is activated at an executed instruction, it starts propagating on its

static data-dependent instruction sequence. Each sequence ends with a store, a

comparison or an instruction of program output. In these sequences, the probability

that each instruction masks the fault during the propagation can be determined by

analyzing the mechanism and operand values of the instruction. This is because

instructions often manipulate target bits in predefined ways.

Given a fault that occurs and is activated on an instruction, fs computes the

probability of error propagation when the execution reaches the end of the static

computation sequence of the instruction. We use a code example in Figure 5.2B

to explain the idea. The code is from Pathfinder [33], and shows a counter being

incremented until a positive value is reached. In Figure 5.2B, INDEX 1-3 form a

static data-dependent instruction sequence, which an error may propagate along.

Assuming a fault is activated at INDEX 1 and affects $1, the goal of fs is to tell

the probabilities of propagation, masking and crash after the execution of INDEX

3, which is the last instruction on the sequence. fs traces the error propagation

from INDEX 1 to INDEX 3 by aggregating the propagation probability of each

instruction on the sequence. We use a tuple for each instruction to represent its

probabilities which are shown in the brackets on the right of each instruction in
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Figure 5.2B. There are three numbers in each tuple, which are the probabilities

of propagation, masking and crash respectively, given that an operand of the in-

struction is erroneous (we explain how to compute these later). For example, for

INDEX 3, (0.03, 0.97, 0) means that the probability of the error continuing to prop-

agate when INDEX 3 is corrupted is 0.03, whereas 0.97 is the probability that the

error will be masked and not propagate beyond INDEX 3. Finally, the probability

of a crash at INDEX 3, in this case, is 0. Note that the probabilities in each tuple

should sum to 1.

After calculating the individual probabilities, fs aggregates the propagation

probability in each tuple of INDEX 1, 2 and 3 to calculate the propagation probabil-

ity from INDEX 1 to INDEX 3. That is given by 1*1*0.03=3% for the probability

of propagation, and the probabilities of masking and crash are 97% and 0% respec-

tively. Thus, if a fault is activated at INDEX 1, there is a 3% of probability that the

branch controlled by INDEX 3 will be flipped, causing a control-flow divergence.

We now explain how to obtain the tuple for each instruction. Each tuple is ap-

proximated based on the mechanism of the instruction and/or the profiled values of

the instruction’s operands. We observe that there are only a few types of instruc-

tions that have non-negligible masking probabilities: they are comparisons (e.g.,

CMP), logic operators (e.g., XOR) and casts (e.g., TRUNC). We assume the rest of

instructions neither move nor discard corrupted bits - this is a heuristic we use for

simplicity (we discuss its pros and cons in Section 6.7.1).

In the example in Figure 5.2B, the branch direction will be modified based

on whether INDEX 3 computes a positive or negative value. In either case, only

a flip of the sign bit of $1 will modify the branch direction. Hence, the error

propagation probability in the tuple of INDEX 3 is 1/32 = 0.03, assuming a 32-bit

data width. We derive crash probabilities in the tuples for instructions accessing

memory (i.e., load and store instructions). We consider crashes that are caused by

program reading or writing out-of-bound memory addresses. Their probabilities

can be approximated by profiling memory size allocated for the program (this is

found in the /proc/ filesystem in Linux). Prior work [51] has shown that these are

the dominant causes of crashes in programs due to soft errors.
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Figure 5.3: NLT and LT Examples of the CFG

5.3.4 Details: Control-Flow Sub-Model ( fc )

Recall that the goal of fc is to figure out which dynamic store instructions will

be corrupted and at what probabilities, if a conditional branch is corrupted. We

classify all comparison instructions that are used in branch conditions into two

types based on whether they terminate a loop. The two types are (1) Non-Loop-

Terminating cmp (NLT), and (2) Loop-Terminating cmp (LT). Figure 5.3 shows

two Control Flow Graphs (CFGs), one for each case. We also profile the branch

probability of each branch and mark it beside each corresponding branch for our

analysis purpose. For example, if a branch probability is 0.2, it means during

the execution there is 20% probability the branch is taken. We will use the two

examples in Figure 5.3 to explain fc in each case.

Non-Loop-Terminating CMP (NLT)

If a comparison instruction does not control the termination of a loop, it is NLT.

In Figure 5.3A, INDEX 1 is a NLT, dominating a store instruction in bb4. There

are two cases for the store considered as being corrupted in fc : (1) The store is

not executed while it should be executed in a fault-free execution. (2) The store is

executed while it should not be executed in a fault-free execution. Combining these

cases, the probability of the store instruction being corrupted can be represented by
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Equation 5.1.

Pc = Pe /Pd (5.1)

In the equation, Pc is the probability of the store being corrupted, Pe is the

execution probability of the store instruction in fault-free execution, and Pd is the

branch probability of which direction dominates the store.

We illustrate how to derive the above equation using the example in Figure 5.3A.

There are two legal directions a branch can take. In the first case, the branch of

INDEX 1 is supposed to take the T branch at the fault-free execution (20% proba-

bility), but the F branch is taken instead due to the corrupted INDEX 1. The store

instruction in bb4 will be executed when it is not supposed to be executed and will

hence be corrupted. The probability that the store instruction is executed in this

case is calculated as 0.2 ∗ 0.9 ∗ 0.7 = 0.126 based on the probabilities on its exe-

cution path (bb0-bb1-bb3-bb4). In the second case, if the F branch is supposed

to be taken in a fault-free execution (80% probability), but the T branch is taken

instead due to the fault, the store instruction in bb4 will not be executed, while it

is supposed to have been executed in some execution path in the fault-free execu-

tion under the F branch. For example, in the fault-free execution, path bb0-bb1-

bb3-bb4 will trigger the execution of the store. Therefore, the probability of the

store instruction being corrupted in this case is 0.8∗0.9∗0.7 = 0.504. Therefore,

adding the two cases together, we get fc in this example as 0.126+0.504 = 0.63.

The Equation 5.1 is simplified by integrating the terms in the calculations. In this

example, in Equation 5.1, Pe is 0.8∗0.9∗0.7 (bb0-bb1-bb3-bb4), Pd is 0.8 (bb0-

bb1), thus Pc is 0.8 ∗ 0.9 ∗ 0.7/0.8 = 0.63. Note that if the branch immediately

dominates the store instruction, then the probability of the store being corrupted is

1, as shown by the example in Figure 5.2.

Loop-Terminating CMP (LT)

If a comparison instruction controls the termination of a loop, it is LT. For example,

in Figure 5.3B, the back-edge of bb0 forms a loop, which can be terminated by the

condition computed by INDEX 2. Hence, INDEX 2 is a LT. We find that the proba-

bility of the store instruction being corrupted can be represented by Equation. 5.2.

Pc = Pb ∗Pe (5.2)
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Pc is the probability that a dynamic store instruction is corrupted if the branch

is modified, Pb is the execution probability of the back-edge of the branch, and Pe

is the execution probability of the store instruction dominated by the back-edge.

We show the derivation of the above equation using the example in Figure 5.3B.

In the first case, if the T branch (the loop back-edge) is supposed to be taken in a

fault-free execution (99% probability), the store instruction in bb4 may or may

not execute, depending on the branch in bb2. But if a fault modifies the branch

of INDEX 2, the store will certainly not execute. So we need to omit the prob-

abilities that the store is not executed in the fault-free execution to calculate the

corruption probability of the store. They are 0.99 ∗ 0.9 ∗ 0.3 = 0.27 for the path

bb0-bb1-bb2-bb3 and 0.99 ∗ 0.1 = 0.099 for bb0-bb1-bb0. Hence, the probabil-

ity of a corrupted store in this case is 0.99− 0.27− 0.099 = 0.62. In the second

case where the F branch should be taken in a fault-free execution (1% probability),

if the fault modifies the branch, the probability of a corrupted store instruction is

0.01∗0.9∗0.7 = 0.0063. Note that this is usually a very small value which can be

ignored. This is because the branch probabilities of a loop-terminating branch are

usually highly biased due to the multiple iterations of the loop. So the total prob-

ability in this example is approximated to be 0.62, which is what we calculated

above. Equation 5.2 is simplified by integrating and cancelling out the terms in the

calculations. In this example, Pb is 0.99 (bb0-bb1), Pe is 0.7*0.9 (bb1-bb2-bb4),

and thus Pc is 0.99∗0.7∗0.9 = 0.62.

5.3.5 Details: Memory Sub-Model ( fm )

Recap that fm reports the probability for the error to propagate from the corrupted

memory locations to the program output. The idea is to represent memory data

dependencies between the load and store instructions in an execution, so that the

model can trace the error propagation in the memory.

We use the code example in Figure 5.4A to show how we prune the size of the

memory dependency graph in fm by removing redundant dependencies (if any).

There are two inner loops in the program. The first one executes first, storing data

to an array in memory (INDEX 1). The second loop executes later, loading the data

from the memory (INDEX 2). Then the program makes some decision (INDEX 3)

and decides whether the data should be printed (INDEX 4) to the program output.
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Figure 5.4: Examples for Memory Sub-model

Note that the iterations between loops are symmetric in the example, as both ma-

nipulate the same array (one updates, and the other one reloads). This is often seen

in programs because they tend to manipulate data in blocks due to spatial local-

ity. In this example, if one of the dynamic instructions of INDEX 1 is corrupted,

one of the dynamic instructions of INDEX 2 must be corrupted too. Therefore,

instead of having one node for every dynamic load and store in the iterations of the

loop executions, we need only two nodes in the graph to represent the dependen-

cies. The rest of the dependencies in the iterations are redundant, and hence can

be removed from the graph as they share the same propagation. The dependencies

between dynamic loads and stores are tracked at runtime with their static indices

and operand memory addresses recorded. The redundant dependencies are pruned

when repeated static load and store pairs are detected.

We show the memory data dependency graph of fm for the code example in

Figure 5.4B. Assume each loop is invoked once with many iterations. We cre-

ate a node for the store (INDEX 1), load (INDEX 2) and printf (INDEX 3, as

program output) in the graph. We draw an edge between nodes to present their

dependencies. Because INDEX 3 may cause divergence of the dependencies and

hence error propagation, we weight the propagation probability based on its ex-
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ecution probability. We place a NULL node as a placeholder indicating masking

if F branch is taken in INDEX 3. Note that an edge between nodes may also

represent a static data-dependent instruction sequence, e.g., the edge between IN-

DEX 2 and INDEX 4. Therefore, fs is recursively called every time a static data-

dependent instruction sequence is encountered. We then aggregate the propaga-

tion probabilities starting from the node of INDEX 1 to each leaf node in the

graph. Each edge may have different propagation probabilities to aggregate –

it depends on what fs outputs if a static data-dependent instruction sequence is

present on the edge. In this example, assume that fs always outputs 1 as the prop-

agation probability for each edge. Then, the propagation probability to the pro-

gram output (INDEX 4), if one of the store (INDEX 1) in the loop is corrupted, is

1∗1∗1∗0.6/(0.4+0.6)+1∗1∗0∗0.4/(0.4+0.6) = 0.6. The zero in the second

term represents the masking of the NULL node. As an optimization, we memoize

the propagation results calculated for store instructions to speed up the algorithm.

For example, if later the algorithm encounters INDEX 1, we can use the memo-

ized results, instead of recomputing them. We will evaluate the effectiveness of the

pruning in Section 5.4.3.

Floating Point: When we encounter any floating point data type, we apply an

additional masking probability based on the output format of the floating point data.

For example, in benchmarks such as Hotspot, the float data type is used. By default,

Float carries 7-digit precision, but in (many) programs’ output, a “%g” parameter

is specified in printf which prints numbers with only 2-digit precision. Based on

the specification of IEEE-754 [6], we assume that only the mantissa bits (23 bits

in Float) may affect the 5 digits that are cut off in the precision. This is because

bit-flips in exponential bits likely cause large deviations in values, and so cutting-

off the 5 digits in the precision is unlikely to mask the errors in the exponent. We

also assume that each mantissa bit has equal probability to affect the missing 5

digits of precision. In that way, we approximate the propagation probability to be

((32-23)+23*(2/7))/32 = 48.66%. We apply this masking probability on top the

propagation probabilities, for Float data types used with the non-default format of

printf.
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5.4 Evaluation
In this section, we evaluate TRIDENT in terms of its accuracy and scalability.

To evaluate accuracy, we use TRIDENT to predict overall SDC probabilities of

programs as well as the SDC probabilities for individual instructions, and compare

them with those obtained using FI and the simpler models. To evaluate scalability,

we measure the time for executing TRIDENT, and compare it with the time taken

by FI. We first present the experimental setup and then the results. We also make

TRIDENT and the experimental data publicly available1.

5.4.1 Experimental Setup

Benchmarks

We choose eleven benchmarks from common benchmark suites [18, 33, 68], and

publicly available scientific programs [8, 79, 136] — they are listed in Table 7.1.

Our benchmark selection is based on three criteria: (1) Diversity of domains and

benchmark suites, (2) whether we can compile with our LLVM infrastructure, and

(3) whether fault injection experiments of the programs can finish within a rea-

sonable amount of time. We compiled each benchmark with LLVM with standard

optimizations (-O2).

FI Method

We use LLFI [147] which is a publicly available open-source fault injector to per-

form FIs at the LLVM IR level on these benchmarks. LLFI has been shown to be

accurate in evaluating SDC probabilities of programs compared to assembly code

level injections [147]. We inject faults into the destination registers of the executed

instructions to simulate faults in the computational elements of the processor as per

our fault model. Further, we inject single bit flips as these are the de-facto model

for emulating soft errors at the program level, and have been found to be accurate

for SDCs [121]. There is only one fault injected in each run, as soft errors are rare

events with respect to the time of execution of a program. Our FI method ensures

that all faults are activated, i.e., read by an instruction of the program, as we define

1https://github.com/DependableSystemsLab/Trident
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Table 5.1: Characteristics of Benchmarks

Benchmark Suite/Author Area Program Input
Libquantum SPEC Quantum comput-

ing
33 5

Blackscholes Parsec Finance in 4.txt
Sad Parboil Video encoding. reference.bin

frame.bin
Bfs Parboil Graph traversal graph input.dat
Hercules Carnegie Mel-

lon University
Earthquake simula-
tion

scan sim-
ple case.e

Lulesh Lawrence Liv-
ermore National
Laboratory

Hydrodynamics
modeling

-s 1 -p

PuReMD Purdue Univer-
sity

Reactive molec-
ular dynamics
simulation

geo ffield con-
trol

Nw Rodinia DNA sequence op-
timization

2048 10 1

Pathfinder Rodinia Dynamic program-
ming

1000 10

Hotspot Rodinia Temperature and
power simulation

64 64 1 1
temp 64
power 64

Bfs Rodinia Graph traversal graph4096.txt

SDC probabilities based on the activated instructions (Section 3.2). The FI method

is in line with other papers in the area [12, 12, 51, 64, 82].

5.4.2 Accuracy

We design two experiments to evaluate the accuracy of TRIDENT. The first ex-

periment examines the prediction of overall SDC probabilities of programs, and

the second examines predicted SDC probabilities of individual instructions. In the

experiments, we compare the results derived from TRIDENT with those from the

two simpler models and FI. As described earlier, TRIDENT consists of three sub-

models in order: fs , fc and fm . We create two simpler models to (1) understand

the accuracy gained by enabling each sub-model and (2) as a proxy to investigate
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other models, which often lack modeling beyond static data dependencies (Sec-

tion 5.6.3 performs a more detailed comparison with prior work). We first disable

fm in TRIDENT, leaving the two sub-models fs and fc enabled, to create a model:

fs + fc . We then further remove fc to create the second simplified model which

only has fs enabled, which we represent as fs .

Overall SDC probability

Figure 5.5: Overall SDC Probabilities Measured by FI and Predicted by the
Three Models (Margin of Error for FI:±0.07% to±1.76% at 95% Con-
fidence)

To evaluate the overall SDC probability of a given program, we use statistical

FI. We measure error bars for statistical significance at the 95% confidence level.

We randomly sample 3,000 dynamic instructions for FIs (one fault per run) as these

yield tight error bars at the 95% confidence level (±0.07% to ±1.76%) - this is in

line with other work that uses FI. We calculate SDC probability of each program

based on how many injected faults result in SDC. We then use TRIDENT, as

well as the two simpler models, to predict the SDC probability of each program,

and compare the results with those from FI. To ensure fair comparison, we sample

3,000 instructions in our models as well (Section 5.3.1).

The results are shown in Figure 5.5. We use FI to represent the FI method,

TRIDENT for our three-level model, and fs+fc and fs for the two simpler mod-

els. We find TRIDENT prediction matches the overall SDC probabilities obtained

through FI, with a maximum difference of 14.26% in Sad, and a minimum dif-

ference of 0.11% in Blackscholes, both in percentage points. This gives a mean

absolute error of 4.75% in overall SDC prediction. On the other hand, fs + fc and

fs have a mean absolute error of 19.56% and 15.13% respectively compared to FI –

more than 4 and 3 times higher than those obtained using the complete three-level

model. On average, fs + fc and fs predict the overall SDC probability as 33.85%

66



and 23.76% across the different programs, whereas TRIDENT predicts it to be

14.83%. The SDC probability obtained from FI is 13.59%, which is much more in

line with the predictions of TRIDENT.

We observe that in Sad, Lulesh and Pathfinder, TRIDENT encounters rela-

tively larger differences between the prediction and the FI results (14.26%, 7.48%

and 8.87% respectively). The inaccuracies are due to a combination of gaps in the

implementation, assumptions, and heuristics we used in TRIDENT. We discuss

them in Section 5.6.1.

To compare the results more rigorously, we use a paired T-test experiment [134]

to determine how similar the predictions of the overall SDC probabilities by TRI-

DENT are to the FI results.2 Since we have 11 benchmarks, we have 11 sets of

paired data with one side being FI results and the other side being the prediction

values of TRIDENT. The null hypothesis is that there is no statistically signifi-

cant difference between the results from FIs and the predicted SDC probabilities

by TRIDENT in the 11 benchmarks. We calculate the p-value in the T-test as

0.764. By the conventional criteria (p-value>0.05), we fail to reject the null hy-

pothesis, indicating that the predicted overall SDC probabilities by TRIDENT are

not statistically different from those obtained by FI.

We find that the model fs + fc always over-predicts SDCs compared with TRI-

DENT. This is because an SDC is assumed once an error propagates to store in-

structions, which is not always the case, as it may not propagate to the program

output. On the other hand, fs may either over-predict SDCs (e.g., Libquantum,

Hercules) because an SDC is assumed once an error directly hits any static data-

dependent instruction sequence ending with a store, or under-predict them (e.g.,

Bfs, Blackscholes) because error propagation is not tracked after control-flow di-

vergence.

SDC Probability of Individual Instructions

We now examine the SDC probabilities of individual instructions predicted by

TRIDENT and compare them to the FI results. The number of static instruc-

2We have verified visually that the differences between the two sides of every pair are approxi-
mately normally distributed in all the T-test experiments we conduct, which is the requirement for
validity of the T-test.
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tions per benchmark varies from 76 to 4,704, with an average of 944 instructions.

Because performing FIs into each individual instruction is very time-consuming,

we choose to inject 100 random faults per instruction to bound our experimental

time. We then input each static instruction to TRIDENT, as well as the two sim-

pler models ( fs + fc and fs ), to compare their predictions with the FI results. As

before, we conduct paired T-test experiments [134] to measure the similarity (or

not) of the predictions to the FI results. The null hypothesis for each of the three

models in each benchmark is that there is no difference between the FI results and

the predicted SDC probability values in each instruction.

Table 5.2: p-values of T-test Experiments in the Prediction of Individual In-
struction SDC Probability Values (p > 0.05 indicates that we are not able
to reject our null hypothesis – the counter-cases are shown in bold)

Benchmark TRIDENT fs+fc fs
Libquantum 0.602 0.000 0.000
Blackscholes 0.392 0.173 0.832
Sad 0.000 0.003 0.000
Bfs (Parboil) 0.893 0.000 0.261
Hercules 0.163 0.000 0.003
Lulesh 0.000 0.000 0.000
PureMD 0.277 0.000 0.000
Nw 0.059 0.000 0.000
Pathfinder 0.033 0.130 0.178
Hotspot 0.166 0.000 0.000
Bfs (Rodinia) 0.497 0.001 0.126
No. of rejections 3/11 9/11 7/11

The p-values of the experiments are listed in the Table 5.2. At the 95% confi-

dence level, using the standard criteria (p > 0.05), we are not able to reject the null

hypothesis in 8 out of the 11 benchmarks using TRIDENT in the predictions. This

indicates that the predictions of TRIDENT are shown to be statistically indistin-

guishable from the FI results in most of the benchmarks we used. The three outliers

for TRIDENT again are Sad, Lulesh and Pathfinder. Again, even though the in-

dividual instructions’ SDC probabilities predicted are statistically distinguishable

from the FI results, these predicted values are still reasonably close to the FI results.
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In contrast, when using fs + fc and fs to predict SDC probabilities for each individ-

ual instruction, there are only 2 and 4 out of the 11 benchmarks having p-values

greater than 0.05, indicating that the null hypotheses cannot be rejected for most

of the benchmarks. In other words, the predictions from the simpler models for

individual instructions are (statistically) significantly different from the FI results.

5.4.3 Scalability

In this section, we evaluate the scalability of TRIDENT to predict the overall

SDC probabilities of programs and the SDC probabilities of individual instructions,

and compare it to FI. By scalability, we mean the ability of the model to handle

large numbers of instruction samples in order to obtain tighter bounds on the SDC

probabilities. In general, the higher the number of sampled instructions, the higher

the accuracy and hence the tighter are the bounds on SDC probabilities for a given

confidence level (e.g., 95% confidence). This is true for both TRIDENT and for

FI. The number of instructions sampled for FI in prior work varies from 1,000 [147]

to a few thousands [51, 52, 90]. We vary the number of samples from 500 to 7,000.

The number of samples is equal to the number of FI trials as one fault is injected

per trial.

Note that the total computation is proportional to both the time and power

required to run each approach. Parallelization will reduce the time spent, but not

the power consumed. We assume there is no parallelization for the purpose of

comparison in the case of TRIDENT and FI, though both TRIDENT and FI can

be parallelized. Therefore, the computation can be measured by the wall-clock

time.

Overall SDC Probability

The results of the time spent to predict the overall SDC probability of program

are shown in Figure 5.6A. The time taken in the figure is projected based on the

measurement of one FI trial (averaged over 30 FI runs). As seen, the curve of FI

time versus number of samples is much steeper than that of TRIDENT, which is

almost flat. TRIDENT is 2.37 times faster than the FI method at 1,000 samples,

it is 6.7 times faster at 3,000 samples and 15.13 times faster at 7,000 samples.
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Figure 5.6: Computation Spent to Predict SDC Probability

From 500 to 7,000 samples, the time taken by TRIDENT increases only 1.06

times (0.2453 to 0.2588), whereas it increases 14 times (0.2453 to 3.9164) for FI

- an exact linear increase. The profiling phase of TRIDENT takes 0.24 hours

(or about 15 minutes) on average. This is a fixed cost incurred by TRIDENT

regardless of the number of sampled instructions. However, once the model is

built, the incremental cost of calculating the SDC probability of a new instruction

is minimal (we only calculate the SDC probabilities on demand to save time). FI

does not incur a noticeable fixed cost, but its time rapidly increases as the number

of sampled instructions increase. This is because FI has to run the application from

scratch on each trial, and hence ends up being much slower than TRIDENT as the

number of samples increase.

Individual Instructions

Figure 5.6B compares the average time taken by TRIDENT to predict SDC prob-

abilities of individual instructions with FI, for different numbers of static instruc-

tions. We consider different numbers of samples for each static instruction chosen

for FI: 100, 500 and 1,000 (as mentioned in Section 5.3.1, TRIDENT does not

need samples for individual instructions’ SDC probabilities). We denote the num-

ber of samples as a suffix for the FI technique. For example, FI-100 indicates 100

samples are chosen for performing FI on individual instructions. We also vary the
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number of static instructions from 50 to 7,000 (this is the X-axis). As seen from

the curves, the time taken by TRIDENT as the number of static instructions vary

remains almost flat. On average, it takes 0.2416 hours at 50 static instructions, and

0.5009 hours at 7,000 static instructions, which is only about a 2X increase. In

comparison, the corresponding increases for FI-100 is 140X, which is linear with

the number of instructions. Other FI curves experience even steeper increases as

they gather more samples per instruction.

Figure 5.7: Time Taken to Derive the SDC Probabilities of Individual Instruc-
tions in Each Benchmark

Figure 5.7 shows the time taken by TRIDENT and FI-100 to derive the SDC

probabilities of individual instructions in each benchmark (due to space constraints,

we do not show the other FI values, but the trends were similar). As can be seen,

there is wide variation in the times taken by TRIDENT depending on the bench-

mark program. For example, the time taken in PureMD is 2.893 hours, whereas it

is 2.8 seconds in Pathfinder. This is because the time taken by TRIDENT depends

on factors such as (1) the total number of static instructions, (2) the length of static

data-dependent instruction sequence, (3) the number of dynamic branches that re-

quire profiling, and (4) the number of redundant dependencies that can be pruned.

The main reason for the drastic difference between PureMD and Pathfinder is that

we can prune only 0.08% of the redundant dependencies in the former, while we

can prune 99.83% of the dependencies in the latter. On average, 61.87% of dy-

namic load and store instructions are redundant and hence removed from the mem-

ory dependency graph.
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Figure 5.8: SDC Probability Reduction with Selective Instruction Dupli-
cation at 11.78% and 23.31% Overhead Bounds (Margin of Error:
±0.07% to ±1.76% at 95% Confidence)

5.5 Use Case: Selective Instruction Duplication
In this section, we demonstrate the utility of TRIDENT by considering a use-

case of selectively protecting a program from SDC causing errors. The idea is to

protect only the most SDC-prone instructions in a program so as to achieve high

coverage while bounding performance costs. We consider instruction duplication

as the protection technique, as it has been used in prior work [51, 52, 97]. The

problem setting is as follows: given a certain performance overhead P, what static

instructions should be duplicated in order to maximize the coverage for SDCs while

keeping the overhead below P.

Solving the above problem involves finding the SDC probability of each in-

struction in the program in order to decide which set of instructions should be

duplicated. It also involves calculating the performance overhead of duplicating

the instructions. We use TRIDENT for the former, namely, to estimate the SDC

probability of each instruction, without using FI. For the latter, we use the dy-

namic execution count of each instruction as a proxy for the performance over-

head incurred by it. We then formulate the problem as a classical 0-1 knapsack

problem [99], where the objects are the instructions and the knapsack capacity is

represented by P, the maximum allowable performance overhead. Further, object

profits are represented by the estimated SDC probability (and hence selecting the

instruction means obtaining the coverage), and object costs are represented by the

dynamic execution count of the instruction. Note that we assume that the SDC

probability estimates of the instructions are independent of each other – while this

is not necessarily true in practice, it keeps the model tractable, and in the worst
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case leads to conservative protection (i.e., over-protection). We use the dynamic

programming algorithm for the 0-1 knapsack problem - this is similar to what prior

work did [97].

For the maximum performance overhead P, we first measure the overhead of

duplicating all the instructions in the program (i.e., full duplication) and set this as

the baseline as it represents the worst-case overhead. The overheads are measured

based on the wall-clock time of the actual execution of the duplicated programs

(averaged on 3 executions each). We find that full duplication incurs an overhead

of 36.18% across benchmarks. We consider 2 overhead bound levels, namely the

1/3rd and 2/3rd of the full duplication overheads, which are (1) 11.78% and (2)

23.31% respectively.

For each overhead level, our algorithm chooses the instructions to protect us-

ing the knapsack algorithm. The chosen instructions are then duplicated using a

special pass in LLVM we wrote, and the duplication occurs at the LLVM IR level.

Our pass also places a comparison instruction after each instruction protected to

detect any deviations of the original computations and duplicated computations.

If protected instructions are data dependent on the same static data-dependent in-

struction sequence, we only place one comparison instruction at the latter protected

instruction to reduce performance overhead. This is similar to what other related

work did [51, 97]. For comparison purposes, we repeat the above process using the

two simpler models ( fs + fc and fs ). We then use FI to obtain the SDC probabilities

of the programs protected using the different models at different overhead levels.

Note that FI is used only for the evaluation and not for any of the models.

Figure 5.8 shows the results of the SDC probability reduction at different pro-

tection levels. Without protection, the average SDC probability of the programs is

13.59%. At the 11.78% overhead level, after protection based on TRIDENT, fs

+ fc and fs the corresponding SDC probabilities are 5.50%, 5.53%, 9.29% respec-

tively. On average, the protections provided by the three models reduce the SDC

probabilities by 64%, 64% and 40% respectively. At the 23.31% overhead level,

after the protections based on TRIDENT, fs + fc and fs respectively, the average

SDC probabilities are 1.55%, 2.00% and 4.04%. This corresponds to a reduction

of 90%, 87% and 74% of the SDC probability in the baseline respectively. Thus,

on average, TRIDENT provides a higher SDC probability reduction for the same
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Figure 5.9: Overall SDC Probabilities Measured by FI and Predicted by TRI-
DENT, ePVF and PVF (Margin of Error: ±0.07% to ±1.76% at 95%
Confidence)

overhead level compared with the two simpler models.

Taking a closer look, the protection based on fs + fc achieves comparable SDC

probability reductions with TRIDENT. This is because the relative ranking of

SDC probabilities between instructions plays a more dominant role in the selective

protection than the absolute SDC probabilities. The ranking of the SDC proba-

bilities of individual instructions derived by fs + fc is similar to that derived by

TRIDENT. Adding fm boosts the overall accuracy of the model in predicting the

absolute SDC probabilities (Figure 5.5), but not the relative SDC probabilities –

the only exception is Libquantum. This shows the importance of modeling control-

flow divergence, which is missing in other existing techniques [51, 52, 130].

5.6 Discussion
We first investigate the sources of inaccuracy in TRIDENT based on the experi-

mental results (Section 5.4). We then examine some of the threats to the validity

of our evaluation. Finally, we compare TRIDENT with two closely related prior

techniques, namely PVF and ePVF.

5.6.1 Sources of Inaccuracy

Errors in Store Address: If a fault modifies the address of a store instruction,

in most cases, an immediate crash would occur because the instruction accesses

memory that is out of bounds. However, if the fault does not cause a crash, it

can corrupt an arbitrary memory location, and may eventually lead to SDC. It is

difficult to analyze which memory locations may be corrupted as a result of such

faults, leading to inaccuracy in the case. In our fault injection experiments, we

observe that on average about 5.05% of faults affect addresses in store instructions
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and survive from crashes.

Memory Copy: Another source of inaccuracy in TRIDENT is that we do

not handle bulk memory operations such as memmove and memcpy, which are

represented by special instructions in the LLVM IR. We find such operations in

benchmark such as Sad, Lulesh, Hercules and PureMD, which makes our technique

somewhat inaccurate for these programs.

Manipulation of Corrupted Bits: As mentioned in Section 5.3.3, we assume

only instructions such as comparisons, logical operators and casts have masking

effects to simplify our calculations, and that none of the other instructions mask

the corrupted bits. However, this is not always the case as other instructions may

also cause masking. For example, division operations such as fdiv may also average

out corrupted bits in the mantissa of floating point numbers, and hence mask errors.

We find that 1% of the faults affect fdiv in program such as Lulesh, thereby leading

to inaccuracies.

Conservatism in Determining Memory Corruption: Recall that when control-

flow divergence happens, we assume all the store instructions that are dominated

by the faulty branch are corrupted (Section 5.3). This is a conservative assumption,

as some stores may end up being coincidentally correct. For example, if a store in-

struction is supposed to write a zero to its memory location, but is not executed due

to the faulty branch, the location will still be correct if there was a zero already in

that location. These are called lucky loads [42, 51].

5.6.2 Threats to Validity

Benchmarks: As mentioned in Section 5.4.1, we choose 11 programs to encom-

pass a wide variety of domains rather than sticking to just one benchmark suite

(unlike performance evaluation, there is no standard benchmark suite for reliabil-

ity evaluation). Our results may be specific to our choice of benchmarks, though

we have not observed this to be the case. Other work in this domain makes similar

decisions [51, 97].

Platforms: In this work, we focus on CPU programs for TRIDENT. Graphic

Processing Units (GPU) are another important platform for reliability studies. We

have attempted to run TRIDENT on GPU programs, but were crippled by the lack
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of automated tools for code analysis and fault injection on GPUs. Our preliminary

results in this domain using small CUDA kernels (instrumented manually) confirm

the accuracy of TRIDENT. However, more rigorous evaluation is needed.

Program Input: As the high-fidelity fault injection experiments take a long

time (Section 5.4.3), we run each program only under 1 input. This is also the

case for almost all other studies we are aware of in this space [51, 52]. Di Leo

et at. [46] have found SDC probabilities of programs may change under different

program inputs. We plan to consider multiple inputs in our future work.

Fault Injection Methodology: We use LLFI, a fault injector that works at

the LLVM IR level, to inject single bit flips. While this method is accurate for

estimating SDC probabilities of programs [121, 147], it remains an open question

as to how accurate it is for other failure types. That said, our focus in this chapter

is SDCs, and so this is an appropriate choice for us.

5.6.3 Comparison with ePVF and PVF

ePVF (enhanced PVF) is a recent modeling technique for error propagation in pro-

grams [51]. It shares the same goal with TRIDENT in predicting the SDC proba-

bility of a program, both at the aggregate level and instruction level. ePVF is based

on PVF [130], which stands for Program Vulnerability Factor. The main differ-

ence is that PVF does not distinguish between crash-causing faults and SDCs, and

hence its accuracy of SDC prediction is poor [51]. ePVF improves the accuracy

of PVF by removing most crashes from the SDC prediction. Unfortunately, ePVF

cannot distinguish between benign faults and SDCs, and hence its accuracy suffers

accordingly [51]. This is because ePVF only models error propagation in static

data-dependent instruction sequence and in memory if the static data-dependent

instruction sequence ends with a store instruction, ignoring error propagation to

control-flow and other parts of memory. Both ePVF and PVF, like TRIDENT,

require no FI in their prediction of SDC, and can be implemented at the LLVM

IR level3. We implement both techniques using LLVM, and compare their results

with TRIDENT’s results.

Since crashes and SDCs are mutually exclusive, by removing the crash-causing

3ePVF was originally implemented using LLVM, but not PVF.
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faults, ePVF computes a relatively closer result to SDC probability than PVF [51].

However, the crash propagation model proposed by ePVF in identifying crashes

requires a detailed DDG of the entire program’s execution, which is extremely

time-consuming and resource hungry. As a result, ePVF can be only executed in

programs with a maximum of a million dynamic instructions in practice [51]. To

address this issue and reproduce ePVF on our benchmarks and workloads (aver-

age 109 million dynamic instructions), we modify ePVF by replacing its crash

propagation model with the measured results from FI. In other words, we assume

ePVF identifies 100% of the crashes accurately, which is higher than the accuracy

of the ePVF model. Hence, this comparison is conservative as it overestimates the

accuracy of ePVF.

We use TRIDENT, ePVF and PVF to compute the SDC probabilities of the

same benchmarks and workloads, and then compare them with FI which serves as

our ground truth. The number of randomly sampled faults are 3,000. The results

are shown in Figure 5.9. As shown, ePVF consistently overestimates the SDC

probabilities of the programs with a mean absolute error of 36.78% whereas it is

4.75% in TRIDENT. PVF results in an even larger mean absolute error of 75.19%

as it does not identify crashes. The observations are consistent with those reported

by Fang et al. [51]. The average SDC probability measured by FI is 13.59%. ePVF

and PVF predict it as 52.55% and 90.62% respectively, while TRIDENT predicts

it as 14.83% and is significantly more accurate as a result.

5.7 Summary
In this chapter, we proposed TRIDENT, a three-level model for soft error propaga-

tion in programs. TRIDENT abstracts error propagation at static instruction level,

control-flow level and memory level, and does not need any fault injection (FI). We

implemented TRIDENT in the LLVM compiler, and evaluated it on 11 programs.

We found that TRIDENT achieves comparable accuracy as FI, but is much faster

and scalable both for predicting the overall SDC probabilities of programs, and the

SDC probabilities of individual instructions in a program. We also demonstrated

that TRIDENT can be used to guide selective instruction duplication techniques,

and is significantly more accurate than simpler models.
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Chapter 6

Modeling Input-Dependent Error
Propagation in Programs

In this chapter, we discuss how program inputs could affect error propagation in

programs as real-world applications are executed with arbitrarily different inputs

in production environment. We first explain the common misunderstandings found

in the literature about error propagation versus program inputs. Then we identify

the predominant components that need to be considered when modeling input-

dependent error propagation. We find that it is possible to extend the analytical

model discussed in Chapter 5 to support multiple inputs while achieving a rea-

sonably high accuracy and speed. Finally, we show the evaluation results of the

extended model in bounding the SDC probabilities of a given program with multi-

ple inputs.

6.1 Introduction
Fault injections (FIs) are commonly used for evaluating and characterizing pro-

grams’ resilience, and to obtain the overall SDC probability of a program. In each

FI campaign, a single fault is injected into a randomly sampled instruction, and the

program is executed till it crashes or finishes. FI therefore requires that the program

is executed with a specific input. In practice, a large number of FI campaigns are

usually required to achieve statistical significance, which can be extremely time-
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consuming. As a result, most prior work limits itself to a single program input or

at most a small number of inputs. Unfortunately, the number of possible inputs

can be large, and there is often significant variance in SDC probabilities across

program inputs. For example, in our experiments, we find that the overall SDC

probabilities of the same program (Lulesh) can vary by more than 42 times under

different inputs. This seriously compromises the correctness of the results from FI.

Therefore, there is a need to characterize the variation in SDC probabilities across

multiple inputs, without expensive FIs.

We find that there are two factors determining the variation of the SDC prob-

abilities of the program across its inputs (we call this the SDC volatility): (1) Dy-

namic execution footprint of each instruction, and (2) SDC probability of each

instruction (i.e., error propagation behaviour of instructions). Almost all existing

techniques [43, 46, 54] on quantifying programs’ failure variability across inputs

consider only the execution footprint of instructions. However, we find that the er-

ror propagation behavior of individual instructions often plays as important a role

in influencing the SDC volatility (Section 6.2). Therefore, all existing techniques

experience significant inaccuracy in determining a program’s SDC volatility.

In this chapter, we propose an automated technique to determine the SDC

volatility of a program across different inputs, that takes into account both the

execution footprint of individual instructions, and their error propagation probabil-

ities. Our approach consists of three steps. First, we perform experimental stud-

ies using FI to analyze the properties of SDC volatility, and identify the sources

of the volatility. We then build a model, VTRIDENT, which predicts the SDC

volatility of programs automatically without any FIs. VTRIDENT is built on our

prior model, TRIDENT (Chapter 5) for predicting error propagation, but sacrifices

some accuracy for speed of execution. Because we need to run VTRIDENT for

multiple inputs, execution speed is much more important than in the case of TRI-

DENT. The intuition is that for identifying the SDC volatility, it is more important

to predict the relative SDC probabilities among inputs than the absolute probabil-

ities. Finally, we use VTRIDENT to bound the SDC probabilities of a program

across multiple inputs, while performing FI on only a single input. To the best of

our knowledge, we are the first to systematically study and model the variation of

SDC probabilities in programs across inputs.

79



The main contributions are as follows:

• We identify two sources of SDC volatility in programs, namely INSTRUCTION-

EXECUTION-VOLATILITY that captures the variation of dynamic execution

footprint of instructions, and INSTRUCTION-SDC-VOLATILITY that cap-

tures the variability of error propagation in instructions, and mathematically

derive their relationship (Section 6.2).

• To understand how SDC probabilities vary across inputs, we conduct a FI

study using nine benchmarks with ten different program inputs for each

benchmark, and quantify the relative contribution of INSTRUCTION-EXECUTION-

VOLATILITY and INSTRUCTION-SDC-VOLATILITY (Section 6.3) to the

overall SDC volatility.

• Based on the understanding, we build a model, VTRIDENT1, on top of our

prior framework for modeling error propagation in programs TRIDENT

(Section 6.4.2). VTRIDENT predicts the SDC volatility of instructions

without any FIs, and also bounds the SDC probabilities across a given set

of inputs.

• Finally, we evaluate the accuracy and scalability of VTRIDENT in identi-

fying the SDC volatility of instructions (Section 6.5), and in bounding SDC

probabilities of program across inputs (Section 6.6).

Our main results are as follows:

• Volatility of overall SDC probabilities is due to both the INSTRUCTION-

EXECUTION-VOLATILITY and INSTRUCTION-SDC-VOLATILITY. Using

only INSTRUCTION-EXECUTION-VOLATILITY to predict the overall SDC

volatility of the program results in significant inaccuracies, i.e., an average

of 7.65x difference with FI results (up to 24x in the worst case).

• We find that the accuracy of VTRIDENT is 87.81% when predicting the

SDC volatility of individual instructions in the program. The average differ-

ence between the variability predicted by VTRIDENT and that by FI is only

1.26x (worst case is 1.29x).
1VTRIDENT stands for “Volatility Prediction for TRIDENT”.
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• With VTRIDENT 78.89% of the given program inputs’ overall SDC proba-

bilities fall within the predicted bounds. With INSTRUCTION-EXECUTION-

VOLATILITY alone, only 32.22% of the probabilities fall within the pre-

dicted bounds.

• Finally, the average execution time for VTRIDENT is about 15 minutes

on an input of nearly 500 million dynamic instructions. This constitutes a

speedup of more than 8x compared with the TRIDENT model to bound the

SDC probabilities, which is itself an order of magnitude faster than FI [59].

6.2 Volatilities and SDC
In this section, we explain how we calculate the overall SDC probability of a pro-

gram under multiple inputs. Statistical FI is the most common way to evaluate the

overall SDC probability of a program and has been used in other related work in the

area [43, 54, 65, 66, 88]. It randomly injects a large number (usually thousands) of

faults under a given program input, one fault per program execution, by uniformly

choosing program instruction for injection from the set of all executed instructions.

Equation 6.1 shows the calculation of the overall SDC probability of the pro-

gram, Poverall , from statistical FI. NSDC is the number of FI campaigns that result

in SDCs among all the FI campaigns. Ntotal is the total number of FI campaigns.

Equation 6.1 can be expanded to the equivalent equations shown in Equation 6.2.

Pi is the SDC probability of each (static) instruction that is chosen for FI, Ni is

the amount of times that the static instruction is chosen for injection over all FI

campaigns. i to n indicates all the distinct static instructions that are chosen for

injection.

Poverall = NSDC/Ntotal (6.1)

= (
n

∑
i=1

Pi ∗Ni)/Ntotal =
n

∑
i=1

Pi ∗ (Ni/Ntotal) (6.2)

In Equation 6.2, we can see that Ni/Ntotal and Pi are the two relevant factors

in the calculation of the overall SDC probability of the program. Ni/Ntotal can

81



be interpreted as the probability of the static instruction being sampled during the

program execution. Because the faults are uniformly sampled during the program

execution, Ni/Ntotal is statistically equivalent to the ratio between the number of dy-

namic executions of the chosen static instruction, and the total number of dynamic

instructions in the program execution. We call this ratio the dynamic execution

footprint of the static instruction. The larger the dynamic execution footprint of a

static instruction, the higher the chance that it is chosen for FI.

Therefore, we identify two kinds of volatilities that affect the variation of

Poverall when program inputs are changed from Equation 6.2: (1) INSTRUCTION-

SDC-VOLATILITY, and (2) INSTRUCTION-EXECUTION-VOLATILITY. INSTRUCTION-

SDC-VOLATILITY represents the variation of Pi across the program inputs, INSTRUCTION-

EXECUTION-VOLATILITY is equal to the variation of dynamic execution foot-

prints, Ni/Ntotal , across the program inputs. We also define the variation of Poverall

as OVERALL-SDC-VOLATILITY. As explained above, INSTRUCTION-EXECUTION-

VOLATILITY can be calculated by profiling the number of dynamic instructions

when inputs are changed, which is straight-forward to derive. However, INSTRUCTION-

SDC-VOLATILITY is difficult to identify as Pi requires a large number of FI cam-

paigns on every such instruction i with different inputs, which becomes imprac-

tical when the program size and the number of inputs become large. As men-

tioned earlier, prior work investigating OVERALL-SDC-VOLATILITY considers

only the INSTRUCTION-EXECUTION-VOLATILITY, and ignores INSTRUCTION-

SDC-VOLATILITY [43, 54]. However, as we show in the next section, this can

lead to significant inaccuracy in the estimates. Therefore, we focus on deriving

INSTRUCTION-SDC-VOLATILITY efficiently in this paper.

6.3 Initial FI Study
In this section, we design experiments to show how INSTRUCTION-SDC-VOLATILITY

and INSTRUCTION-EXECUTION-VOLATILITY contribute to OVERALL-SDC-VOLATILITY,

then explain the variation of INSTRUCTION-SDC-VOLATILITY across programs.

82



Table 6.1: Characteristics of Benchmarks

Benchmark Suite/Author Description Total Dy-
namic
Instructions
(Millions)

Libquantum SPEC Simulation of quan-
tum computing

6238.55

Nw Rodinia A nonlinear global
optimization method
for DNA sequence
alignments

564.63

Pathfinder Rodinia Use dynamic pro-
gramming to find a
path on a 2-D grid

6.71

Streamcluster Rodinia Dense Linear Algebra 3907.70
Lulesh Lawrence Liv-

ermore National
Laboratory

Science and engi-
neering problems
that use modeling
hydrodynamics

3382.79

Clomp Lawrence Liv-
ermore National
Laboratory

Measurement of HPC
performance impacts

11324.17

CoMD Lawrence Liv-
ermore National
Laboratory

Molecular dynam-
ics algorithms and
workloads

17136.62

FFT Open Source 2D fast Fourier trans-
form

6.37

Graph Open Source Graph traversal in op-
erational research

0.15

6.3.1 Experiment Setup

Benchmarks

We choose nine applications in total for our experiments. These are drawn from

standard benchmark suites, as well as from real world applications. Note that there

are very few inputs provided with the benchmark applications, and hence we had to

generate them ourselves. We search the entire benchmark suites of Rodinia [33],

SPLASH-2 [148], PARSEC [18] and SPEC [68], and choose applications based

on two criteria: (1) Compatibility with our toolset (i.e., we could compile them

to LLVM IR and work with LLFI), and (2) Ability to generate diverse inputs for

our experiments. For the latter criteria, we choose applications that take numeric

values as their program inputs, rather than binary files or files of unknown formats,

since we cannot easily generate different inputs in these applications. As a result,
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there are only three applications in Rodinia and one application in SPEC meeting

the criteria. To include more benchmarks, we pick three HPC applications (Lulesh,

Clomp, and CoMD) from Lawrence Livermore National Laboratory [70], and two

open-source projects (FFT [72] and Graph [71]) from online repositories. The

nine benchmarks span a wide range of application domains from simulation to

measurement, and are listed in Table 7.1.

Input Generation

Since all the benchmarks we choose take numerical values as their inputs, we ran-

domly generate numbers for their inputs. The inputs generated are chosen based on

two criteria: (1) The input should not lead to any reported errors or exceptions that

halt the execution of the program, as such inputs may not be representative of the

application’s behavior in production, And (2) The number of dynamic executed in-

structions for the inputs should not exceed 50 billion to keep our experimental time

reasonable. We report the total number of dynamic instructions generated from the

10 inputs of each benchmark in Table 7.1. The average number of dynamic instruc-

tions per input is 472.95 million, which is significantly larger than what have been

used in most other prior work [52, 88, 97, 150, 151]. We consider large inputs to

stress VTRIDENT and evaluate its scalability.

FI methodology

As mentioned before, we use LLFI [147] to perform the FI experiments. For each

application, we inject 100 random faults for each static instruction of the applica-

tion – this yields error bars ranging from 0.03% to 0.55% depending on the appli-

cation for the 95% confidence intervals. Because we need to derive SDC proba-

bilities of every static instruction, we have to perform multiple FIs on every static

instruction in each benchmark. Therefore, to balance the experimental time with

accuracy, we choose to inject 100 faults on each static instruction. This adds up to

a total number of injections ranging from 26,000 to 2,251,800 in each benchmark,

depending on the number of static instructions in the program.
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6.3.2 Results

INSTRUCTION-EXECUTION-VOLATILITY and
OVERALL-SDC-VOLATILITY

We first investigate the relationship between INSTRUCTION-EXECUTION-VOLATILITY

and OVERALL-SDC-VOLATILITY. As mentioned in Section 6.2, INSTRUCTION-

EXECUTION-VOLATILITY is straight-forward to derive based on the execution

profile alone, and does not require performing any FIs. If it is indeed possible to es-

timate OVERALL-SDC-VOLATILITY on the basis of INSTRUCTION-EXECUTION-

VOLATILITY alone, we can directly plug in INSTRUCTION-EXECUTION-VOLATILITY

to Ni and Ntotal in Equation 6.2 when different inputs are used and treat Pi as a con-

stant (derived based on a single input) to calculate the overall SDC probabilities of

the program with the inputs.

We profiled INSTRUCTION-EXECUTION-VOLATILITY in each benchmark and

use it to calculate the overall SDC probabilities of each benchmark across all its

inputs. To show OVERALL-SDC-VOLATILITY, we calculate the differences be-

tween the highest and the lowest overall SDC probabilities of each benchmark, and

plot them in Figure 6.1. In the figure, Exec. Vol. represents the calculation with

the variation of INSTRUCTION-EXECUTION-VOLATILITY alone in Equation 6.2,

treating Pi as a constant, which are derived by performing FI on only one input.

FI indicates the results derived from FI experiment with the set of all inputs of

each benchmark. As can be observed, the results for individual benchmark with

OVERALL-SDC-VOLATILITY estimated from Exec. Vol. alone are significantly

lower than the FI results (up to 24x in Pathfinder). The average difference is 7.65x.

This shows that INSTRUCTION-EXECUTION-VOLATILITY alone is not sufficient

to capture OVERALL-SDC-VOLATILITY, motivating the need for accurate esti-

mation of INSTRUCTION-SDC-VOLATILITY. This is the focus of our work.

Code Patterns Leading to INSTRUCTION-SDC-VOLATILITY

To figure out the root causes of INSTRUCTION-SDC-VOLATILITY, we analyze

the FI results and their error propagation based on the methodology proposed

in our prior work [59]. We identify three cases leading to INSTRUCTION-SDC-
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Figure 6.1: OVERALL-SDC-VOLATILITY Calculated by INSTRUCTION-
EXECUTION-VOLATILITY Alone (Y-axis: OVERALL-SDC-
VOLATILITY, Error Bar: 0.03% to 0.55% at 95% Confidence)

VOLATILITY.

Case 1: Value Ranges of Operands of Instructions

Different program inputs change the values that individual instructions operate

with. For example, in Figure 6.2A, there are three instructions (LOAD, CMP and

BR) on a straight-line code sequence. Assume that under some INPUT A, R1 is

16 and R0 is 512, leading the result of the CMP (R3) to be FALSE. Since the

highest bit of 512 is the 9th bit, any bit-flip at the bit positions that are higher than

9 in R1 will modify R1 to a value that is greater than R0. This may in turn cause

the result of the CMP instruction (R3) to be TRUE. In this case, the probability

for the fault that occurred at R1 of the LOAD instruction to propagate to R3 is

(32-9)/32=71.88% (assuming a 32-bit data width of R1). In another INPUT B,

assume R1 is still 16, but R0 becomes 64 of which the highest bit is the 6th bit.

In this case, the probability for the same fault to propagate to R3 becomes (32-

6)/32=81.25%. In this example, the propagation probability increases by almost

10% for the same fault for a different input. In other words, the SDC volatility of

the LOAD instruction in the example is changed by about 10%. We find that in

the nine benchmarks, the proportion of instructions that fall into this pattern varies

from 3.07% (FFT) to 15.23% (Nw) - the average is 6.98%. The instructions exhibit
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different error propagation even if the control flow does not change.

Figure 6.2: Patterns Leading to INSTRUCTION-SDC-VOLATILITY

Case 2: Execution Paths and Branches

Different program inputs may exercise different execution paths of programs.

For example, in Figure 6.2B, there are three branch directions labeled with T1,

F1 and T2. Each direction may lead to a different execution path. Assume that

the execution probabilities of T1, F1 and T2 are 60%, 70% and 80% for some

INPUT A. If a fault occurs at the BR instruction and modifies the direction of

the branch from F1 to T1, the probability of this event is 70% as the execution

probability of F1 is 70%. In this case, the probability for the fault to propagate

to the STORE instruction under T2 is 70%*80%=56%. Assuming there is another

INPUT B which makes the execution probabilities of T1, F1 and T2, 10%, 90% and

30% respectively. The probability for the same fault to propagate to the STORE

instruction becomes 90%*30%=27%. Thus, the propagation probability of the

fault decreases by 29% from INPUT A to INPUT B, and thus the SDC volatility

of the BR instruction is 29%. In the nine benchmarks, we find that 43.28% of

the branches on average exhibit variations of branch probabilities across inputs,

leading to variation of SDC probability in instructions.

Case 3: Number of Iterations of Loops

The number of loop iterations can change when program inputs are changed,

causing volatility of error propagation. For example, in Figure 6.2C, there is a loop

whose termination is controlled by the value of R2. The CMP instruction compares

R1 against R0 and stores it in R2. If the F branch is taken, the loop will continue,

whereas if T branch is taken, the loop will terminate. Assume that under some

87



INPUT A the value of R0 is 4, and that in the second iteration of the loop, a fault

occurs at the CMP instruction and modifies R2 to TRUE from FALSE, causing the

loop to terminate early. In this case, the STORE instruction is only executed twice

whereas it should be executed 4 times in a correct execution. Because of the early

termination of the loop, there are 2 STORE executions missing. Assume there is

another INPUT B that makes R0 8, indicating there are 8 iterations of the loop

in a correct execution. Now for the same fault in the second iteration, the loop

terminates resulting in only 2 executions of the STORE whereas it should execute

8 times. 6 STORE executions are missing with INPUT B (8-2=6). If the SDC

probability of the STORE instruction stays the same with the two inputs, INPUT

B triples (6/2=3) the probability for the fault to propagate through the missing

STORE instruction, causing the SDC volatility. In the nine benchmarks, we find

that 90.21% of the loops execute different numbers of iterations when the input is

changed.

6.4 Modeling INSTRUCTION-SDC-VOLATILITY

We first discuss the drawback of TRIDENT which is proposed in Chapter 5. We

then describe VTRIDENT, an extension of TRIDENT to predict INSTRUCTION-

SDC-VOLATILITY. The main difference between the two models is that VTRI-

DENT simplifies the modeling in TRIDENT to improve running time, which is

essential for processing multiple inputs.

6.4.1 Drawbacks of TRIDENT

Even though TRIDENT is orders of magnitude faster than FI and other models

in measuring SDC probabilities, it can sometimes take a long time to execute de-

pending on the program input. Further, when we want to calculate the variation

in SDC probabilities across inputs, we need to execute TRIDENT once for each

input, which can be very time-consuming. For example, if TRIDENT takes 30

minutes on average per input for a given application (which is still considerably

faster than FI), it would take more than 2 days (50 hours) to process 100 inputs.

This is often unacceptable in practice. Further, because TRIDENT tracks mem-

ory error propagation in a fine-grained manner, it needs to collect detailed memory
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traces. In a few cases, these traces are too big to fit into memory, and hence we

cannot run TRIDENT at all. This motivates VTRIDENT, which does not need

detailed memory traces, and is hence much faster.

6.4.2 VTRIDENT

As mentioned above, the majority of time spent in executing TRIDENT is in pro-

filing and traversing memory dependencies of the program, which is the bottleneck

in scalability. VTRIDENT extends TRIDENT by pruning any repeating memory

dependencies from the profiling, and keeping only distinct memory dependencies

for tracing error propagation. The intuition is that if we equally apply the same

pruning to all inputs in each program, similar scales of losses in accuracy will be

experienced across the inputs. Therefore, the relative SDC probabilities across in-

puts are preserved. Since volatility depends only on the relative SDC probabilities

across inputs, the volatilities will also be preserved under pruning.

Workflow

Figure 6.3 shows the workflow of VTRIDENT. It is implemented as a set of LLVM

compiler passes which take the code of the program (compiled into LLVM IR) and

a set of inputs of the program. The output of VTRIDENT is the INSTRUCTION-

SDC-VOLATILITY and INSTRUCTION-EXECUTION-VOLATILITY of the program

across all the inputs provided, both at the aggregate level and per-instruction level.

Based on Equation 6.2, OVERALL-SDC-VOLATILITY can be computed using

INSTRUCTION-SDC-VOLATILITY and INSTRUCTION-EXECUTION-VOLATILITY.

VTRIDENT executes the program with each input provided, and records the

differences of SDC probabilities predicted between inputs to generate INSTRUCTION-

SDC-VOLATILITY. During each execution, the program’s dynamic footprint is

also recorded for the calculation of INSTRUCTION-EXECUTION-VOLATILITY. The

entire process is fully automated and requires no intervention of the user. Further,

no FIs are needed in any part of the process.
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vTrident● Program code (LLVM IR)

● Program inputs
● Instruction-SDC-Volatility

● Instruction-Execution-Volatility

Figure 6.3: Workflow of VTRIDENT

Example

We use an example from Graph in Figure 6.4A to illustrate the idea of VTRIDENT

and its differences from TRIDENT. We make minor modifications for clarity and

remove some irrelevant parts in the example. Although VTRIDENT works at

the level of LLVM IR, we show the corresponding C code for clarity. We first

explain how TRIDENT works for the example, and then explain the differences

with VTRIDENT.

In Figure 6.4A, the C code consists of three functions, each of which contains

a loop. In each loop, the same array is manipulated symmetrically in iterations of

the loops and transferred between memory back and forth. So the load and store

instructions in the loops (LOOP 1, 2 and 3) are all memory data-dependent. There-

fore, if a fault contaminates any of them, it may propagate through the memory

dependencies of the program. init() is called once at the beginning, then Parcour()

and Recher() are invoked respectively in LOOP 4 and 5. printf (INDEX 6) at the

end is the program’s output. In the example, we assume LOOP 4 and 5 execute

two iterations each for simplicity. Therefore, the fault leads to an SDC if the fault

propagates to the instruction.

To model error propagation via memory dependencies of the program, a simi-

lar memory dependency graph is created in Figure 6.5. Each node represents either

a dynamic load or store instruction of which indices and loop positions of their

static instructions are marked on their right. In the figure, each column of nodes

indicates data-dependent executions of the instructions - there is no data flowing

between columns as the array of data are manipulated by LOOP 1, 2 and 3 sym-

metrically. In this case, TRIDENT finds the opportunity to prune the repeated

columns of nodes to speed up its modeling time as error propagations are similar

in the columns. The pruned columns are drawn with dashed border in the fig-
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Figure 6.4: Example of Memory Pruning

ure, and they indicate the pruning of the inner-most loops. TRIDENT applies this

optimization for memory-level modeling, resulting in significant acceleration com-

pared with previous modeling techniques [59]. However, as mentioned, the graph

can still take significant time to construct and process.

To address this issue, VTRIDENT further prunes memory dependency by

tracking error propagations only in distinct dependencies to speed up the mod-

eling. Figure 6.4B shows the idea: The graph shown in the figure is pruned to

the one by TRIDENT in Figure 6.5. Arrows between nodes indicate propagation

probabilities in the straight-line code. Because there could be instructions leading

to crashes and error masking in straight-line code, the propagation probabilities

are not 1. The propagation probabilities marked beside the arrows are aggregated
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Figure 6.5: Memory Dependency Pruning in TRIDENT

to compute SDC probabilities for INPUT A and INPUT B respectively. For ex-

ample, if a fault occurs at INDEX 1, the SDC probability for the fault to reach

program output (INDEX 6) is calculated as 1 ∗ 1 ∗ 0.5 ∗ 0.5 = 25% for INPUT A,

and 1∗1∗0.8∗0.8 = 64% for INPUT B. Thus, the variation of the SDC probability

is 39% for these two inputs. VTRIDENT prunes the propagation by removing re-

peated dependencies (their nodes are drawn in dashed border in Figure 6.4B). The

calculation of SDC probability for the fault that occurred at INDEX 1 to INDEX

6 becomes 1*0.5 = 50% with INPUT A, and 1*0.8 = 80% with INPUT B. The

variation between the two inputs thus becomes 30%, which is 9% lower than that

computed by TRIDENT (i.e., without any pruning).

We make two observations from the above discussion: (1) If the propagation

probabilities are 1 or 0, the pruning does not result in loss of accuracy (e.g., LOOP

4 in Figure 6.4B). (2) The difference with and without pruning will be higher if

the numbers of iterations become very large in the loops that contain non-1 or
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non-0 propagation probabilities (i.e., LOOP 5 in Figure 6.4B). This is because

more terms will be removed from the calculation by VTRIDENT. We find that

about half (55.39%) of all faults propagating in the straight-line code have either

all 1s or at least one 0 as the propagation probabilities, and thus there is no loss in

accuracy for these faults. Further, the second case is rare because large iterations

of aggregation on non-1 or non-0 numbers will result in an extremely small value

of the overall SDC probability. This is not the case as the average SDC probability

is 10.74% across benchmarks. Therefore, the pruning does not result in significant

accuracy loss in VTRIDENT.

6.5 Evaluation of VTRIDENT
In this section, we evaluate the accuracy and performance of VTRIDENT in pre-

dicting INSTRUCTION-SDC-VOLATILITY across multiple inputs. We use the same

benchmarks and experimental procedure as before in Section 6.3. The code of

VTRIDENT can be found in our GitHub repository.2

6.5.1 Accuracy

To evaluate the ability of VTRIDENT in identifying INSTRUCTION-SDC-VOLATILITY,

we first classify all the instructions based on their INSTRUCTION-SDC-VOLATILITY

derived by FI and show their distributions – this serves as the ground truth. We clas-

sify the differences of the SDC probabilities of each measured instruction between

inputs into three categories based on their ranges of variance (<10%, 10%−20%

and >20%), and calculate their distribution based on their dynamic footprints. The

results are shown in Figure 6.6. As can be seen in the figure, on average, only

3.53% of instructions across benchmarks exhibit variance of more than 20% in the

SDC probabilities. Another 3.51% exhibit a variance between 10% and 20%. The

remaining 92.93% of the instructions exhibit within 10% variance across inputs.

We then use VTRIDENT to predict the INSTRUCTION-SDC-VOLATILITY

for each instruction, and then compare the predictions with ground truth. These

results are also shown in Figure 6.6. As can be seen, for instructions that have

INSTRUCTION-SDC-VOLATILITY less than 10%, VTRIDENT gives relatively

2https://github.com/DependableSystemsLab/Trident
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Figure 6.6: Distribution of INSTRUCTION-SDC-VOLATILITY predictions
by vTrident Versus Fault Injection Results (Y-axis: Percentage of in-
structions, Error Bar: 0.03% to 0.55% at 95% Confidence)

accurate predictions across benchmarks. On average, 97.11% of the instructions

are predicted to fall into this category by VTRIDENT, whereas FI measures it as

92.93%. Since these constitute the vast majority of instructions, VTRIDENT has

high accuracy overall.

On the other hand, instructions that have INSTRUCTION-SDC-VOLATILITY

of more than 20% are significantly underestimated by VTRIDENT, as VTRI-

DENT predicts the proportion of such instructions as 1.84% whereas FI mea-

sures it as 3.53% (which is almost 2x more). With that said, for individual bench-

marks, VTRIDENT is able to distinguish the sensitivities of INSTRUCTION-SDC-

VOLATILITY in most of them. For example, in Pathfinder which has the largest

proportion of instructions that have INSTRUCTION-SDC-VOLATILITY greater than

20%, VTRIDENT is able to accurately identify that this benchmark has the high-

est proportion of such instructions relative to the other programs. However, we find

VTRIDENT is not able to well identify the variations that are greater than 20%

as mentioned above. This case can be found in Nw, Lulesh, Clomp and FFT. We

discuss the sources of inaccuracy in Section 6.7.1. Since these instructions are rel-

atively few in terms of dynamic instructions in the programs, this underprediction

does not significantly affect the accuracy of VTRIDENT.

We then measure the overall accuracy of VTRIDENT in identifying INSTRUCTION-

SDC-VOLATILITY. The accuracy is defined as the number of correctly predicted

variation categories of instructions over the total number of instructions being pre-

dicted. We show the accuracy of VTRIDENT in Figure 6.7. As can be seen, the

highest accuracy is achieved in Streamcluster (99.17%), while the lowest accuracy

is achieved in Clomp (67.55%). The average accuracy across nine benchmarks is
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87.81%, indicating that VTRIDENT is able to identify most of the INSTRUCTION-

SDC-VOLATILITY.

Figure 6.7: Accuracy of VTRIDENT in Predicting INSTRUCTION-SDC-
VOLATILITY Versus FI (Y-axis: Accuracy)

Figure 6.8: OVERALL-SDC-VOLATILITY Measured by FI and Predicted by
VTRIDENT, and INSTRUCTION-EXECUTION-VOLATILITY alone (Y-
axis: OVERALL-SDC-VOLATILITY, Error Bar: 0.03% to 0.55% at
95% Confidence)

Finally, we show the accuracy of predicting OVERALL-SDC-VOLATILITY us-

ing VTRIDENT, and using INSTRUCTION-EXECUTION-VOLATILITY alone (as

before) in Figure 6.8. As can be seen, the average difference between VTRIDENT

and FI is only 1.26x. Recall that the prediction using INSTRUCTION-EXECUTION-

VOLATILITY alone (Exec. Vol.) gives an average difference of 7.65x (Section 6.3).
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The worst case difference when considering only Exec. Vol. was 24.54x, while it

is 1.29x (in Pathfinder) when INSTRUCTION-SDC-VOLATILITY is taken into ac-

count. Similar trends are observed in all other benchmarks. This indicates that the

accuracy of OVERALL-SDC-VOLATILITY prediction is significantly higher when

considering both INSTRUCTION-SDC-VOLATILITY and INSTRUCTION-EXECUTION-

VOLATILITY rather than just using INSTRUCTION-EXECUTION-VOLATILITY.

6.5.2 Performance

We evaluate the performance of VTRIDENT based on its execution time, and

compare it with that of TRIDENT. We do not consider FI in this comparison as

FI is orders of magnitude slower than TRIDENT [59]. We measure the time taken

by executing VTRIDENT and TRIDENT in each benchmark, and compare the

speedup achieved by VTRIDENT over TRIDENT. The total computation is pro-

portional to both the time and power required to run each approach. Parallelization

will reduce the time spent, but not the power consumed. We assume that there is no

parallelization for the purpose of comparison in the case of TRIDENT and VTRI-

DENT, though both TRIDENT and VTRIDENT can be parallelized. Therefore,

the speedup can be computed by measuring their wall-clock time.

We also measure the time per input as both TRIDENT and VTRIDENT ex-

perience similar slowdowns as the number of inputs increase (we confirmed this

experimentally). The average execution time of VTRIDENT is 944 seconds per

benchmark per input (a little more than 15 minutes). Again, we emphasize that

this is due to the considerably large input sizes we have considered in this study

(Section 6.3).

The results of the speedup by VTRIDENT over TRIDENT are shown in Fig-

ure 6.9. We find that on average VTRIDENT is 8.05x faster than TRIDENT.

The speedup in individual cases varies from 1.09x in Graph (85.16 seconds ver-

sus. 78.38 seconds) to 33.56x in Streamcluster (3960 seconds versus. 118 sec-

onds). The variation in speedup is because applications have different degrees of

memory-boundedness: the more memory bounded an application is, the slower it is

with TRIDENT, and hence the larger the speedup obtained by VTRIDENT (as it

does not need detailed memory dependency traces). For example, Streamcluster is
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more memory-bound than computation-bound than Graph, and hence experiences

much higher speedups.

Figure 6.9: Speedup Achieved by VTRIDENT over TRIDENT. Higher
numbers are better.

Note that we omit Clomp from the comparison since Clomp consumes more

than 32GB memory in TRIDENT, and hence crashes on our machine. This is

because Clomp generates a huge memory-dependency trace in TRIDENT, which

exceeds the memory of our 32GB-memory machine (in reality, it experiences sig-

nificant slowdown due to thrashing, and is terminated by the OS after a long time).

On the other hand, VTRIDENT prunes the memory dependency and incurs only

21.29MB memory overhead when processing Clomp.

6.6 Bounding Overall SDC Probabilities with
VTRIDENT

In this section, we describe how to use VTRIDENT to bound the overall SDC

probabilities of programs across given inputs by performing FI with only one se-

lected input. We need FI because the goal of VTRIDENT is to predict the varia-

tion in SDC probabilities, rather than the absolute SDC probability which is much

more time-consuming to predict (Section 6.4.2). Therefore, FI gives us the abso-

lute SDC probability for a given input. However, we only need to perform FI on
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a single input to bound the SDC probabilities of any number of given inputs using

VTRIDENT, which is a significant savings as FI tends to be very time-consuming

to get statistically significant results.

For a given benchmark, we first use VTRIDENT to predict the OVERALL-

SDC-VOLATILITY across all given inputs. Recall that OVERALL-SDC-VOLATILITY

is the difference between the highest and the lowest overall SDC probabilities of the

program across its inputs. We denote this range by R. We then use VTRIDENT to

find the input that results in the median of the overall SDC probabilities predicted

among all the given inputs. This is because we need to locate the center of the

range in order to know the absolute values of the bounds. Using inputs other than

the median will result in a shifting of the reference position, but will not change

the boundaries being identified, which are more important. Although VTRIDENT

loses some accuracy in predicting SDC probabilities as we mentioned earlier, most

of the rankings of the predictions are preserved by VTRIDENT. Finally, we per-

form FI on the selected input to measure the true SDC probability of the program,

denoted by S. Note that it is possible to use other methods for this estimation (e.g.,

TRIDENT [59]). The estimated lower and upper bounds of the overall SDC prob-

ability of the program across all its given inputs is derived based on the median

SDC probability measured by FI, as shown below.

[(S−R/2),(S+R/2)] (6.3)

We bound the SDC probability of each program across its inputs using the

above method. We also use INSTRUCTION-EXECUTION-VOLATILITY alone for

the bounding as a point of comparison. The results are shown in Figure 6.10. In

the figure, the triangles indicate the overall SDC probabilities with the ten inputs

of each benchmark measured by FI. The overall SDC probability variations range

from 1.54x (Graph) to 42.01x (Lulesh) across different inputs. The solid lines

in the figure bound the overall SDC probabilities predicted by VTRIDENT. The

dashed lines bound the overall SDC probabilities projected by considering only the

INSTRUCTION-EXECUTION-VOLATILITY.

On average, 78.89% of the overall SDC probabilities of the inputs measured by

FI are within the bounds predicted by VTRIDENT. For the inputs that are outside
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the bounds, almost all of them are very close to the bounds. The worst case is

FFT, where the overall SDC probabilities of two inputs are far above the upper

bounds predicted by VTRIDENT. The best cases are Streamcluster and CoMD

where almost every input’s SDC probability falls within the bounds predicted by

VTRIDENT (Section 6.7.1 explains why).

Figure 6.10: Bounds of the Overall SDC Probabilities of Programs (Y-axis:
SDC Probability; X-axis: Program Input; Solid Lines: Bounds derived
by VTRIDENT; Dashed Lines: Bounds derived by INSTRUCTION-
EXECUTION-VOLATILITY alone, Error Bars: 0.03% to 0.55% at the
95% Confidence). Triangles represent FI results.

On the other hand, INSTRUCTION-EXECUTION-VOLATILITY alone bounds

only 32.22% SDC probabilities on average. This is a sharp decrease in the cov-

erage of the bounds compared with VTRIDENT, indicating the importance of

considering INSTRUCTION-SDC-VOLATILITY when bounding overall SDC prob-

abilities. The only exception is Streamcluster where considering INSTRUCTION-

EXECUTION-VOLATILITY alone is sufficient in bounding SDC probabilities. This

is because Streamcluster exhibits very little SDC volatility across inputs (Fig-

ure 6.6).

In addition to coverage, tight bounds are an important requirement, as a loose

bounding (i.e., a large R in Equation 6.3) trivially increases the coverage of the

bounding. To investigate the tightness of the bounding, we examine the results

shown in Figure 6.8. Recall that OVERALL-SDC-VOLATILITY is represented by

R, so the figure shows the accuracy of R. As we can see, VTRIDENT computes

bounds that are comparable to the ones derived by FI (ground truth), indicating
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that the bounds obtained are tight.

6.7 Discussion
In this section, we first summarize the sources of inaccuracy in VTRIDENT, and

then we discuss the implications of VTRIDENT for error mitigation techniques.

6.7.1 Sources of Inaccuracy

Other than the loss of accuracy from the coarse-grain tracking in memory depen-

dency (Section 6.4.2), we identify three potential sources of inaccuracy in identify-

ing INSTRUCTION-SDC-VOLATILITY by VTRIDENT. They are also the sources

of inaccuracy in TRIDENT, which VTRIDENT is based on. We explain how

they affect identifying INSTRUCTION-SDC-VOLATILITY here.

Source 1: Manipulation of Corrupted Bits

We assume only instructions such as comparisons, logical operators and casts

have masking effects, and that none of the other instructions mask the corrupted

bits. However, this is not always the case as other instructions may also cause

masking. For example, repeated division operations such as fdiv may also average

out corrupted bits in the mantissa of floating point numbers, and hence mask errors.

The dynamic footprints of such instructions may be different across inputs hence

causing them to have different masking probabilities, so VTRIDENT does not

capture the volatility from such cases. For instance, in Lulesh, we observe that the

number of fdiv may differ by as much as 9.5x between inputs.

Source 2: Memory Copy

VTRIDENT does not handle bulk memory operations such as memmove and

memcpy. Hence, we may lose track of error propagation in the memory dependen-

cies built via such operations. Since different inputs may diversify memory depen-

dencies, the diversified dependencies via the bulk memory operations may not be

identified either. Therefore, VTRIDENT may not be able to identify INSTRUCTION-

SDC-VOLATILITY in these cases.

Source 3: Conservatism in Determining Memory Corruption

We assume all the store instructions that are dominated by the faulty branch are

corrupted when control-flow is corrupted, similar to the examples in Figure 6.2B
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and Figure 6.2C. This is a conservative assumption, as some stores may end up

being coincidentally correct. For example, if a store instruction is supposed to

write a zero to its memory location, but is not executed due to the faulty branch,

the location will still be correct if there was a zero already in that location. These

are called lucky loads in prior work [42]. When inputs change, the number of lucky

loads may also change due to the changes of the distributions of such zeros in

memory, possibly causing volatility in SDC. VTRIDENT does not identify lucky

loads, so it may not capture the volatility from such occasions.

6.7.2 Implication for Mitigation Techniques

Selective instruction duplication is an emerging mitigation technique that provides

configurable fault coverage based on performance overhead budget [52, 88, 89,

97]. The idea is to protect only the most SDC-prone instructions in a program

so as to achieve high fault coverage while bounding performance overheads. The

problem setting is as follows: Given a certain performance overhead C, what static

instructions should be duplicated in order to maximize the coverage for SDCs,

F , while keeping the performance overhead below C. Solving the above problem

involves finding two factors: (1) Pi: The SDC probability of each instruction in the

program, to decide which set of instructions should be duplicated, and (2) Oi: The

performance overhead incurred by duplicating the instructions. Then the problem

can be formulated as a classical 0-1 knapsack problem [99], where the objects

are the instructions and the knapsack capacity is represented by C, the maximum

allowable performance overhead. Further, object profits are represented by the

estimated SDC probability (and hence selecting the instruction means obtaining

the coverage F), and object costs are represented by the performance overhead of

duplicating the instructions.

Almost all prior work investigating selective duplication confines their study

to a single input of each program in evaluating Pi and Oi [52, 88, 89, 97]. Hence,

the protection is only optimal with respect to the input used in the evaluation. Be-

cause of the INSTRUCTION-SDC-VOLATILITY and INSTRUCTION-EXECUTION-

VOLATILITY incurred when the protected program executes with different inputs,

there is no guarantee on the fault coverage F the protection aims to provide, com-
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promising the effectiveness of the selective duplication. To address this issue,

we argue that the selective duplication should take both INSTRUCTION-SDC-

VOLATILITY and INSTRUCTION-EXECUTION-VOLATILITY into consideration. One

way to do this is solving the knapsack problem based on the average cases of each

Pi and Oi across inputs, so that the protection outcomes, C and F , are optimal with

respect to the average case of the executions with the inputs. This is a subject of

future work.

6.8 Summary
Programs can experience Silent Data Corruptions (SDCs) due to soft errors, and

hence we need fault injection (FI) to evaluate the resilience of programs to SDCs.

Unfortunately, most FI studies only evaluate a program’s resilience under a single

input or a small set of inputs as FI is very time consuming. In practice however,

programs can exhibit significant variations in SDC probabilities under different

inputs, which can make the FI results inaccurate.

In this chapter, we investigate the root causes of variations in SDCs under dif-

ferent inputs, and we find that they can occur due to differences in the execu-

tion of instructions as well as differences in error propagation. Most prior work

has only considered the former factor, which leads to significant inaccuracies in

their estimations. We propose a model VTRIDENT to incorporate differences in

both execution and error propagation across inputs. We find that VTRIDENT is

able to obtain achieve higher accuracy and closer bounds on the variation of SDC

probabilities of programs across inputs compared to prior work that only consider

the differences in execution of instructions. We also find VTRIDENT is signifi-

cantly faster than other state of the art approaches for modeling error propagation

in programs, and is able to obtain relatively tight bounds on SDC probabilities of

programs across multiple inputs, while performing FI with only a single program

input.
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Chapter 7

Understanding Error
Propagation in GPGPU
Applications

Previous chapters have discussed error propagation in CPU programs. In this chap-

ter, we aim to develop techniques for analyzing error propagation in GPU programs

in order to improve their error resilience. Unlike in CPU programs where a vari-

ety of tools are available for fault injections, few options can be found in studying

program-level error propagation in GPU programs. To overcome the difficulties,

we first design a LLVM-based fault injector, LLFI-GPU, which is the first fault in-

jector operating on the LLVM Intermediate Representation (IR) of GPU programs.

By injecting faults at the IR level, LLFI-GPU allows the user to gain program-

level insights of error propagation. We desmonstrate that LLFI-GPU can be used

to conduct fault injection experiments and study error propagation in GPU pro-

grams. In the experiments, we observe the error propagation patterns that specific

to GPU programs and discuss their implications of improving error resilience.

7.1 Introduction
Graphic Processing Units (GPUs) have found wide adoption as accelerators for

scientific and high-performance computing (HPC) applications due to their mass
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availability and low cost. For example, two of the largest supercomputing clusters

in use today, namely Blue-Waters [47] and Titan [144] both use GPUs. GPUs were

originally designed for graphics and gaming. However, their use in HPC appli-

cations has necessitated the systematic study of their reliability. This is because

unlike graphics or gaming applications which are error-tolerant, HPC applications

have strict correctness requirements and even a single error can lead to significant

deviations in their outcomes. The problem is exacerbated by the lack of standard

error detection and correction mechanisms for GPUs, compared to CPUs (Central

Processing Units, or the main processor). Recent studies of GPU reliability in the

HPC context have found that GPUs can experience significantly higher fault rates

compared to CPUs [47, 144], and that GPU applications often experience higher

rates of Silent Data Corruption (SDCs), i.e., incorrect outcomes, compared to CPU

applications [50, 63].

HPC applications typically run for long periods of time, and hence need to

be resilient to faults [114]. Further, in supercomputers, hardware faults have be-

come more and more prevalent due to the shrinking feature sizes and power con-

straints [55]. One of the most common hardware fault types are transient faults [20,

40], which arise due to cosmic rays or electro-magnetic radiation striking compu-

tational and/or memory elements, causing the values computed or stored to be

incorrect. To mitigate the effect of transient hardware faults, HPC applications use

techniques such as checkpointing and recovery. However, these techniques make

an important assumption, namely that faults do not propagate for long periods of

time and corrupt the checkpointed state as this would make the checkpoint unre-

coverable [58, 88, 150]. Unfortunately, this assumption does not always hold as

errors often propagate in real applications [89]. More importantly, unmitigated

error propagation can also lead to SDCs, which seriously compromise the applica-

tions’ correctness.

In this chapter, we investigate the error propagation characteristics of general-

purpose GPU (GPGPU) applications with the goal of trying to mitigate error propa-

gation. Prior work has investigated error propagation in CPU applications [11, 88],

and has developed techniques to mitigate error propagation based on their re-

sults [89]. However, it is not clear how applicable are these results to GPGPU

applications, which have a very different programming model. Other work has in-
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vestigated the aggregate error resilience of GPGPU applications [50, 63]. While

these are valuable, they do not provide insights into how errors propagate within

the GPGPU application. Such insights are necessary for driving the design of low-

overhead error detection mechanisms for these applications, which is our long-term

goal. Such mechanisms have been demonstrated in the CPU space [11, 89]. To the

best of our knowledge, this is the first study of error propagation in GPGPU appli-

cations.

There are two main challenges with performing studies of error propagation

on GPGPU applications. First, because GPGPU applications execute on both the

CPU and the GPU (as current GPUs do not provide many of the capabilities needed

by applications), it is important to track error propagation across the two entities.

Further, GPUs are often invoked multiple times in an application (each such in-

vocation is known as a kernel call), so one needs to track error propagation across

these invocations. Second, unlike in the CPU space where there are freely available

fault injection tools and frameworks to study error propagation [25, 69, 127, 147],

there is a paucity of such tools in the GPU space.

We address the first challenge by defining the kernel call as the unit of error

propagation, and study error propagation both within kernel calls and across mul-

tiple calls. We address the second challenge by building a robust LLVM-based

fault injection tool for GPGPU applications. LLVM is a widely-used optimizing

compiler [85], and our fault injection tool is written as a module in the LLVM

framework. As a result, we are able to leverage the program analysis capabilities

provided by LLVM to track error propagation in programs, and correlate it with

the program’s code.

We make the following contributions in this paper.

• Develop LLFI-GPU, a GPGPU fault injection tool that can operate on the

LLVM intermediate representation (IR) of a program and track error propa-

gation in GPGPU programs.

• Define the metrics for tracking and measuring error propagation in GPGPU

programs,

• Conduct a comprehensive fault-injection study on how errors propagate in
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twelve GPGPU applications (including both benchmarks and real-world ap-

plications), and how long and how fast such errors propagate and spread in

the application,

• Discuss how the results may be leveraged by dependability techniques to

provide targeted mitigation of error propagation for GPGPU applications at

low cost.

Our main results from the fault-injection study are:

• Only a small fraction of the crash-causing faults that occur in GPUs propa-

gate to the CPU, and only a minuscule fraction of crash-causing faults prop-

agate to other GPU kernels. Thus, it is sufficient to consider checkpointing

and recovery techniques at the GPU-CPU boundary.

• Errors do propagate to multiple memory locations, but this behavior is highly

application specific. For example, a single fault can contaminate anywhere

between 0.0006% locations to more than 60% of total memory locations,

depending on the application.

• Unlike CPU programs, most of the memory corruptions in GPU programs

lead to data corruptions in program output. Faults in memory that propagate

to output data likely do so within the kernel where faults occurred. This

allows error detection techniques to operate at the granularity of the GPU

kernel call.

• More than 50% of the faults that occur in the GPU are masked within a single

kernel execution. Thus, it may be counterproductive to deploy techniques

such as Dual Modular Redundancy (DMR) or Error Detection by Duplicated

Instructions (EDDI) [106] within the GPU kernel program as they will end

up detecting many faults that are eventually masked.

7.2 GPU Fault Injector
We build a fault injector for GPUs based on the open-source LLFI fault injec-

tor [147] , which has been extensively used for error propagation studies on the
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CPU [11, 88]. However, LLFI does not inherently support GPUs. Furthermore,

performing error propagation analysis (EPA) for GPUs is much more intricate than

on CPUs. We therefore extended LLFI to perform both fault injection and EPA on

GPUs. We refer to the extended version of LLFI as LLFI-GPU1 to distinguish it

from the existing LLFI infrastructure.

Fault injection can be done at different levels of the system such as at the gate-

level, circuit-level, architecture level and application level. Prior work [38] has

found that there may be significant differences in the raw rates of faults exposed to

the software layer when fault injections are performed in the hardware. However,

we are interested in faults that are not masked by the hardware and make their way

to the application. Therefore, we inject faults directly at the application level.

7.2.1 Design Overview

LLFI is a compiler-based fault injection framework, and uses the LLVM compiler

to instrument the program to inject faults. The CUDA Nvidia compiler NVCC is

also based on LLVM, and compiles LLVM IR to a PTX representation, which then

gets compiled to the SAS machine code by Nvidia’s backend compiler. So at first

glance, it seems trivial to integrate LLFI and NVCC to build a GPU-based fault

injector. However, there are two challenges that arise in practice. First, NVCC

does not expose the LLVM IR code and directly transforms it to the PTX code.

LLFI relies on the IR code to perform instrumentation for fault injection, and hence

cannot inject faults into the IR used by NVCC. Second, GPU programs are multi-

threaded, often consisting of hundreds of threads, and hence we need to inject faults

into a random thread at runtime. However, LLFI does not support injecting faults

into multi-threaded programs.

We address the first challenge by attaching a dynamic library to NVCC which

can intercept its call to the LLVM compilation module [5]. At that point, we invoke

the instrumentation passes of LLFI to perform the instrumentation of the program.

We then return the instrumented LLVM IR to NVCC, which proceeds with the rest

of the compilation process to transform it to PTX code. We address the second

challenge by adding a threadID field to the profiling data collected by LLFI to

1Available at: https://github.com/DependableSystemsLab/LLFI-GPU
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identify each thread uniquely. We then choose a thread at random to inject into

at runtime from the set of all threads in the program. We also add information on

the kernel call executed and the total number of kernel calls to the profiling data.

These are used to choose kernel calls to inject faults into.

LLFI-GPU works as follows. First, LLFI-GPU profiles the program and ob-

tains the total number of kernel calls, the number of threads per kernel call, and

the total number of instructions executed by each kernel thread. It then creates an

instrumented version of the program with the fault injection functions inserted into

the CUDA portion of the program’s code (this is similar to what LLFI does, except

that we restrict the instrumentation to the CUDA portion of the program). LLFI-

GPU then chooses a random thread in a random kernel call, and a random dynamic

instruction executed by it, based on the profiling data gathered (the instruction is

chosen uniformly from the set of all instructions executed). For the chosen instruc-

tion, LLFI-GPU overwrites the result value of the instruction with a faulty version

of the result (e.g., by flipping a single bit in it), and continues the application.

Thus, LLFI-GPU directly executes the program on the GPU hardware after in-

strumenting it, unlike prior approaches such as GPU-Qin [50] which use debuggers

for fault injection. Debugger-based fault injection has the advantage that it offers

more control over the program, but is often significantly slower. As a point of com-

parison, we ran both GPU-Qin2 and LLFI-GPU on a simple matrix multiplication

benchmark, MAT from NVIDIA SDK Sample [4]. Similar to LLFI-GPU, GPU-

Qin operates in two phases: profiling and fault injection. We measured the average

time taken by GPU-Qin for these two phases to be 2 hours (=7200 seconds), and

82 seconds per run respectively. In contrast, LLFI-GPU takes only 6 seconds for

profiling this benchmark and 2 seconds per run for the fault injection phase for the

same set of inputs. The significant speedup of over 1000x obtained by LLFI-GPU

is because GPUs execute significantly slower in debug mode [2], and GPU-Qin sin-

gle steps through every instruction in the program in the profiling phase. We have

confirmed that the above execution times are fairly typical depending on the num-

ber of dynamic instructions of the programs executed using GPU-Qin3, and hence

2The only other GPU fault injector that we know of, SASSIFI [63], was not publicly available at
the time the paper was written, and hence could not be used for comparison.

3Based on personal communication with the developers of GPU-Qin.
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we did not run any of the other benchmarks with GPU-Qin. Therefore, LLFI-GPU

is significantly faster and more scalable than prior techniques, making it feasible

for studying realistic HPC workloads.

7.2.2 Error Propagation Analysis (EPA)

After injecting a fault, LLFI-GPU tracks memory data at every kernel boundary

for the analysis of error propagation. This is because we are interested in error

propagation at the GPU kernel boundary, rather than within a kernel. This is dif-

ferent from what LLFI does as it tracks the error propagation using memory and

registers after each LLVM instruction. Although we can leverage the existing EPA

mechanism in LLFI for tracking error propagation at the kernel boundaries, we

found that this incurs very high overheads, and often results in the kernel running

substantially slower. Therefore, we decided to build our own error tracking mech-

anism in LLFI-GPU that is optimized for our use case.

Figure 7.1 illustrates how the EPA mechanism works for a simple GPU kernel.

The code fragment is from bfs. It allocates memory on device through cudaMal-

loc() before launching kernels, and it deallocates the memory on device through

cudaFree() at the end of the program. After each kernel invocation, LLFI-GPU

saves all memory data allocated on the GPU to disk. This step corresponds to line

6-13. Later, we compare the saved data after each kernel call with that from a

golden run and mark any differences as a result of the error propagation. Because

we perform this comparison at the kernel boundaries, we do not need to worry

about non-determinism introduced by thread interleaving within the GPU.

7.2.3 Limitations

Our fault injections are performed at the LLVM IR level rather than at the SASS

or PTX code levels. One potential drawback of this approach is that downstream

compiler optimizations may change both the number and order of instructions, or

even remove the fault injection code we inserted. To mitigate this effect, we made

sure that our fault injection pass is applied after various optimization passes in the

LLVM IR code. Further, LLFI-GPU gathers all executed instructions in the profil-

ing phase as described above, and we made sure that all the target instructions as
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Figure 7.1: Example of the error propagation code inserted by LLFI-GPU

fault injection candidates are gathered and injects faults only into these instructions

- this ensures that faults are not injected into dead instructions that are optimized

out by the backend compiler. Due to backend optimizations after the IR is gener-

ated, the mapping of instructions may be changed at the machine assembly levels

(e.g., SASS level). This may result in different absolute values of the SDC rate for

fault injections performed at different levels. However, as we said before, we are

interested in obtaining insights into error propagation intrinsic to applications in-

stead of deriving derated SDC rates. Finally, a previous study on CPU applications

showed that there is negligible difference in SDC rates between fault injections

performed at the LLVM IR level and the assembly code level [147].

7.3 Metrics for Error Propagation
In this section, we define the metrics for measuring error propagation in our experi-

ments. We measure error propagations along two axes, namely (1) execution time,

which captures the temporal nature of the propagation, and (2) memory states,

which captures the spatial nature of the propagation. We examine these in further

detail below.
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7.3.1 Execution time

A fault can propagate in the program corrupting data values until it either causes

program termination (e.g., by a crash), or it is masked. The former happens if the

fault crashes the program, or the program finishes execution successfully (program

hangs are handled through a watchdog timer). The latter happens if the faulty

data is overwritten, or if the values to which the fault propagates are discarded

by the program. The execution time metric measures the time between the fault’s

occurrence and the masking or termination events.

We use kernel invocations to measure the propagation time of an error. For ex-

ample, if an error occurs in a certain kernel invocation K1, and the program crashes

after two more invocations of the kernel, say K2 and K3, we label the execution

time of this fault to be 2. There are three reasons for using kernel invocations as

the unit of propagation. First, we are often interested in knowing if an error prop-

agates across the CPU-GPU boundary or across multiple kernel invocations on the

GPU. The number of kernel invocation captures this value. The second reason is

that unlike other metrics such as wall-clock time (e.g., seconds), or the number of

executed instructions which are platform dependent, the number of kernel invoca-

tions depends only on the GPU application. Thus, it captures the application-level

semantics of error propagation without being affected by platform-specific details.

This is important as our goal is to design application level error-resilience mech-

anisms. Finally, unlike CPU applications which have a few long-living threads,

GPU applications typically have a large number of short-lived threads executing

on the GPU as they focus on throughput. When these threads terminate, the con-

trol is passed back to the CPU, thereby resulting in frequent CPU-GPU boundary

crossings. We found that the average kernel invocation time in our benchmarks is

usually less than one minute - this is in line with prior work [138].

In addition to kernel invocations, GPU applications also need to transfer data

from CPU memory to GPU memory and back. Typical GPU applications perform

multiple kernel invocations in between transfers to amortize the latency of trans-

fers. We define a kernel cycle as a sequence of kernel invocations by the applica-

tion that is prefixed by memory transfer from the CPU to the GPU, and suffixed

by memory transfer from the GPU back to the CPU. All applications in our study
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Figure 7.2: Code Example of a Kernel Cycle from Benchmark bfs

except LULESH and NMF had only a single kernel cycle. However, all of them

have multiple kernel invocations within a single kernel cycle.

Figure 7.2 shows an example of a kernel cycle in the bfs application. The first

phase of the kernel cycle (lines 1-10) consists of memory allocations, and data

movement from the host (CPU) to the device (GPU) memory. The second phase

consists of kernel invocations (line 13), which perform computations on the data

copied to the GPU memory. Finally, in the third phase, after the kernels finish their

work, the CPU collects data from the GPU and processes it (lines 15-20).

7.3.2 Memory States

To better understand error propagation, we examine which parts of a GPU pro-

gram’s memory have been affected by an error after fault injection. We divide

memory into three categories, namely Total Memory(TM), Result Memory(RM)

and Output Memory(OM). TM is a superset of RM, which in turn is a superset of

OM. This is shown in Figure 7.3. TM refers to the entire memory space allocated

for the program on device. The allocations are usually done through cudaMalloc

calls, and through global variables declared by kernels. RM refers to the memory

112



locations containing the computation results that the CPU transfers from the GPU

at the end of a kernel cycle. OM refers to the memory locations containing the data

that the CPU actually processes for computing the program output.

In the example in Figure 7.2, the transfer occurs at line 16. So gpu result cost is

the pointer to the RM in this example. Further, the processing phase occurs in lines

18-19. So the OM consists of the results of the dumpCostForResult function. Note

that applications may choose only certain parts of the RM to copy into their output.

For example, a floating point application may use only the two most significant

digits from the result in RM to compute the output, in which case the OM consists

of only these two digits.

We use SDC to refer to corruption of the above three categories of memory, as

all of these pertain to data corruptions. We use the memory type as a subscript to

denote corruptions of different memory categories, e.g., SDCRM. Note that SDCOM

is what is typically defined as an SDC in prior work [50, 63, 151] on GPUs, as

they only study the effect of faults on the final output of the application. However,

our aim is to study error propagation and hence we study data corruption in the

memory states of the application. We also refer to corruption of the memory that

is in TM but not RM as (TM-RM), and that in RM but not OM as (RM-OM).

For example, in Figure 7.3, assume that an error occurs during a kernel invo-

cation (K1) and affects the memory location (L1) in the TM. However, it does not

propagate to the RM. In the next kernel invocation (K2), the faulty value in L1 is

read and affects a value at another location L2 in RM. Hence we say the error prop-

agates from the TM to RM during K2. In this case, the error causes an SDCT M after

kernel K1, and an SDCRM after kernel K2. However, the error does not propagate

to the OM, and hence does not result in an SDCOM.

We also measure what fraction of the memory is contaminated by error propa-

gation. We define this as the spread of an error. For example, in Figure 7.3, at K3,

the faulty value in location L2 is assigned to different memory locations (L3, L4

and L5), and hence propagates to these locations. In this case, the fault value has

propagated to a total of 5 locations at the end of K3. Assuming TM consists of 100

memory locations, the error spread after K3 in this case is 5/100=5%.
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Figure 7.3: Memory State Layout for CUDA Programming Model (K2 and
K3 are kernel invocations)

7.4 Experimental Setup
We describe the benchmarks used, and the fault injection procedure. We also pro-

vide details of the hardware and software platform used for the measurements,

followed by the research questions.

7.4.1 Benchmarks Used

We choose twelve GPGPU applications in total for our experiments. These are

drawn from standard GPU benchmark suites such as Rodinia [33] and Parboil [133],

as well as real world applications. We choose five programs from Rodinia, and

two programs from Parboil. The applications from Rodinia were chosen based on

two criteria: (1) compatibility with our toolset (i.e., we could compile them with

NVCC), and (2) suitability for our experiments. For the latter criteria, we dis-

card small applications that had too few kernel invocations (as it is uninteresting to

measure error propagation in such applications), and applications in which the out-

puts were non-deterministic (as it is difficult to classify the results of an injection

or error propagation in such applications). For Parboil, we randomly choose two

applications from the suite to balance time with representativeness.
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In addition to the standard benchmarks, we pick five real-world HPC GPGPU

applications, Lulesh [80], Barnes-Hut [116], Fiber [152], Circuit [1] and NMF [16].

These applications perform n-body simulation, hydrodynamics modeling, fiber

scattering simulation, circuit solving and audio source processing respectively.

Table 7.1 shows the details of the applications used in our study and the input

used. The number of kernel invocations ranges from 4 to 8567 in these applica-

tions. The lines of C code of these applications ranges from 222 to 5684. We

configured our benchmarks to run on a single GPU as our goal is to study error

propagation between kernels. Multi-GPU programs also transfer data and syn-

chronize at kernel boundaries [3], and we hypothesize that our results generalize to

such programs - validating this hypothesis is a subject of future work.

Similar to prior work in the area [11, 50, 63, 65, 150], we run each benchmark

application with a single input. However, questions remain on whether multiple

inputs may affect error propagation behaviors. We hypothesize that different inputs

have limited effect on error propagation as the propagation is primarily dominated

by the application’s algorithm, rather than problem size. This is because different

inputs likely only scale the execution times of certain code sections, rather than

change the underlying program structure. We will further validate this hypothesis

in future work.
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Table 7.1: Characteristics of GPGPU Programs in our Study

BenchmarkBenchmark Suit-
e/Author

Description Kernel Invo-
cations

LOC Input

BFS Rodinia (v2.1) An algorithm for
traversing or search-
ing tree or graph data
structures

15 342 4096

LUD Rodinia (v2.1) An algorithm to cal-
culate the solutions of
a set of linear equa-
tions

9 564 64

PathFinder Rodinia (v2.1) Use dynamic pro-
gramming to find a
path on a 2-D grid

4 236 100000 100 20

Gaussian Rodinia (v2.1) Compute result row
by row, solving for all
of the variables in a
linear system

29 394 16

HotSpot Rodinia (v2.1) Estimate processor
temperature based on
an architectural floor-
plan and simulated
power measurements

15 328 512 2 32

cutcp PARBOIL (v0.2) Computes the short-
range component of
Coulombic potential
at each grid point

10 1540 watbox. sl40.pqr

stencil PARBOIL (v0.2) An iterative Jacobi
stencil operation on a
regular 3-D grid

99 1584 128 128 32 100

Barnes-
Hut

Texas State Univ. San
Marcos (v2.1)

An approximation al-
gorithm for perform-
ing an n-body sim-
ulation developed by
Texas State Univ. San
Marcos

20 965 4 4

Lulesh Lawrence Livermore
National Laboratory
(v1.0)

Science and engi-
neering problems
that use modelling
hydrodynamics

8567 5684 edgeNodes =2

Fiber Northeastern Univer-
sity (v1.5)

High Performance
Computing of Fiber
Scattering Simulation
application

2881 1437 480 4 20

Circuit Rice University Parallel circuit solver
for solving 2D cir-
cuit grid using Jacobi
method

450 222 0.00001 1

NMF UC Berkley Audio analysis and
source separation.

409 2398 default
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7.4.2 Fault Injection Method

As mentioned before, we use CRASHFINDER to perform the fault injection exper-

iments. We consider only one fault per run as hardware transient faults are rare

events relative to the program execution times. For each application, we inject

10,000 faults in total - this yields error bars ranging from 0.22% to 1.11% depend-

ing on the application for the 98% confidence intervals. Further, we use the single

bit-flip model for injecting faults as it is the de-facto fault model used in studies

of transient faults. Although recent work [38] has found that hardware faults may

manifest as both single and multiple bit flips at the software level, other studies

have shown that there is very little difference in failure rates due to single and mul-

tiple bit flips [14, 37, 96]. Therefore, we stick to the single bit flip model in this

study.

To obtain a golden run for error propagation analysis, we first run the program

without any fault injections. We then gather the output of the program and memory

data stored after each kernel invocation as described in Section 7.2.2. We measure

error propagation and error spreading by comparing data from fault injection runs

with the golden run. This comparison is done on a bit-wise basis, except for float-

ing point numbers, which are compared using 40 digits of precision. As we omit

benchmarks that have random values in program output, the golden runs of the

chosen benchmarks are deterministic. We manually verified that this was the case

for our benchmarks.

There are three kinds of failures that can occur due to an injected fault: Crashes,

SDCs and Hangs. Crashes are found by using the CUDA API call cudaGetLastEr-

ror() after every kernel invocation. SDCs are found by comparing the program’s

output with the golden run for each memory type (T M, RM, and OM). Hangs are

found by setting a watchdog timer for 5000 seconds when the program starts - this

is much larger than the time taken by each application run.

7.4.3 Hardware and Software Platform

Fault injection experiments are performed on host PCs with an Intel Xeon CPU

and 32GB DDR3 memory. We use two GPU platforms both from Nvidia, namely

Tesla K20 the GTX960, for running our experiments. The results were similar on
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both platforms - this is not surprising as our experiments were at the application

level. We therefore report only the results on the K20 platform in this paper. We

will further detail our comparison in RQ7. The operating system running on the

host is Ubuntu Linux 12.04 64bit, and the CUDA driver and Toolkit used is V6.0.1.

7.4.4 Research questions (RQs)

We answer the following questions in our study.

RQ1: What is the percentage of SDCs in different memory states?

RQ2: How long do errors take to propagate to the RM?

RQ3: Do errors spread into different memory states and why?

RQ4: How many faults are masked within the GPU kernel and not allowed to

propagate?

RQ5: Do crash-causing faults propagate to the host CPU before they cause

crashes?

RQ6: Do crash-causing faults propagate across kernels before they cause crashes?

RQ7: Are resilience characteristics of applications different on different GPU

platforms?

7.5 Results
The results are organized by the research questions asked in Section 7.4. We first

present the aggregate results of the fault injections across all the benchmarks.

7.5.1 Aggregate Fault Injections

Figure 7.4 shows the aggregate results for our fault injection experiments. SDCs

and Benign are measured by comparing the programs’ final outputs with the golden

run. This corresponds to data recored in OM after the programs finish their execu-

tions. So SDCs here correspond to SDCOMs, and benign to BenignOM. On average,

crashes constitute 17.52%, SDCs constitute 18.98% and Benign faults constitute

63.35% of the injections. In our experiments, hangs are negligible, and are hence

not reported.
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Figure 7.4: Aggregate Fault Injection Results across the 12 Programs

Table 7.2: SDCs that occur in the different memory types

bfs lud pathfinder stencil cutcp gaussian hotspot barneshut lulesh circuit fiber nmf average
SDCOM 17.01% 45.58% 20.60% 37.00% 16.50% 10.90% 29.40% 1.30% 0.97% 7.50% 7.01% 43.20% 19.67%
SDC(RM−OM) 0.00% 0.00% 1.30% 0.00% 28.90% 0.00% 6.00% 2.30% 0.10% 14.80% 12.69% 10.10% 6.35%

SDCRM 17.01% 45.58% 21.90% 37.00% 45.40% 10.90% 31.50% 3.60% 1.07% 22.30% 19.70% 53.30% 25.70%
SDC(T M−RM) 0.00% 0.00% 0.00% 0.00% 0.00% 0.80% 0.00% 0.20% 0.00% 0.10% 0.00% 0.00% 0.09%

SDCT M 17.01% 45.58% 21.90% 37.00% 45.40% 11.70% 31.50% 3.80% 1.07% 22.40% 19.70% 53.30% 25.79%

7.5.2 Error Propagation

RQ1: What’s the percentage of SDCs in different memory states?
We analyze the memory data in each memory type after the last kernel invo-

cation in kernel cycle, and compare with the golden run. Table 7.2 shows SDCs

measured at different memory locations at the end of the kernel cycle. On average,

SDCOM, SDCRM and SDCT M are 19.67%, 25.70% and 25.79%. As can be seen,

the values of SDCRM and SDCT M are very similar across applications. In other

words, most faults in the TM propagate to the RM. This is surprising as it sug-

gests that there is little to no masking of errors in the TM. On the other hand, CPU

applications are known to exhibit significant error masking in memory [11]. One

possible reason is that unlike CPUs, GPUs perform highly specialized computa-

tions, and hence all the results produced are important to the application and hence

they propagate to the output.

However, there is a difference of about 6% on average between SDCOM and

SDCRM (see in SDC(RM−OM)). This is due to the application masking the error ei-

ther through type-casting or selective truncation of floating point data. An example
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of this is cutcp, which exhibits a difference of nearly 30% between the SDCOM and

the SDCRM. Overall, about 76% of the faults propagate from the RM to the OM,

which is again much higher than observed in CPU applications [11].

We note that the lulesh application comes equipped with application-level al-

gorithm correctness checks (i.e., residual check). For example, the documentation

for lulesh states that the correct output consists of the correct number of iterations,

and six most-significant digits in the final origin energy variable [79]. Therefore,

SDCOM here is measured based on these correctness checks. None of the other ap-

plications however come with such checks, and hence we consider the entire output

in these cases for comparison with the fault-injected run.

RQ2: How long do errors take to propagate to the RM?

Figure 7.5: Detection Latency of faults that result in SDCRM

Once a fault is injected in a kernel, we measure the number of kernel calls after

which it propagates to RM (if it does). Figure 7.5 shows the results. As shown in

the figure, most faults that affect the RM do so within a single kernel invocation

after injection. This means that errors propagate relatively soon to the RM after

their occurrence. The exceptions are bfs, gaussian and barneshut.

Figure 7.6 shows the percentage of RM updated after each kernel invocation.

For the sake of space, we only show the results for two applications, namely lud and

gaussian. As we can see, lud updates the RM in every kernel invocation, whereas

gaussian does not. This explains why the propagation occurred within one kernel

execution for lud, but not gaussian.
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Figure 7.6: Percentage of RM Updated by Each Kernel Invocation. Y-axis
is the percentage of RM locations that are updated during each kernel
invocation. X-axis represents timeline in terms of kernel invocations.

7.5.3 Error Spreading

We defined error spreading as the percentage of memory locations contaminated

due to an error (Section 7.3). Unlike the previous section where we considered

any difference from the golden run as an SDC for that memory type, here we only

consider the amount of memory that is different.

RQ3: Do errors spread into different memory states and why?

Figure 7.7: Percentage of TM and RM Contaminated at Each Kernel Invoca-
tion. Y-axis is the percentage of contaminated memory locations, X-axis
is timeline in terms of kernel invocations. Blue lines indicate TM, and
red lines represent RM.

From our fault injection experiments, we examine how errors spread as a func-

tion of time (i.e., kernel invocations). Because we performed 10,000 injections

per application, we cannot show all the data. Therefore, we only show represen-
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tative injections for each application. Figure 7.7 shows the percentage of memory

locations in TM and RM that are contaminated by the injected faults at the first

dynamic kernel invocation. The spread is calculated as (Contaminated TM or RM

Locations / Total TM Locations) * 100.

Our main findings are: (1) error-spreading is very application-specific. For ex-

ample, a single fault can contaminate nearly 60% of TM memory locations in lud,

whereas the number is as low as 0.0006% in cutcp. (2) only a very small amount

of memory locations are affected in the same kernel where the fault was injected.

Rather, most faults propagate into memory locations in later kernel invocations. (3)

trends of error spreading between RM and TM of the same application are rather

similar, though the absolute values may be different. In other words, applications

that have extensive error spread in the TM have extensive error spread in the RM

as well.

Finally, in almost all applications the error spreading either increases or re-

mains constant as the number of kernel calls increase. The exception to this is

the stencil application in which the error spreading decreases significantly as the

number of kernel calls increase. This is because the algorithm of stencil takes

neighbours’ values and keeps averaging them. The errors may be finally masked

as the averaging process progresses. We also observed that there is a small de-

crease in error spreading in the bfs application after it reaches its peak in TM. This

is because some of locations in TM are reassigned during program execution, and

faulty data in these locations can be overwritten with correct data, thereby masking

the errors.

Because lud exhibits the highest error spread, we study its code structure to

understand the reasons. Figure 7.8 shows the code structure leading to extensive

error spread in lud. The code exhibits a cyclic data flow from global memory to

shared memory, and then back to global memory. Note that shared memory is used

to transfer data between threads only in the same block. In the example, dia is a

pointer to shared memory, and m points to global memory. At line 5, a portion of

shared memory in dia is initialized by global memory m. This portion of data in

dia is shared by other threads in its block. After the shared data is consumed, it

writes data back to global memory m at line 9 again. If a fault occurs in m at line 5,

dia will be first compromised and the data processed by other threads in the same
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Figure 7.8: Code Structure Leading to Extensive Error Spread in lud

block may be affected after reading the corrupted data from dia. And then at the

end of the kernel invocation, a different part of m may be corrupted by reading data

from dia(line 9). In the next invocation of this kernel, faulty values in m may be

used in the initialization of dia again at line 5. But this time, it may be initialized

to a different portion of dia that are used by threads in a different block, because

there are different parts of m that were corrupted in the previous kernel invocation.

This leads to extensive error spread for this application.

7.5.4 Fault Masking

In the previous two sections, we examined how faults propagate across different

memory locations and kernel executions. We now ask the complementary question:

how many faults are masked within a single kernel invocation of their occurrence.

RQ4: How many faults are masked within the GPU kernel and not allowed
to propagate?

Table 7.3 shows the percentage of benign faults measured at the first kernel in-

vocation after the fault injection (BenignT M). We measure this value by comparing

all memory locations in TM with the golden run right after the first kernel invoca-

tion where the fault is injected. If there is no difference between the two TMs, we

count it as a benign fault. We consider TM here as it is a superset of both RM and

OM. Therefore if a fault is masked in the TM, it is also masked in the other two

types of memory (even in future kernel executions).
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Table 7.3: Percentage of Benign Faults Measured at the First Kernel Invoca-
tion after Fault Injection

bfs lud pathfinder stencil cutcp gaussian hotspot barneshut lulesh circuit fiber nmf average
63.5% 28.5% 69.9% 25.0% 42.7% 81.1% 57.2% 76.4% 92.5% 25.6% 62.9% 20.0% 53.4%

As we can see from the table, more than 50% of the faults injected are masked

within the same kernel they are injected in, and do not propagate. The maximum

masking is achieved in the case of lulesh in which nearly 92.5% of the faults are

masked. The minimum masking is achieved for nmf in which only 20% of the

faults are masked. Such variations across applications are because programs con-

tain different amount of code structures leading to masking effects.

We found there are two prevalent patterns leading to error masking in our

benchmark programs, namely (1) Comparison, and (2) Truncation. An example

of Truncation is shown in Figure 7.9, on the left. R0 and R1 are initialized at lines

2 and 3, and R2 holds the result of comparing R0 and R1 at line 3. Consider a fault

that flips the first bit of R1 - R1 erroneously becomes 1110 from 1111. However,

the result of R2 will not be affected since R1 is still greater than R0. An example

of Truncation is shown in the right part of Figure 7.9. At line 2, R0 is initialized.

At line 3, value of R1 is truncated from 0001 to 01. Consider a fault that occurs at

line 2 and flips either of the left-most 2 bits of R0 - it will not affect the value of

R1 at line 3 due to the truncation. Hence the fault will be masked.

Figure 7.9: Examples of Fault Masking. (a) Comparison, (b) Truncation

7.5.5 Crash-causing Faults

The next two research questions have to do with crash-causing faults and their

propagation to the CPU (host) or other GPU kernels. We focus on crash-causing

faults as prior work has found that long-latency crashes can lead to checkpoint
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corruptions, and cause unrecoverable failures [89, 150].

RQ5: Do faults propagate to the host CPU and cause crashes?
From our experiments, we can observe that there is a very small chance (0.02%

on average) for a fault that occurs in a kernel to contaminate the CPU states and

lead to a crash eventually. This is because memory address spaces are separate in

the CPU and GPU, and hence faulty pointers produced by the GPU are unlikely to

be used in the CPU to access memory. Because faulty pointers are responsible for

the majority of crash causing errors on the CPU [89], these errors do not lead to

crashes.

RQ6: Do crash-causing faults propagate across kernels before they cause
crashes?

In our experiments, we find that there is no fault that propagates across ker-

nels and causes a crash. In other words, cash-causing faults typically cause crashes

within the kernel in which they occur. This is because pointers or memory address

offset variables are usually passed between kernels in the constant memory space,

which is read-only. Note however that it is possible for faults to propagate across

kernels if address offsets of pointers are passed through global variables (we have

empirically verified this observation through carefully constructed code samples -

we do not present these due to space constraints). However, typical GPGPU pro-

grams do not exhibit this behavior, as each thread is responsible for its own memory

locations, and hence multiple threads do not read the same offset to calculate the

same memory address.

7.5.6 Platform Differences

RQ7: Are resilience characteristics of applications different on different GPU
platforms?

We use the two platforms, K20 and GTX960 for this experiment. To answer

this question, we performed 1,000 fault injections for each benchmark application

on the two platforms. We focus on SDCs for this experiment as these are often

the most important concern in practice. Note that we have omitted two programs,

fiber and nmf, as we encountered errors when compiling them on GTX960, proba-

bly because they use features that are not supported on that platform. To compare
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the distributions of the SDC values, we ran a t-test between the values obtained on

the two platforms. We found that the p-value was 0.991. Thus, our results show

that we fail to reject the null hypothesis, indicating that the values are statistically

indistinguishable from each other. Therefore, we can conclude that the resilience

characteristics of the applications do not vary significantly between the two plat-

forms.

7.6 Implications
In this section, we consider the implications of the results on error detection and

recovery techniques. These are organized by the RQs.

Table 7.4: Size of OM, RM and TM

bfs lud pathfinder stencil cutcp gaussian hotspot barneshut lulesh circuit fiber nmf geo mean
OM 14.29% 7.50% 0.99% 7.50% 7.50% 1.67% 5.00% 18.75% 12.50% 15.00% 49.98% 0.03% 5.02%
RM 14.29% 50.00% 1.98% 50.00% 50.00% 3.21% 66.67% 37.50% 18.75% 50.00% 49.98% 0.03% 13.56%
TM 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

RQ1: Percentages of SDCs in different memory states In RQ1, we found

that most SDCs in the TM propagate to the RM, and more than 76% of the SDCs

in the RM propagate to the OM. Table 7.4 shows the size of data in OM, RM and

TM in each application. As we can see, the RM is only a small fraction of the TM.

This suggests that checking the RM for consistency (e.g., using detectors [108])

may be much more efficient than checking the entire TM. Another possibility is

checking the OM which is even smaller than the RM. However, the OM may not

be updated until the end of the program and hence checking the OM may incur

high detection latency.

RQ2: Detection Latency of Errors in RM Error detection latency is critical

when designing checkpoint intervals. If the detection latency is too long, errors

may propagate to checkpoints before they are detected, thereby corrupting check-

points [89]. Our results show that errors propagate to the RM relatively soon after

their occurrence (i.e., within one kernel call in most cases). Therefore, placing

detectors on RM will ensure low-latency error detection.

RQ3: Error spreading to different memory states Error spreading is highly

application specific in GPGPU applications. Further, only certain code structures in

GPGPU programs may lead to extensive error spread. Therefore, one can statically

126



analyze the program to identify such structures to protect. Further, the code can be

restructured to avoid error spreading in some circumstances. In some applications

(e.g., Stencil), there may be natural mechanisms in the code to dilute the effect of

error spreading over time.

RQ4: Effect of error masking We found that there is substantial error mask-

ing within GPU kernels, and that many errors do not even affect the TM after they

occur. This means that there may not be a need to deploy expensive error detec-

tion mechanisms such as Dual Modular Redundancy (DMR) or Error Detection

by Duplicated Instructions (EDDI) [106] within the kernel, unless it is a safety-

critical application. Instead one can check the results after the kernel’s invocation.

For example, ABFT-based detection algorithms [45, 73] can be used at the kernel

boundary to detect errors, to determine whether GPU kernel re-execution should

be initiated.

RQ5 & RQ6: Crash-causing Faults and Checkpoint Scheme Studies on er-

ror propagation on CPUs find that crash-causing faults can propagate for a long

time before they cause crashes. Hence, checkpoints may be corrupted by these

faults if the crash-latency in the program is not bounded [88, 89]. However, on

GPGPU programs, we find that crash-causing faults do not propagate outside the

kernel where faults occur. In other words, crash-latency of GPGPU programs is

naturally bounded within one kernel invocation. Therefore, one can place check-

points at kernel boundaries for crash recovery. As we find that many kernels do not

propagate errors to other kernels, individual kernels could also recover from fail-

ures through re-execution at the kernel boundaries of copying. The application can

be restarted locally on the same GPU or on a spare GPU. Further, as most kernels

have short execution times in the range of milliseconds, the cost of re-executing a

kernel would be insignificant.

RQ7: Differences across platforms From our findings, it appears that error re-

silience of GPGPU applications does not depend on the specific hardware platform

(we have only validated it on platforms from the same manufacturer, which was

Nvidia in our case). This suggests that one can perform resilience characterization

on one platform and generalize the results to a different platform.
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7.7 Summary
In this chapter, we study error propagation in GPGPU application with the goal of

building targeted error detection and recovery mechanisms for them. We built a

fault injection tool LLFI-GPU, and defined metrics for quantifying propagation in

GPGPU applications. We empirically studied error propagation across ten GPGPU

applications using LLFI-GPU. The main findings are: (1) Crash-causing faults in

GPGPU are naturally kernel-bounded, (2) Error spreading in memory is highly

application dependent, (3) Most memory data corruptions lead to output corrup-

tion unlike what is observed in CPU programs, and (4) The majority of faults are

masked within a single kernel execution, and do not propagate across kernels.
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Chapter 8

Understanding Error
Propagation in Deep Learning
Neural Network (DNN)
Accelerators and Applications

This chapter investigates error propagation in DNN accelerators and applications,

which are recently deployed in safety-critical environment such as self-driving

cars. Many studies have focused on the performance aspects of the accelerators, but

their reliability is not well understood. In this chapter, we first build the fault injec-

tion infrastructure for DNN accelerators and applications, then characterize error

propagation through an empirical study. We find that DNN accelerators and appli-

cations have very unique error propagation characteristics compared with general

purpose applications. Based on our investigation, we propose cost-effective error

mitigation techniques for DNN accelerators and applications.

8.1 Introduction
Deep learning neural network (DNN) applications are widely used in high-performance

computing systems and datacenters [19, 44, 118]. Researchers have proposed the

use of specialized hardware accelerators to accelerate the inferencing process of
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DNNs, consisting of thousands of parallel processing engines [34, 36, 62]. For

example, Google recently announced its DNN accelerator, the Tensor Processing

Unit (TPU), which they deploy in their datacenters for DNN applications [145].

While the performance of DNN accelerators and applications have been ex-

tensively studied, the reliability implications of using them is not well understood.

One of the major sources of unreliability in modern systems are soft errors, typi-

cally caused by high-energy particles striking electronic devices and causing them

to malfunction (e.g., flip a single bit) [20, 40]. Such soft errors can cause appli-

cation failures, and they can result in violations of safety and reliability specifica-

tions. For example, the IEC 61508 standard [74] provides reliability specifications

for a wide range of industrial applications ranging from the oil and gas industry to

nuclear power plants. Deep neural networks have promising uses for data analyt-

ics in industrial applications [149], but they must respect the safety and reliability

standards of the industries where they are employed.

A specific and emerging example of HPC DNN systems is for self-driving cars

(i.e., autonomous vehicles), which deploy high performance DNNs for real-time

image processing and object identification. The high performance, low power, high

reliability, and real-time requirements of these applications require hardware that

rivals that of the fastest and most reliable supercomputer (albeit with lower preci-

sion and memory requirements). For instance, NVIDIA Xavier—a next-generation

SoC with a focus on self-driving applications—is expected to deliver 20 Tops/s at

20W in 16nm technology [126]. We focus our investigation into DNN systems1

in this emerging HPC market due to its importance, stringent reliability require-

ments, and its heavy use of DNNs for image analysis. The ISO 26262 standard

for functional safety of road vehicles mandates the overall FIT rate2 of the System

on Chip (SoC) carrying the DNN inferencing hardware under soft errors to be less

than 10 FIT [119]. This requires us to measure and understand the error resilience

characteristics of these high-performance DNN systems.

This chapter takes a first step towards this goal by (1) characterizing the prop-

agation of soft errors from the hardware to the application software of DNN sys-

1We use the term DNN systems to refer to both the software and the hardware accelerator that
implements the DNN.

2Failure-in-Time rate: 1 FIT = 1 failure per 1 billion hours
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tems, and (2) devising cost-effective mitigation mechanisms in both software and

hardware, based on the characterization results .

Traditional methods to protect computer systems from soft errors typically

replicate the hardware components (e.g., Triple Modular Redundancy or TMR).

While these methods are useful, they often incur large overheads in energy, per-

formance and hardware cost. This makes them very challenging to deploy in self-

driving cars, which need to detect objects such as pedestrians in real time [83] and

have strict cost constraints. To reduce overheads, researchers have investigated

software techniques to protect programs from soft errors, e.g., identifying vulnera-

ble static instructions and selectively duplicating the instructions [52, 64, 88]. The

main advantage of these techniques is that they can be tuned based on the applica-

tion being protected. However, DNN software typically has a very different struc-

ture compared to general-purpose software. For example, the total number of static

instruction types running on the DNN hardware is usually very limited (less than

five) as they are repeatedly executing the multiply-accumulate (MAC) operations.

This makes these proposed techniques very difficult to deploy as duplicating even

a single static instruction will result in huge overheads. Thus, current protection

techniques are DNN-agnostic in that they consider neither the characteristics of

DNN algorithms, nor the architecture of hardware accelerators. To the best of our

knowledge, we are the first to study the propagation of soft errors in DNN systems

and devise cost-effective solutions to mitigate their impact.

We make the following major contributions in this paper:

• We modify a DNN simulator to inject faults in four widely used neural net-

works (AlexNet, CaffeNet, NiN and ConvNet) for image recognition, using

a canonical model of the DNN accelerator hardware.

• We perform a large-scale fault injection study using the simulator for faults

that occur in the data-path of accelerators. We classify the error propagation

behaviors based on the structure of the neural networks, data types, positions

of layers, and the types of layers.

• We use a recently proposed DNN accelerator, Eyeriss [35], to study the effect

of soft errors in different buffers and calculate its projected FIT rates.
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• Based on our observations, we discuss the reliability implications of design-

ing DNN accelerators and applications and also propose two cost-effective

error protection techniques to mitigate Silent Data Corruptions (SDCs) i.e.,

incorrect outcomes. The first technique, symptom-based detectors, is imple-

mented in software and the second technique, selective latch hardening, in

hardware. We evaluate these techniques with respect to their fault coverage

and overhead.

Our main results and implications are as follows:

• We find that different DNNs have different sensitivities to SDCs depending

on the topology of the network, the data type used, and the bit position of

the fault. In particular, we find that only high-order bits are vulnerable to

SDCs, and the vulnerability is proportional to the dynamic value range the

data type can represent. The implications of this result are twofold: (1)

When designing DNN systems, one should choose a data type providing

just-enough dynamic value range and precision. The overall FIT rate of

the DNN system can be reduced by more than an order of magnitude if we

do so - this is in line with recent work that has proposed the use of such

data types for energy efficiency. (2) Leveraging the asymmetry of the SDC

sensitivity of bits, we can selectively protect the vulnerable bits using our

proposed selective latch hardening technique. Our evaluation shows that the

corresponding FIT rate of the datapath can be reduced by 100x with about

20% area overhead.

• We observe that faults causing a large deviation in magnitude of values likely

lead to SDCs. Normalization layers can reduce the impact of such faults by

averaging the faulty values with adjacent correct values, thereby mitigating

SDCs. While the normalization layers are typically used to improve perfor-

mance of a DNN, they also boost its resilience. Based on the characteristics,

we propose a symptom-based detector that provides 97.84% precision and

92.08% recall in error detection, for selected DNNs and data types.

• In our case study of Eyeriss, the sensitivity study of each hardware com-

ponent shows that some buffers implemented to leverage data locality for
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performance may dramatically increase the overall FIT rate of a DNN ac-

celerator by more than 100x. This indicates that novel dataflows proposed

in various studies should also add protection to these buffers as they may

significantly degrade the reliability otherwise.

• Finally, we find that for the Eyeriss accelerator platform, the FIT rates can

exceed the safety standards (i.e., ISO 26262) by orders of magnitude without

any protection. However, applying the proposed protection techniques can

reduce the FIT rate considerably and restore it within the safety standards.

8.2 Exploration of Design Space
We seek to understand how soft errors that occur in DNN accelerators propagate

in DNN applications and cause SDCs (we define SDCs later in Section 8.3.6). We

focus on SDCs as these are the most insidious of failures and cannot be detected

easily. There are four parameters that impact of soft errors on DNNs:

(1) Topology and Data Type: Each DNN has its own distinct topology which

affects error propagation. Further, DNNs can also use different data types in their

implementation. We want to explore the effect of the topology and data type on the

overall SDC probability.

(2) Bit Position and Value: To further investigate the impact of data type on

error propagation, we examine the sensitivity of each bit position in the networks

using different data types. This is because the values represented by a data type

depend on the bit positions affected, as different data types interpret each bit dif-

ferently (explained in Section 8.3.5). Hence, we want to understand how SDC

probabilities vary based on the bit corrupted in each data type and how the errors

result in SDCs affect program values.

(3) Layers: Different DNNs have different layers - this includes the differ-

ences in type, position, and the total number of layers. We investigate how errors

propagate in different layers and whether the propagation is influenced by the char-

acteristics of each layer.

(4) Data Reuse: We want to understand how different data reuses implemented

in the dataflows of DNN accelerators affects the SDC probability. Note that unlike
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other parameters, data reuse is not a property of the DNN itself but of its hardware

implementation.

8.3 Experimental Setup

8.3.1 Networks

Table 8.1: Networks Used

Network Dataset No. of Output Candidates Topology
ConvNet [41] CIFAR-10 10 3 CONV + 2 FC
AlexNet [81] ImageNet 1,000 5 CONV(with LRN) + 3

FC
CaffeNet [24] ImageNet 1,000 5 CONV(with LRN) + 3

FC
NiN [94] ImageNet 1,000 12 CONV

We focus on convolutional neural networks in DNNs, as they have shown great

potential in solving many complex and emerging problems and are often executed

in self-driving cars. There are four neural networks that we consider in Table 8.1.

They range from the relatively simple 5-layer ConvNet to the 12-layer NiN. The

reasons we chose these networks are: (1) They have different topologies and meth-

ods implemented to cover a variety of common features used in today’s DNNs, and

the details are publicly accessible, (2) they are often used as benchmarks in devel-

oping and testing DNN accelerators [35, 77, 128], and (3) they are well known

to solve challenging problems, (4) and the official pre-trained models are freely

available. This allows us to fully reproduce the networks for benchmarking pu-

poses. All of the networks perform the same task, namely image classification. We

use the ImageNet dataset [75] for AlexNet, CaffeNet and NiN, and the CIFAR-10

dataset [39] for ConvNet, as they were trained and tested with these datasets. We

use these reference datasets and the pre-trained weights together with the corre-

sponding networks from the Berkeley Vision and Learning Center (BVLC) [22].

We list the details of each network in Table 8.1. As shown, all networks except

NiN have fully-connected layers behind the convolutional layers. All four networks

implement ReLU as the activation function and use the max-pooling method in

their sub-sampling layers. Both AlexNet and CaffeNet use a Local Response Nor-
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malization (LRN) layer following each of the first two convolutional layers - the

only difference is the order of the ReLU and the sub-sampling layer in each con-

volution layer. In AlexNet, CaffeNet and ConvNet, there is a soft-max layer at the

very end of each network to derive the confidence score of each ranking, which

is also part of the network’s output. However, in NiN, there is no such soft-max

layer. Hence, the output of the NiN network has only the ranking of each candidate

without their confidence scores.

Table 8.2: Data Reuses in DNN Accelerators

Weight
Reuse

Image
Reuse

Output
Reuse

Zhang et al. [153], Diannao [34],

Dadiannao [36]

N N N

Chakradhar et al. [28], Sri-

ram et al. [131], Sankaradas et

al. [122], nn-X [57], K-Brain [107],

Origami [27]

Y N N

Gupta et al. [60], Shidiannao [49],

Peemen et al. [109]

N N Y

Eyeriss [35] Y Y Y

Figure 8.1: Architecture of general DNN accelerator
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8.3.2 DNN Accelerators

We consider nine of DNN accelerators mentioned in Table 8.2. We separate the

faults in the datapaths of the networks from those in the buffers. We study datapath

faults based on the common abstraction of their execution units in Figure 8.1B.

Thus, the results for datapath faults apply to all nine accelerators.

For buffer faults, since the dataflow (and buffer structure) is different in each

accelerator, we have to choose a specific design. We chose the Eyeriss acceler-

ator for studying buffer faults because: (1) The dataflow of Eyeriss includes all

three data localities in DNNs listed in Table 8.2, which allows us to study the data

reuse seen in other DNN accelerators, and (2) the design parameters of Eyeriss

are publicly available, which allows us to conduct a comprehensive analysis on its

dataflow and overall resilience.

8.3.3 Fault Model

We consider transient, single-event upsets that occur in the data path and buffers,

both inside and outside the processing engines of DNN accelerators. We do not

consider faults that occur in combinational logic elements as they are much less

sensitive to soft errors than storage elements shown in recent studies [56, 125]. We

also do not consider errors in control logic units. This is due to the nature of DNN

accelerators which are designed for offloaded data acceleration - the scheduling is

mainly done by the host (i.e., CPU). Finally, because our focus is on DNN accel-

erators, we do not consider faults in the CPU, main memory, or the memory/data

buses.

8.3.4 Fault Injection Simulation

Since we do not have access to the RTL implementations of the accelerators, we use

a DNN simulator for fault injection. We modified an open-source DNN simulator

framework, Tiny-CNN [142], which accepts Caffe pre-trained weights [23] of a

network for inferencing and is written in C++. We map each line of code in the

simulator to the corresponding hardware component, so that we can pinpoint the

impact of the fault injection location in terms of the underlying microarchitectural

components. We randomly inject faults in the hardware components we consider

136



by corrupting the values in the corresponding executions in the simulator. This

fault injection method is in line with other related work [64, 82, 88, 93, 147].

8.3.5 Data Types

Different data types offer different tradeoffs between energy consumption and per-

formance in DNNs. Our goal is to investigate the sensitivity of different design pa-

rameters in data types to error propagation. Therefore, we selected a wide range of

data types that have different design parameters as listed in Table 8.3. We classify

them into two types: floating-point data type (FP) and fixed-point data type (FxP).

For FP, we choose 64-bit double, 32-bit float, and 16-bit half-float, all of which

follow the IEEE 745 floating-point arithmetic standard. We use the terms DOU-

BLE, FLOAT, and FLOAT16 respectively for these FP data types in this study. For

FxPs, unfortunately there is no public information about how binary points (radix

points) are chosen for specific implementations. Therefore, we choose different

binary points for each FxP. We use the following notations to represent FxPs in

this work: 16b rb10 means a 16-bit integer with 1 bit for the sign, 5 bits for the

integer part, and 10 bits for the mantissa, from the leftmost bit to the rightmost bit.

We consider three FxP types, namely 16b rb10, 32b rb10 and 32b rb26. They all

implement 2’s complement for their negative arithmetic. Any value that exceeds

the maximum or minimum dynamic value range will be saturated to the maximum

or minimum value respectively.
Table 8.3: Data types used

Data Type FP or FxP Data Width Bits (From left to right)
DOUBLE FP 64-bit 1 sign bit, 11 bits for exponent, 52 bits for

mantissa
FLOAT FP 32-bit 1 sign bit, 8 bits for exponent, 23 bits for man-

tissa
FLOAT16 FP 16-bit 1 sign bit, 5 bits for exponent, 10 bits for man-

tissa
32b rb26 FxP 32-bit 1 sign bit, 5 bits for integer, 26 bits for man-

tissa
32b rb10 FxP 32-bit 1 sign bit, 21 bits for integer, 10 bits for man-

tissa
16b rb10 FxP 16-bit 1 sign bit, 5 bits for integer, 10 bits for man-

tissa
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8.3.6 Silent Data Corruption (SDC)

We define the SDC probability as the probability of an SDC given that the fault

affects an architecturally visible state of the program (i.e., the fault was activated).

This is in line with the definition used in other work [52, 64, 93, 147].

In a typical program, an SDC would be a failure outcome in which the ap-

plication’s output deviates from the correct (golden) output. This comparison is

typically made on a bit-by-bit basis. However, for DNNs, there is often not a sin-

gle correct output, but a list of ranked outputs each with a confidence score as

described in Section 3.5.1, and hence a bit-by-bit comparison would be mislead-

ing. Consequently, we need to define new criteria to determine what constitutes an

SDC for a DNN application. We define four kinds of SDCs as follows:

• SDC-1: The top ranked element predicted by the DNN is different from that

predicted by its fault-free execution. This is the most critical SDC because

the top-ranked element is what is typically used for downstream processing.

• SDC-5: The top ranked element is not one of the top five predicted elements

of the fault-free execution of the DNN.

• SDC-10%: The confidence score of the top ranked element varies by more

than +/-10% of its fault-free execution.

• SDC-20%: The confidence score of the top ranked element varies by more

than +/-20% of its fault-free execution.

8.3.7 FIT Rate Calculation

The formula of calculating the FIT rate of a hardware structure is shown in Equa-

tion 8.1, where Rraw is the raw FIT rate (estimated as 20.49 FIT/Mb by extrapolat-

ing the results of Neale et al. [103]. The original measurement for a 28nm process

is 157.62 FIT/MB in the paper. We project this for a 16nm process by applying

the trend shown in Figure 1 of the Neale paper3). Scomponent is the size of the com-

ponent, and SDCcomponent is the SDC probability of each component. We use this

3We also adjusted the original measurement by a factor of 0.65 as there is a mistake we found in
the paper. The authors of the paper have acknowledged the mistake in private email communications
with us.
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formula to calculate the FIT rate of datapath components and buffer structures of

DNN accelerators, as well as the overall FIT rate of Eyeriss in Section 8.4.1 and

Section 8.4.2.

FIT = ∑
component

Rraw ∗Scomponent ∗SDCcomponent (8.1)

Figure 8.2: SDC probability for different data types in different networks (for
faults in PE latches).

8.4 Characterization Results
We organize the results based on the origins of faults (i.e., datapath faults and buffer

faults) for each parameter. We randomly injected 3,000 faults per latch, one fault

for each execution of the DNN application. The error bars for all the experimental

results are calculated based on 95% confidence intervals.

8.4.1 Datapath Faults

Data Types and Networks

Figure 8.2 shows the results of the fault injection experiments on different networks

and different data types. We make three observations based on the results.

First, SDC probabilities vary across the networks for the same data type. For
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example, using the FLOAT data type, the SDC probabilities for NiN are higher than

for other networks using the same data type (except ConvNet - see reason below).

This is because of the different structures of networks in terms of sub-sampling and

normalization layers which provide different levels of error masking - we further

investigate this in Section 8.4.1. Further, ConvNet has the highest SDC propagation

probabilities among all the networks considered (we show the graph for ConvNet

separately as its SDC probabilities are significantly higher than the other networks).

This is because the structure of ConvNet is much less deep than for other networks,

and consequently there is higher error propagation in ConvNet. For example, there

are only 3 convolutional layers in ConvNet, whereas there are 12 in NiN. Further,

ConvNet does not have normalization layers to provide additional error masking,

unlike AlexNet and CaffeNet.

Second, SDC probabilities vary considerably across data types. For instance,

in AlexNet, SDC-1 can be as high as 7.19% using 32b rb10, and as low as 0.38%

using FLOAT - the maximum difference is 240x (between SDC-1 in 32b rb10 and

32b rb26). The reasons are further explored in Section 8.4.1.

Finally, for networks using the ImageNet dataset (all except ConvNet), there

is little difference in the SDC probability for the four different kinds of SDCs for

a particular network and data type. Recall that there are 1,000 output dimensions

in the ImageNet DNNs. If the top ranked output is changed by the error, the new

ranking is likely to be outside of the top five elements, and its confidence score will

likely change by more than 20%. However, in ConvNet, which uses the CIFAR-10

dataset, the four SDC probabilities are quite different. This is because there are

only 10 output dimensions in ConvNet, and if the top ranked output is affected by

errors, it is still highly likely to stay within the top five elements. As a result, the

SDC-5 probability is quite low for this network. On the other hand, the SDC-

10% and SDC-20% probabilities are quite high in ConvNet compared to the other

networks, as the confidence scores are more sensitive due to the small output di-

mensions compared to the other networks. Note that since NiN does not provide

confidence scores in its output, we do not show SDC-10% and SDC-20% for

NiN.

Because there is little difference between the SDC types for three of the four

networks, we focus on SDC-1 in the rest of the chapter and refer to them as SDCs
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unless otherwise specified.

Bit Position

We show the results by plotting the SDC probabilities for each bit in each data

type. Due to space constraints, we only show the results for NiN using FLOAT and

FLOAT16 data types for FP, and for CaffeNet using 32b rb26 and 32b rb10 for

FxP. We however confirmed that similar observations apply to the rest of networks

and data types.

The results of NiN using FLOAT and FLOAT16 are shown in Figure 8.3A and

Figure 8.3B respectively. For the FP data types, only the high-order exponent bits

are likely to cause SDCs (if corrupted), and not the mantissa and sign bits. We

also observed that bit-flips that go from 0 to 1 in the high-order exponent bits are

more likely to cause SDCs than those that go from 1 to 0. This is because the

correct values in each network are typically clustered around 0 (see Section 8.4.1)

and hence, small deviations in the magnitude or sign bits do not matter as much.

This is also why the per-bit SDC probability for FLOAT16 is lower than that for

FLOAT. A corrupted bit in the exponent of the latter is likely to cause a larger

deviation from 0, which in turn is likely to result in an SDC.

For FxP data types, we plot the results for CaffeNet using 32b rb26 and 32b rb10

in Figure 8.3C and Figure 8.3D respectively. As can be seen, only bits in the in-

teger parts of the fixed point data types are vulnerable. Both FxP data types have

32-bit data widths but different binary point positions. We observed that the per-bit

SDC probability for the data type 32b rb10 is much higher than that of 32b rb26.

For example, the 30th bit in 32b rb10 has an SDC probability of 26.65% whereas

the same bit position only has an SDC probability of 0.22% in 32b rb26. This

is because 32b rb26 has a smaller dynamic range of values compared to 32b rb10,

and hence the corrupted value in the former is likely to be closer to 0 than the latter.

This is similar to the FP case above.

Value

We chose AlexNet using FLOAT16 to explain how errors that result in SDCs affect

program values. We randomly sampled the set of ACTS in the network that were
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Figure 8.3: SDC probability variation based on bit position corrupted, bit po-
sitions not shown have zero SDC probability (Y-axis is SDC probability
and X-axis is bit position)

affected by errors, and compared their values before (in green) and after (in red)

error occurrence. We classified the results based on whether the errors led to SDCs

(Figure 8.4A) or were benign (Figure 8.4B). There are two key observations: (1)

If an error causes a large deviation in numeric values, it likely causes an SDC. For

example, in Figure 8.4A, more than 80% of errors that lead to a large deviation lead

to an SDC. (2) In Figure 8.4B, on the other hand, only 2% of errors that cause large

deviations result in benign faults. This is likely because large deviations make it

harder for values in the network to converge back to their correct values which are

typically clustered around 0.

We now ask the following questions. How close together are the correct (error-

free) values in each network, and how much do the erroneous values deviate from

the correct ones? Answering these questions will enable us to formulate efficient

error detectors. We list boundary values of ACTS profiled in each layer and net-

work in Table 8.4. As can be seen, in each network and layer, the values are

bounded within a relatively small range in each layer. Further, in the example of
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Figure 8.4: Values before and after error occurrence in AlexNet using
FLOAT16

AlexNet using FLOAT16, 80% of the erroneous values that lead to SDCs lie outside

this range, while only 9.67% of the erroneous values that lead to benign outcomes

do so. Similar trends are found in AlexNet, CaffeNet, and NiN using DOUBLE,

FLOAT, FLOAT16, and 32b rb10. This is because the data types provide more

dynamic value range than the networks need. The redundant value ranges lead to

larger value deviation under faults and are more vulnerable to SDCs. This indi-

cates that we can leverage symptom-based detectors to detect SDCs when these

data types are used (Section 8.5.2). On the other hand, 16b rb10 and 32b rb26

suppress the maximum dynamic value ranges. ConvNet is an exception: ConvNet

has a limited number of outputs and a small stack of layers, as even a small pertur-

bation in values may significantly affect the output rankings.
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Table 8.4: Value range for each layer in different networks in the error-free
execution

Network Layer
1

Layer
2

Layer
3

Layer
4

Layer
5

Layer
6

Layer
7

Layer
8

Layer
9

Layer
10

Layer
11

Layer
12

AlexNet -
691.813
6̃62.505

-
228.296
2̃24.248

-
89.051
9̃8.62

-
69.245
1̃45.674

-
36.4747
1̃33.413

-
78.978
4̃3.471

-
15.043
1̃1.881

-
5.542
1̃5.775

N/A N/A N/A N/A

CaffeNet -
869.349
6̃08.659

-
406.859
1̃56.569

-
73.4652
8̃8.5085

-
46.3215
8̃5.3181

-
43.9878
1̃55.383

-
81.1167
3̃8.9238

-
14.6536
1̃0.4386

-
5.81158
1̃5.0622

N/A N/A N/A N/A

NiN -
738.199
7̃14.962

-
401.86
1̃267.8

-
397.651
1̃388.88

-
1041.76
8̃75.372

-
684.957
1̃082.81

-
249.48
1̃244.37

-
737.845
9̃40.277

-
459.292
5̃84.412

-
162.314
4̃37.883

-
258.273
2̃83.789

-
124.001
1̃40.006

-
26.4835
8̃8.1108

ConvNet -
1.45216
1̃.38183

-
2.16061
1̃.71745

-
1.61843
1̃.37389

-
3.08903
4̃.94451

-
9.24791
1̃1.8078

N/A N/A N/A N/A N/A N/A N/A

Layer Position and Type

To investigate how errors in different layers propagate through the network, we

study the error sensitivity of both the positions and types of layers. We show the

SDC probability per layer, ordered by the position for AlexNet, CaffeNet, and NiN

in Figure 8.5A and for ConvNet in Figure 8.5B.

Figure 8.5: SDC probability per layer using FLOAT16, Y-axis is SDC prob-
ability and X-axis is layer position

In Figure 8.5A, in AlexNet and CaffeNet, we observed very low SDC probabil-

ities in the first and second layers, compared to the other layers. The reason is the

Local Response Normalization (LRN) layers implemented at the end of the first
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and second layers in these networks normalize the faulty values, thus mitigating

the effect of large deviations in the values. However, there is no LRN or similar

normalization layer in the other layers. NiN and ConvNet do not have such a nor-

malization layer, and hence, NiN (in Figure 8.5A) and ConvNet (in Figure 8.5B)

have a relatively flat SDC probability across all convolutional layers (layers 1 to 12

in NiN and layer 1 to layer 3 in ConvNet). We also observe there is an increase in

the SDC probabilities in layers in AlexNet and CaffeNet after the LRNs. This is

because the later layers require narrower value ranges (Table 8.4), and hence wider

value ranges and bits are likely to result in SDCs. Note that the fully-connected

layers in AlexNet (layer 6 to layer 8), CaffeNet (layer 6 to layer 8), and ConvNet

(layers 4 and 5) have higher SDC probabilities. This is because (1) they are able to

directly manipulate the ranking of the output candidates, and (2) ACTS are fully-

connected, and hence faults spread to all ACTS right away and have much higher

impact on the final outputs. Recall that there is no fully-connected layer in NiN,

however, and hence this effect does not occur.

To further illustrate the effect of LRN on mitigating error propagation, we mea-

sured the average Euclidean distance between the ACT values in the fault injection

runs and the golden runs at the end of each layer after faults are injected at the first

layer in different networks using the DOUBLE data type. The results are shown in

Figure 8.6. We choose the DOUBLE data type for this experiment as it accentuates

any differences due to its wide value range. As we can see, the Euclidean distance

decreases sharply from the first layer to the second layer after LRN in AlexNet and

CaffeNet. However, neither NiN nor ConvNet implement LRN or similar layers,

and hence the Euclidean distances at each layer are relatively flat.

Recall that the POOL and ReLU layers are implemented in all four networks

we consider, and are placed at the end of each convolutional and fully-connected

layer after MACs. Recall also that POOL picks the local maximum ACT value

and discards the rest of the ACTS before forwarding them to the next layer, while

ReLU resets values to zero if the value is negative. Since POOL and ReLU can

either discard or completely overwrite the values, they can mask errors in different

bits. Therefore, we study the bit-wise SDC probability (or error propagation rate)

per layer after each POOL or ReLU structure in convolutional layers in Table 8.5.

We measured this rate by comparing the ACT values bit by bit at the end of the
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Figure 8.6: Euclidean distance between the erroneous values and correct val-
ues of all ACTS at each layer of networks using DOUBLE, Y-axis is
Euclidean distance and X-axis is layer position (Faults are injected at
layer 1)

last layer. Due to space constraints, we only show the result of AlexNet using

FLOAT16, though similar results were observed in the other cases.

Table 8.5: Percentage of bit-wise SDC across layers in AlexNet using
FLOAT16 (Error bar is from 0.2% to 0.63%)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
19.38% 6.20% 8.28% 6.08% 1.63%

There are three main observations in Table 8.5: (1) In general, there is a de-

creasing propagation probability across layers, as faults that occur in earlier layers

have a higher probability of propagating to other layers and spreading. (2) Even

through many faults spread into multiple locations and reach the last layer, only a

small fraction of them (5.5% on average, compared with AlexNet in Figure 8.5A)

will affect the final ranking of the output candidates. The reason, as explained in

Section 8.4.1, is that the numerical value of ACTS affected by faults is a more in-

fluential factor affecting the SDC probability than the number of erroneous ACTS.

(3) A majority of the faults (84.36% on average) are masked by either POOL or

ReLU during the propagation and cannot even reach the last layer. Therefore, error

detection techniques that are designed to detect bit-wise mismatches (i.e., DMR)

may detect many errors that ultimately get masked.

Datapath FIT rate

We calculate the datapath FIT rates for different networks using each datatype

based on the canonical model of datapath in Figure 3.1B, and the formula in

146



Eq. 8.1. Note that the latches assumed in between execution units are the mini-

mum sets of latches to implement the units, so our calculations of datapath FIT

rate are conservative. The results are listed in Table 8.6. As seen, the FIT rate

varies a lot depending on the network and data type used. For example, it ranges

from 0.004 to 0.84 in NiN and ConvNet using 16b rb10, and from 0.002 to 0.42

in AlexNet using 16b rb10 and 32b rb10. Depending on the design of the DNN

accelerator and the application, the datapath’s FIT rate may exceed the FIT budget

allowed for the DNN accelerator and will hence need to be protected. We will

further discuss this in Section 8.5.1.

Table 8.6: Datapath FIT rate in each data type and network

ConvNet AlexNet CaffeNet NiN
FLOAT 1.76 0.02 0.03 0.10
FLOAT16 0.91 0.009 0.009 0.008
32b rb26 1.73 0.002 0.005 0.002
32b rb10 2.45 0.42 0.41 0.54
16b rb10 0.84 0.002 0.007 0.004

8.4.2 Buffer Faults: A Case Study on Eyeriss

Eyeriss [35] is a recently proposed DNN accelerator whose component parameters

are publicly available. We use Eyeriss in this case study - the reason is articulated in

Section 8.3.2. Other than the components shown in Figure 3.1, Eyeriss implements

a Filter SRAM, Img REG and PSum REG on each PE for data reuses listed in

Table 3.1. The details of the dataflow are described in Chen et al. [35]. We adopted

the original parameters of the Eyeriss microarchitecture at 65 nm and projected it

to 16nm technology. For the purpose of this study, we simply scale the components

of Eyeriss in proportion to process technology generation improvements, ignoring

other architectural issues. In Table 8.7, we list the microarchitectural parameters

of Eyeriss at the original 65nm and the corresponding projections at 16nm. We

assume a scaling factor of 2 for each technology generation, and as there are 4

generations between 65nm and 16nm technology (based on published values by

the TSMC foundry), we scaled up the number of PEs and the sizes of buffers by a

factor of 8. In the rest of this work, we use the parameters of Eyeriss at 16nm.
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Table 8.7: Parameters of microarchitectures in Eyeriss (Assuming 16-bit data
width, and a scaling factor of 2 for each technology generation)

Feature
Size

No. of PE Size of
Global
Buffer

Size of
One Filter
SRAM

Size of
One Img
REG

Size of
One PSum
REG

65nm 168 98KB 0.344KB 0.02KB 0.05KB
16nm 1,344 784KB 3.52KB 0.19KB 0.38KB

Data Reuse and Buffer

Here we measure and compare SDC probabilities of different buffers in Eyeriss

by randomly injecting 3,000 faults in each buffer component for different network

parameters. By analyzing the results, we found that faults in buffers exhibit simi-

lar trends as datapath faults for each parameter of data type, network, value, layer,

though the absolute SDC probabilities and FIT rates are different (usually higher

than for datapath faults due to the amount of reuse and size of the components).

Hence, we do not repeat these sensitivity results in this section. Rather, we present

SDC probabilities and FIT rates for each buffer of the different networks in Ta-

ble 8.8. The calculation of the FIT rate is based on Eq. 8.1. We show the results

using the 16b rb10 data type as a 16-bit FxP data type is implemented in Eyeriss.

Table 8.8: SDC probability and FIT rate for each buffer component in Eyeriss
(SDC probability / FIT Rate)

Network Global
Buffer

Filter
SRAM

Img REG PSum REG

ConvNet 69.70%/87.47 66.37%/62.74 70.90%/3.57 27.98%/2.82
AlexNet 0.16%/0.20 3.17%/3.00 0.00%/0.00 0.06%/0.006
CaffeNet 0.07%/0.09 2.87%/2.71 0.00%/0.00 0.17%/0.02
NiN 0.03%/0.04 4.13%/3.90 0.00%/0.00 0.00%/0.00

As seen, as the network becomes deeper, its buffers are much more immune

to faults. For example, ConvNet is less deep than the other three networks, and

the FIT rate of Global Buffer and Filter SRAM are respectively 87.47 and 62.74,

compared to 0.2 and 3.0 for AlexNet. This sensitivity is consistent with datapath

faults. Another observation is that Img REG and PSum REG have relatively low
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FIT rates as they both have smaller component sizes and a short time window for

reuse: a faulty value in Img REG will only affect a single row of fmap and only

the next accumulation operation if in PSum REG. Finally, we find that buffer FIT

rates are usually a few orders of magnitude higher than datapath FIT rates, and

adding these buffers for reuse dramatically increases the overall FIT rate of DNN

accelerators. The reasons are twofold: (1) Buffers by nature have larger sizes than

the total number of latches in the datapath, and (2) due to reuse, the same fault can

be read multiple times and lead to the spreading of errors to multiple locations in a

short time, resulting in more SDCs. Both lead to a higher FIT rate (See in Eq. 8.1).

We will further discuss its implication in Section 8.5.1.

8.5 Mitigation of Error Propagation
We explore three directions to mitigate error propagation in DNN systems based

on the results in the previous section. First, we discuss the reliability implica-

tions in designing DNN systems. Second, we adapt a previously proposed soft-

ware based technique, Symptom-based Error Detectors (SED), for detecting errors

in DNN-based systems. Finally, we use a recently proposed hardware technique,

Selective Latch Hardening (SLH) to detect and correct datapath faults. Both tech-

niques leverage the observations made in the previous section and are optimized

for DNNs.

8.5.1 Implications to Resilient DNN Systems

(1) Data Type: Based on our analysis in Section 8.4.1, we can conclude that DNNs

should use data types that provide just-enough numeric value range and precision

required to operate the target DNNs. For example, in Table 8.6, we found that the

FIT rate of datapath can be reduced by more than two orders of magnitude if we

replace type 32b rb10 with type 32b rb26 (from 0.42 to 0.002).

However, existing DNN accelerators tend to follow a one-size-fits-all approach

by deploying a data type representation which is long enough to work for all com-

putations in different layers and DNNs [34, 35, 49]. Therefore, it is not always

possible to eliminate redundant value ranges that the data type provides across lay-

ers and DNNs. The redundant value ranges are particularly vulnerable to SDCs
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as they tend to cause much larger value deviations (Section 8.4.1). We propose

a low-cost symptom-based error detector that detects errors caused by the redun-

dant value ranges regardless of whether conservative data types are used. A recent

study has proposed a reduced precision protocol which stores data in shorter repre-

sentations in memory and unfolds them when in the datapath to save energy [77].

The approach requires hardware modifications and may not be always supported

in accelerators. We defer the reliability evaluation of the proposed protocol to our

future work.

(2) Sensitive Bits: Once a restricted data type is used for a network, the dy-

namic value range is suppressed, mitigating SDCs caused by out-of-range values.

However, the remaining SDCs can be harder to detect as erroneous values hide in

normal value ranges of the network. Fortunately, we observe that the remaining

SDCs are also caused by bit-flips at certain bit positions (i.e., high bit positions in

FxP) (Section 8.4.1). Hence, we can selectively harden these bits to mitigate the

SDCs (Section 8.5.3).

(3) Normalization Layers: The purpose of the normalization layers such as

the LRN layer is to increase the accuracy of the network [81]. In Section 8.4.1, we

found that LRN also increases the resilience of the network as it normalizes a faulty

value with its adjacent fault-free values across different fmaps to mitigate SDCs.

Therefore, one should use such layers if possible. Further, one should place error

detectors after such layers to leverage the masking opportunities, thus avoiding

detecting benign faults.

(4) Data Reuse: Recently, multiple dataflows and architectures have been

proposed and demonstrated to provide both energy and performance improve-

ments [34, 35]. However, adding these local buffers implementing more sophis-

ticated dataflow dramatically increases the FIT rate of a DNN accelerator. For

example, the FIT rate of Filter SRAMs (3.9 in NiN, Table 8.8) can be nearly 1000x

higher than the FIT rate of the entire datapath (0.004 in NiN, Table 8.8). Un-

fortunately, however, protecting small buffers through ECC may incur very high

overheads due to smaller read granularities. We propose an alternative approach,

SED, to protect these buffers at low cost (Section 8.5.2).

(5) Datapath Protection: From Table 8.6, we found the datapath FIT rate

alone can go up to 2.45 without careful design, or 0.84 even with a resilient data
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type (16b rb10, in ConvNet). The safety standard, for example in ISO 26262,

mandates the overall FIT rate of the SoC carrying DNN accelerator to be less than

10 FIT. Since a DNN accelerator is often a very small area fraction of the total on

the SoC. The FIT budget allocated to the DNN accelerator should be only a tiny

fraction of 10. Hence, datapath faults cannot be ignored as they stretch the FIT

budget allocated to the DNN accelerator.

8.5.2 Symptom-based Error Detectors (SED)

A symptom-based detector is an error detector that leverages application-specific

symptoms under faults to detect anomalies. Examples of symptoms are unusual

values of variables [64, 108], numbers of loop iterations [64, 88], or address spaces

accessed by the program [88, 108]. For the proposed detector, we use the value

ranges of ACTS as the symptom to detect SDC-causing faults. This is based on

the observation from Section 8.4.1: If an error makes the magnitude of ACTS very

large, it likely leads to an SDC, and if it does not, it is likely to be benign. In the de-

sign of the error detector, there are two questions that need to be answered: Where

(which program locations) and What (which reference value ranges) to check? The

proposed detector consists of two phases - we describe each phase along with the

answers to the two questions below:

Learning: Before deploying the detector, a DNN application needs to be

instrumented and executed with its representative test inputs to derive the value

ranges in each layer during the fault-free execution. We can use these value ranges,

say -X to Y, as the bounds for the detector. However, to be safe, we apply an

additional 10% cushion on top of the value ranges of each layer, that is (-1.1*X) to

(1.1*Y) as the reference values for each detector to reduce false alarms. Note that

the learning phase is only required to be performed once before the deployment.

Deployment: Once the detectors are derived, they are checked by the host

which off-loads tasks to the DNN accelerator. At the end of each layer, the data

of fmaps of the current layer are calculated and transferred to the global buffer

from the PE array as the input data of ifmaps for the next layer. These data will

stay in the global buffer during the entire execution of the next layer for reuse.

This gives us an opportunity to execute the detector asynchronously from the host,

and check the values in global buffer to detect errors. We perform the detection
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asynchronously to keep the runtime overheads as low as possible.

Figure 8.7: Precision and recall of the symptom-based detectors across net-
works (Error bar is from 0.03% to 0.04%)

Evaluation: After deploying the detector, we measure its coverage by ran-

domly injecting 3,000 single bit-flip faults in each hardware component, using

all 3 FP data types and 32b rb10 in AlexNet, CaffeNet and NiN, one fault per

fault injection run. As we explained earlier, we do not include the 16b rb10 and

32b rb26 data types or the ConvNet network as they do not exhibit strong symp-

toms, and hence symptom-based detectors are unlikely to provide high coverage in

these cases. So there are a total of 3,000*5*4*3=180,000 faults injected for this

experiment.

We define two metrics in our evaluation: (1) Precision: 1 - (The number of

benign faults that are detected by the detector as SDC) / (The number of faults

injected), and (2) Recall: (The number of SDC-causing faults that are detected by

the detector) / (The number of total SDC-causing faults). The results are shown in

Figure 8.7A and Figure 8.7B for the precision and the recall respectively averaged

across the data types and components (due to space constraints, we only show the

average values). As can be seen, the average precision is 90.21% and the average

recall is 92.5%. Thus, we can reduce the FIT rates of Eyeriss using FLOAT and

FLOAT16 by 96% (from 8.55 to 0.35) and 70% (from 2.63 to 0.79) respectively

using the symptom-based detector technique (based on Equation 8.1).
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8.5.3 Selective Latch Hardening (SLH)

Latch hardening is a hardware error mitigation technique that adds redundant cir-

cuitry to sequential storage elements (i.e., latches) to make them less sensitive to

errors. Protecting the latches in the datapath can be vital for highly dependable sys-

tems as they become the reliability bottleneck once all buffers are protected (e.g.,

by ECCs). Given that the technology keeps scaling to smaller feature sizes [20, 40],

it will be more important to mitigate datapath faults in the future. There have been a

number of different hardened latch designs that differ in their overheads and levels

of protection, and latch hardening need not be applied in an all-or-nothing manner.

For example, Sullivan et al. [135] developed an analytical model for hardened latch

design space exploration and demonstrated cost-effective protection by hardening

only the most sensitive latches and by combining hardening techniques offering

differing strengths in an error-sensitivity proportional manner. Since we observed

and characterized asymmetric SDC sensitivity in different bits in Section 8.4.1, we

can leverage this model to selectively harden each latch using the most efficient

hardening technique to achieve sufficient error coverage at a low cost.

Design Space Exploration: There are a wide variety of latch hardening tech-

niques that vary in their level of protection and overheads. Table 8.9 shows the

three hardening techniques used by [135]; these same techniques are considered

in this chapter, though the methodology should apply with any available hardened

latches. The baseline design in the table refers to an unprotected latch.

Table 8.9: Hardened latches used in design space exploration

Latch Type Area Overhead FIT Rate Reduc-
tion

Baseline 1x 1x
Strike Suppression (RCC) 1.15x 6.3x
Redundant Node (SEUT) 2x 37x
Triplicated (TMR) 3.5x 1,000,000x

Evaluation: Figure 8.8A shows the AlexNet FIT rate reduction versus the

fraction of protected latches assuming a perfect hardening technique that com-

pletely eliminates errors. We plot this curve to illustrate the maximum benefit one

can achieve by protecting bits that are more sensitive to SDC with priority. β
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characterizes the asymmetry of SDC FIT rate in different bits (latches)—a high β

indicates that a small number of latches dictate the overall SDC probability. As

can be seen, there are negative exponential curves in the figure, such that we can

selectively protect only the most sensitive latches for area-efficient SDC reduction.

Figure 8.8: Selective Latch Hardening for the Eyeriss Accelerator running
AlexNet

Figure 8.8B and Figure 8.8C show the AlexNet FIT rate reduction versus the

latch area overhead when using each hardened latch, and the optimal combination

of the hardened designs (Multi) generated by the model. Due to space constraints,

we only show the AlexNet result for the FLOAT16 and 16b rb10 data types (the

other networks and data types exhibit similar trends). By exploiting the asymme-

try of error sensitivity in data type bits and combining complementary hardening

techniques, one can achieve significant protection while paying only modest area

costs. For example, applying the three hardening techniques together can reduce

the latch FIT rate by 100x, while incurring about 20% and 25% latch area over-

heads in FLOAT16 and 16b rb10, respectively. This translates to a chip-level area

overhead roughly akin to that required for ECC protection of the larger (and more

easily protected) SRAM structures.

8.6 Summary
DNNs (Deep Neural Networks) have gained prominence in recent years and they

are being deployed on hardware accelerators in self-driving cars for real-time im-
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age classification. In this chapter, we characterize the impact of soft errors on DNN

systems through a large-scale fault injection experiment with 4 popular DNNs run-

ning on a recently proposed DNN hardware accelerator. We find that the resilience

of a DNN system depends on the data types, values, data reuse, and the types of

layers in the design. Based on these insights, we formulate guidelines for design-

ing resilient DNN systems and propose two efficient DNN protection techniques

to mitigate soft errors. We find that the techniques significantly reduce the rate of

Silent Data Corruption (SDC) in DNN systems with acceptable performance and

area overheads.
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Chapter 9

Conclusion

In this chapter, we first summarize the dissertation and describe its expected im-

pact. We then briefly delineate possible directions for future work.

9.1 Summary
We had two main goals in this dissertation. First, we wanted to understand how

errors propagate in programs and lead to different types of failures. The under-

standing helped us come up with techniques that can evaluate programs’ resilience

and guide the protection of programs, which was our second goal. We considered

both general programs (i.e, CPU programs) and the ones executing on hardware

accelerators (i.e., GPUs and DNN accelerators). We applied both empirical and

analytical approaches to achieve our goals. The dissertation had three parts as fol-

low.

We first targeted an important but often neglected type of failure in CPU pro-

grams — LLCs. We conducted an empirical study in Chapter 4 to investigate error

propagation that lead to LLCs, and then characterized the code patterns propagat-

ing the faults. We found that it was possible to identify these code patterns through

program analyses, and to protect the code and eliminate LLCs in programs. Based

on the above observation, we proposed a heuristic-based technique that was able

to identify program locations that were responsible for more than 90% of LLCs in

programs. The proposed technique pruned the fault injection space by more than 9
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orders of magnitude compared with an exhaustive fault injection approach.

Secondly, we targeted SDCs, which are the most insidious type of failure, and

are challenging to identify. We started our investigation in CPU programs as they

are the most common applications. In Chapter 5, we explored an analytical ap-

proach to model error propagation that lead to SDCs in programs. Our proposed

model is able to accurately estimate the SDC probabilities of both programs and

individual instructions without any fault injections. The model can be also used

to guide selective protection in a given program in a fast and accurate manner. In

Chapter 6, we discussed how the error propagation can be affected by multiple

program inputs, and extended the analytical model to support multiple inputs. We

showed that the extended analytical model can be used to bound the SDC prob-

ability of a give program with multiple inputs without performing extensive fault

injections.

Finally, we investigated error propagation in the applications that run on hard-

ware accelerators such as GPUs and DNN accelerators (Chapter 7 and 8). Because

these accelerators and applications have different architectures and programming

models, we observed different error propagation patterns compared with CPU pro-

grams. We first built the tools that can be used to inject faults on the applications,

then characterized their unique error propagation patterns. Based on the observa-

tions, we proposed error mitigation techniques that were specifically targeted to the

accelerators and applications running on them, and hence more cost-effective than

generic techniques.

9.2 Expected Impact
The first impact of this dissertation is to provide insights regarding identifying

vulnerable program locations that lead to different types of failures, for applica-

tion developers to evaluate programs’ resilience and mitigate errors. Traditionally,

vulnerable program locations were identified through extensive fault injection sim-

ulations which are extremely time-consuming. Because of this, developers were

loathe to integrate resilience techniques into the software development process.

We demonstrated (Chapter 4) that the code that lead to certain type of faults such

as LLCs mostly fall into certain code patterns, which can be identified by program
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analysis techniques. This insight became the driving force for the rest of the thesis.

It inspired us to investigate program-level characterization of error propagation that

lead to different types of faults on different platforms, which in turn allowed us to

build automated techniques to identify the vulnerable parts of the program for the

protection based on different reliability targets.

Furthermore, our research in Chapter 5, and 6 demonstrated that a systematic

characterization of error propagation also enables us to build an analytical model

to track error propagation in programs. The analytical model not only identifies the

vulnerable parts that propagate errors, but also quantitively analyzes their propa-

gation probabilities. Using TRIDENT, we showed that it is even possible to com-

pletely get rid of fault injection and hence significantly shorten the time taken in the

whole evaluation process from a few days to a few minutes. The high-speed per-

formance of the model and its capability of quantification imply that the technique

may be integrated into compiler toolchains for developers to fine tune programs’

resilience online.

Other than the practicability, the analytical model, TRIDENT and VTRI-

DENT, also revealed the detailed steps of error propagation. Traditionally, re-

searchers reply on FI approaches to study error propagation. In FI, faults are re-

peatedly injected during the executions of programs, and the users wait util the end

of the executions in order to observe failures, if any. This is a black-box technique,

because it does not provide much insight into what happens during the propagation

of the faults that are injected. Hence, for decades, researchers do not really have

a solid understanding of error propagation, not to mention how to design highly

cost-effective error detectors. In contrast, the analytical aspects of the models al-

low researchers to understand the details of error propagation and obtain detailed

insights. Therefore, we believe that in the future, more efficient and cost-effective

error detection and mitigation techniques can be developed based on the knowledge

of error propagation characteristics.

Last but not least, this dissertation places the reliability problem of accelerator

applications in the limelight of system research. In the past, researchers focused

on the performance aspects of the accelerators because they were initially designed

for performance. However, with the rising deployment of accelerators in safety-

critical applications, the reliability of accelerators has started playing a much more
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important role. As discussed in Chapter 7 and Chapter 8, hardware accelerators

and applications can be vulnerable to hardware errors without protections. Our

work has focused on building handy tools for studying error propagation in the

accelerators and applications, and demonstrated that their error propagation has

very different propagation patterns. We show it is possible to mitigate the error

propagation in accelerators based on their unique characteristics in a cost-effective

manner. We expect other researchers will leverage our tools to conduct reliability

studies, and design more reliable accelerators and applications in the future.

9.3 Future Work
We propose four potential future work directions as follows.

Direction 1: Modeling Error Propagation in GPU Programs
In this thesis, CRASHFINDER, TRIDENT and VTRIDENT in Chapter 4, 5

and Chapter 6 focused on error propagation that lead to LLCs and SDCs in CPU

programs. As mentioned in Chapter 7, the increasing error rate and rising popu-

larity of GPUs accelerate the demand of developing fault-tolerant GPU programs.

Since GPU programs typically contain hundreds of thousands of threads, they have

a much larger space of fault injection sites compared with the CPU programs with

similar lines of code. Hence, the resilience evaluation of GPU programs can be

much more time-consuming in the development of fault-tolerant GPU applica-

tions [50, 104]. One way to speed up the evaluation process is to extend our models

in this thesis to support GPU programs. LLFI-GPU introduced in Chapter 7 can

be used to obtain further program-level insights of error propagation in GPU pro-

grams in order to achieve the goal. Those future techniques can be used to design

cost-effective error detectors for GPU programs and integrated into GPU compiler

toolchains to enable online tuning of GPU programs’ resilience in the software

development process.

Direction 2: Pruning Profiling Space
Another direction to extend our analytical models, TRIDENT and VTRI-

DENT, are through pruning profiling space in programs. As discussed in Chap-

ter 5, the performance bottleneck in TRIDENT is the profiling phase which records

a large amount of information of different program states etc. Studies [65, 104,
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124] have shown that it is possible to select only a small subset of representative

states to project the overall error resilience of a program. Hence, one direction to

pursue is to find the subset of the representative states to profile when constructing

the model, in order to speed up the model.

Direction 3: Other Fault Models
This dissertation mainly focused on the faults that occur in the data path of pro-

cessors, which is one of the most challenging types of faults to detect and mitigate.

Faults originating in memory are another major source. Current protection tech-

niques leverage Error Correction Code (ECC) to mitigate memory faults. Since

ECC memory ncurs non-negligible overheads in area, performance and energy

consumption, they are mainly deployed in high-end systems such as supercomput-

ers and aerospace applications. However, with increasing error rates, it becomes

necessart to protect systems from memory faults in a tuneable and cost-effective

way in future commodity systems. Therefore, selective protections at the levels of

instruction, process, and applications need to be developed, which require one to

understand error propagation caused by memory faults - this is an interesting future

research direction.

Direction 4: Secure-Enough Software Systems
One of the main advantages of software error mitigation techniques is to pro-

vide flexible and selective protection in programs. Through selective protection,

one can provide ”reliable-enough” computation for commodity systems with high

error coverage and low overheads, just like what demonstrated in this thesis. In

contrast, today’s security techniques are mostly designed to be either on and off,

which may incur huge runtime overhead. We believe the idea of the reliable-

enough computation can also be expanded to the security domain. For example, in

one of the prevalent security attacks, row-hammer attack, malicious users can lever-

age hardware deficiencies of memory modules to flip bits in the logic values that

are stored in memory, and manipulate the normal computation of programs [101].

These bit-flip errors, while similar to the soft error that we discussed in this disser-

tation, however, may have different impact on program executions and their conse-

quences. Characterizing and understanding error propagation of the bit-flip errors

introduced by row-hammer attacks in programs can be an interesting direction.

Long-Term Direction: Formal Methods

160



In this thesis, our proposed techniques guiding selective protection are based

on empirical observations. As a result, they do not provide any guarantees on the

error coverage and performance overhead of the protections. One way to provide

such guarantees is to build a mathematically rigorous model of fault-tolerant ap-

plications, so that developers can not only verify the property of error resilience in

a more formal way, but also use mathematical proof as a complement to test the

efficiency of the protections and ensure their correct behaviors.
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