
Aleksandar Milenkoski

Evaluation of Intrusion Detection Systems
in Virtualized Environments

Aleksandar Milenkoski

Evaluation of Intrusion Detection Systems
in Virtualized Environments

Dissertation, Julius-Maximilians-Universität Würzburg
Fakultät für Mathematik und Informatik, 2016
Erster Gutachter: Prof. Dr. Samuel Kounev
Zweiter Gutachter: Prof. Dr. Felix Freiling
Dritter Gutachter: Prof. Dr. Michael Meier

This document—excluding the cover—is licensed under the
Creative Commons Attribution-ShareAlike 3.0 DE License (CC BY-SA 3.0 DE):
http://creativecommons.org/licenses/by-sa/3.0/de/

The cover page is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 3.0 DE License (CC BY-NC-ND 3.0 DE):
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

http://creativecommons.org/licenses/by-sa/3.0/de/
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Contents

Abstract xiii

Zusammenfassung xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement: Shortcomings of Existing Approaches 3

1.2.1 Workloads . 3
1.2.2 Metrics and Measurement Methodologies 5

1.3 Contributions of this Thesis . 7
1.4 Outline . 11

2 Foundations 13
2.1 Intrusion Detection Systems . 13

2.1.1 Attacks and Common Security Mechanisms 13
2.1.2 Intrusion Detection Systems: A Systematization 16

2.2 Evaluation of Intrusion Detection Systems 19
2.2.1 Application Scenarios . 19
2.2.2 Historical Overview . 21

2.3 Summary . 23

3 IDS Evaluation Design Space: A Survey of Common Practices 25
3.1 Related Work . 25
3.2 Workloads . 26

3.2.1 Pure Benign→ Executable Form→Workload Drivers 27
3.2.2 Pure Benign→ Executable Form→Manual Generation 28
3.2.3 Pure Malicious→ Executable Form→ Exploit Database 29
3.2.4 Pure Malicious→ Executable Form→ Vulnerability and Attack

Injection . 32
3.2.5 Pure Malicious/Pure Benign/Mixed → Trace Form → Trace

Acquisition . 34
3.2.6 Pure Malicious/Pure Benign/Mixed → Trace Form → Trace

Generation . 36
3.3 Metrics . 40

3.3.1 Security-related→ Basic . 41
3.3.2 Security-related→ Composite 43

3.4 Measurement Methodology . 50
3.4.1 Attack Detection-related Properties 54

v

Contents

3.4.2 Resource Consumption-related Properties 58
3.4.3 Workload Processing Capacity 60
3.4.4 Performance Overhead . 61

3.5 Summary: Open Challenges and IDS Evaluation Guidelines 62
3.5.1 Open Challenges: Evaluating Hypervisor-based IDSs 63
3.5.2 IDS Evaluation Guidelines . 69

4 An Analysis of Hypercall Handler Vulnerabilities 77
4.1 Sample Set of Hypercall Vulnerabilities 78
4.2 Analysis of the Hypercall Attack Surface 80

4.2.1 Hypervisor’s Perspective: Origins of Hypercall Vulnerabilities . 80
4.2.2 Hypervisor’s Perspective: Effects of Hypercall Attacks 87
4.2.3 Attacker’s Perspective: Attack Models 87

4.3 Extending the Frontiers . 88
4.3.1 Vulnerability Discovery and Secure Programming Practices . . 90
4.3.2 Security Mechanisms . 91

4.4 Summary: Lessons Learned . 93

5 Evaluation of Intrusion Detection Systems Using Attack Injection 97
5.1 Background and Related Work . 98
5.2 Approach . 100

5.2.1 Planning . 100
5.2.2 Testing . 103

5.3 hInjector . 104
5.3.1 hInjector Architecture . 105
5.3.2 hInjector Design Criteria . 106
5.3.3 Injector: Performance Overhead 108

5.4 Case Study . 109
5.4.1 Case Study: Planning . 109
5.4.2 Case Study: Testing . 115

5.5 Summary . 118

6 Quantifying Attack Detection Accuracy 119
6.1 Related Work . 120
6.2 Elasticity and Accuracy . 122
6.3 Metric and Measurement Methodology 125

6.3.1 Metric Design . 125
6.3.2 Metric Construction . 127
6.3.3 Properties of the HF Metric . 130

6.4 Case Studies . 131
6.4.1 Hypervisor Configurations . 132
6.4.2 IDS Configurations . 135

6.5 Summary . 139

vi

Contents

7 Conclusions and Outlook 141
7.1 Summary . 141
7.2 Outlook . 144

7.2.1 Future Topics in IDS Evaluation 144
7.2.2 Security of Hypervisors’ Hypercall Interfaces 146
7.2.3 Evaluation of Intrusion Detection Systems Using Attack Injection147
7.2.4 Quantifying Attack Detection Accuracy 148
7.2.5 Future Evaluation Scenarios . 149

Appendices 151

A Technical Information on Vulnerabilities of Hypercall Handlers 153
A.1 Hypercall memory_op . 154

A.1.1 Vulnerability CVE-2012-3496 . 154
A.1.2 Vulnerability CVE-2012-5513 . 157

A.2 Hypercall gnttab_op . 159
A.2.1 Vulnerability CVE-2012-4539 . 160
A.2.2 Vulnerability CVE-2012-5510 . 163
A.2.3 Vulnerability CVE-2013-1964 . 165

A.3 Hypercall set_debugreg . 168
A.3.1 Vulnerability CVE-2012-3494 . 168

A.4 Hypercall physdev_op . 171
A.4.1 Vulnerability CVE-2012-3495 . 171

A.5 Hypercall mmuext_op . 173
A.5.1 Vulnerability CVE-2012-5525 . 173

List of Figures 177

List of Tables 179

Acronyms 181

Bibliography 185

vii

Publication List

Peer-Reviewed Journal Articles

[MVK+15] Aleksandar Milenkoski, Marco Vieira, Samuel Kounev, Alberto Avritzer,
and Bryan D. Payne. Evaluating Computer Intrusion Detection Systems: A Survey of
Common Practices. ACM Computing Surveys, 48(1):12:1–12:41, Sep 2015, ACM, New
York, NY, USA. 5-year Impact Factor (2014): 5.949.

Books

[KKMZ17] Samuel Kounev, Jeffrey O. Kephart, Aleksandar Milenkoski, and Xiaoyun
Zhu. Self-Aware Computing Systems. Springer Verlag Berlin Heidelberg, Germany,
2016. To appear in 2017, number of pages: approximately 650.

Peer-Reviewed International Conference Contributions

Full Research Papers

[MJA+16] Aleksandar Milenkoski, K. R. Jayaram, Nuno Antunes, Marco Vieira, and
Samuel Kounev. Quantifying the Attack Detection Accuracy of Intrusion Detection
Systems in Virtualized Environments. In Proceedings of The 27th IEEE International
Symposium on Software Reliability Engineering (ISSRE 2016), Washington DC, USA,
October 2016. IEEE, IEEE Computer Society. To Appear.

[MPA+15] Aleksandar Milenkoski, Bryan D. Payne, Nuno Antunes, Marco Vieira,
Samuel Kounev, Alberto Avritzer, andMatthias Luft. Evaluation of Intrusion Detection
Systems in Virtualized Environments Using Attack Injection. In The 18th International
Symposium on Research in Attacks, Intrusions, and Defenses (RAID 2015). Springer,
November 2015. Acceptance Rate: 23%.

[MPA+14] Aleksandar Milenkoski, Bryan D. Payne, Nuno Antunes, Marco Vieira,
and Samuel Kounev. An Analysis of Hypercall Handler Vulnerabilities. In Proceed-
ings of The 25th IEEE International Symposium on Software Reliability Engineering
(ISSRE 2014). IEEE, 2014. Acceptance Rate: 25%, Best Paper Award Nomination.

ix

Contents

Short/Work-in-progress Papers

[CAV+15] Diogo Carvalho, Nuno Antunes, Marco Vieira, Aleksandar Milenkoski, and
Samuel Kounev. Challenges of Assessing the Hypercall Interface Robustness (Fast
Abstract). In The 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2015). IEEE, June 2015.

[MPA+13] Aleksandar Milenkoski, Bryan D. Payne, Nuno Antunes, Marco Vieira,
and Samuel Kounev. HInjector: Injecting Hypercall Attacks for Evaluating VMI-based
Intrusion Detection Systems. In Poster Reception at the 2013 Annual Computer Secu-
rity Applications Conference (ACSAC 2013), Maryland, USA, 2013. Applied Computer
Security Associates (ACSA).

[MK12] AleksandarMilenkoski and Samuel Kounev. Towards Benchmarking Intrusion
Detection Systems for Virtualized Cloud Environments (Work-in-Progress Paper). In
Proceedings of the 7th International Conference for Internet Technology and Secured
Transactions (ICITST 2012), pages 562–563, New York, USA, December 2012. IEEE.

Research Project Grants

[evi16] EvIDencE: Testing Intrusion Detection Systems in Virtualized Environments;
EvIDencE: Testen von Systemen zur Angriffserkennung in virtualisierten Umgebungen
(orig., ger.), 2016. Awarded by the German Research Foundation; Deutsche Forschungs-
gemeinschaft (DFG).

The project proposal written for this grant, submitted with Prof. Dr. Samuel Kounev, is
based on this thesis and captures future work directly related to the contributions of the thesis.

Peer-Reviewed Magazine Articles

[MIK+16] Aleksandar Milenkoski, Alexandru Iosup, Samuel Kounev, Kai Sachs, Diane
E. Mularz, Jonathan A. Curtiss, Jason J. Ding, Florian Rosenberg, and Piotr Rygielski.
CUP: A Formalism for Expressing Cloud Usage Patterns for Experts and Non-Experts.
IEEE Cloud Computing, 2016. To Appear.

Book Chapters

[MJK17] Aleksandar Milenkoski, K. R. Jayaram, and Samuel Kounev. Benchmarking
Intrusion Detection Systems with Adaptive Provisioning of Virtualized Resources. In
Samuel Kounev, Jeffrey O. Kephart, Aleksandar Milenkoski, and Xiaoyun Zhu, editors,
Self-Aware Computing Systems. Springer Verlag Berlin Heidelberg, Germany, 2017.
To Appear.

x

Contents

[JMK17] K. R. Jayaram, Aleksandar Milenkoski, and Samuel Kounev. Software Ar-
chitectures for Self-Protection in IaaS Clouds. In Samuel Kounev, Jeffrey O. Kephart,
Aleksandar Milenkoski, and Xiaoyun Zhu, editors, Self-Aware Computing Systems.
Springer Verlag Berlin Heidelberg, Germany, 2017. To Appear.

[HBK+17] Nikolas Herbst, Steffen Becker, Samuel Kounev, Heiko Koziolek, Martina
Maggio, Aleksandar Milenkoski and Evgenia Smirni. Metrics and Benchmarks for
Self-Aware Computing Systems. In Samuel Kounev, Jeffrey O. Kephart, Aleksandar
Milenkoski, and Xiaoyun Zhu, editors, Self-Aware Computing Systems. Springer
Verlag Berlin Heidelberg, Germany, 2017. To Appear.

Edited Dagstuhl Reports

[Sam15] Samuel Kounev, Xiaoyun Zhu, Jeffrey O. Kephart, and Marta Kwiatkowska,
editors. Aleksandar Milenkoski, assistant editor. Model-driven Algorithms and Ar-
chitectures for Self-Aware Computing Systems. Dagstuhl Reports, 2015. Dagstuhl,
Germany.

Technical Reports

[MVP+14] Aleksandar Milenkoski, Marco Vieira, Bryan D. Payne, Nuno Antunes,
and Samuel Kounev. Technical Information on Vulnerabilities of Hypercall Handlers.
Technical Report SPEC-RG-2014-001 v.1.0, SPEC Research Group - IDS Benchmarking
Working Group, Standard Performance Evaluation Corporation (SPEC), 7001 Heritage
Village Plaza Suite 225, Gainesville, VA 20155, USA, August 2014.

[MKA+13] Aleksandar Milenkoski, Samuel Kounev, Alberto Avritzer, Nuno Antunes,
and Marco Vieira. On Benchmarking Intrusion Detection Systems in Virtualized En-
vironments. Technical Report SPEC-RG-2013-002 v.1.0, SPEC Research Group - IDS
BenchmarkingWorking Group, Standard Performance Evaluation Corporation (SPEC),
7001 Heritage Village Plaza Suite 225, Gainesville, VA 20155, USA, June 2013.

[MIK+13] Aleksandar Milenkoski, Alexandru Iosup, Samuel Kounev, Kai Sachs, Piotr
Rygielski, Jason Ding, Walfredo Cirne, and Florian Rosenberg. Cloud Usage Patterns:
A Formalism for Description of Cloud Usage Scenarios. Technical Report SPEC-RG-
2013-001 v.1.0.1, SPEC Research Group - CloudWorking Group, Standard Performance
Evaluation Corporation (SPEC), 7001 Heritage Village Plaza Suite 225, Gainesville, VA
20155, USA, May 2013.

Industry White Papers

[Ale16] Aleksandar Milenkoski, Bernd Jaeger, Kapil Raina, Mason Harris, Saif Chaudh-
ry, Sivadon Chasiri, Veronica David, and Wenmao Liu. Security Position Paper: Net-
work Function Virtualization. Cloud Security Alliance - Virtualization Working Group,

xi

Contents

March 2016.

[Abh15] Abhik Chaudhuri, Heberto Ferrer, Hemma Prafullchandra, JD Sherry, Kelvin
Ng, Xiaoyu Ge, Yao Sing and Yiak Por (Main Contributors). Aleksandar Milenkoski
(Minor Contributor). Best Practices for Mitigating Risks in Virtualized Environments.
Cloud Security Alliance - Virtualization Working Group, April 2015.

xii

Abstract

Virtualization allows the creation of virtual instances of physical devices, such as
network and processing units. In a virtualized system, governed by a hypervisor,
resources are shared among virtual machines (VMs). Virtualization has been receiving
increasing interest as away to reduce costs through server consolidation and to enhance
the flexibility of physical infrastructures. Although virtualization provides many
benefits, it introduces new security challenges; that is, the introduction of a hypervisor
introduces threats since hypervisors expose new attack surfaces.
Intrusion detection is a common cyber security mechanism whose task is to detect

malicious activities in host and/or network environments. This enables timely reaction
in order to stop an on-going attack, or to mitigate the impact of a security breach. The
wide adoption of virtualization has resulted in the increasingly common practice of
deploying conventional intrusion detection systems (IDSs), for example, hardware IDS
appliances or common software-based IDSs, in designated VMs as virtual network
functions (VNFs). In addition, the research and industrial communities have developed
IDSs specifically designed to operate in virtualized environments (i.e., hypervisor-
based IDSs), with components both inside the hypervisor and in a designated VM.
The latter are becoming increasingly common with the growing proliferation of vir-
tualized data centers and the adoption of the cloud computing paradigm, for which
virtualization is as a key enabling technology.

To minimize the risk of security breaches, methods and techniques for evaluating
IDSs in an accurate manner are essential. For instance, one may compare different IDSs
in terms of their attack detection accuracy in order to identify and deploy the IDS that
operates optimally in a given environment, thereby reducing the risks of a security
breach. However, methods and techniques for realistic and accurate evaluation of the
attack detection accuracy of IDSs in virtualized environments (i.e., IDSs deployed as
VNFs or hypervisor-based IDSs) are lacking. That is, workloads that exercise the sen-
sors of an evaluated IDS and contain attacks targeting hypervisors are needed. Attacks
targeting hypervisors are of high severity since theymay result in, for example, altering
the hypervisors’s memory and thus enabling the execution of malicious code with hy-
pervisor privileges. In addition, there are no metrics and measurement methodologies
for accurately quantifying the attack detection accuracy of IDSs in virtualized environ-
ments with elastic resource provisioning (i.e., on-demand allocation or deallocation of
virtualized hardware resources to VMs). Modern hypervisors allow for hotplugging
virtual CPUs and memory on the designated VMwhere the intrusion detection engine
of hypervisor-based IDSs, as well as of IDSs deployed as VNFs, typically operates.
Resource hotplugging may have a significant impact on the attack detection accuracy
of an evaluated IDS, which is not taken into account by existing metrics for quantifying

xiii

Abstract

IDS attack detection accuracy. This may lead to inaccurate measurements, which, in
turn, may result in the deployment of misconfigured or ill-performing IDSs, increasing
the risk of security breaches.
This thesis presents contributions that span the standard components of any sys-

tem evaluation scenario: workloads, metrics, and measurement methodologies. The
scientific contributions of this thesis are:

• A comprehensive systematization of the common practices and the state-of-the-
art on IDS evaluation. This includes: (i) a definition of an IDS evaluation design
space allowing to put existing practical and theoretical work into a common
context in a systematic manner; (ii) an overview of common practices in IDS
evaluation reviewing evaluation approaches and methods related to each part of
the design space; (iii) and a set of case studies demonstrating how different IDS
evaluation approaches are applied in practice. Given the significant amount of
existing practical and theoretical work related to IDS evaluation, the presented
systematization is beneficial for improving the general understanding of the
topic by providing an overview of the current state of the field. In addition, it
is beneficial for identifying and contrasting advantages and disadvantages of
different IDS evaluation methods and practices, while also helping to identify
specific requirements and best practices for evaluating current and future IDSs.

• An in-depth analysis of common vulnerabilities of modern hypervisors as well
as a set of attack models capturing the activities of attackers triggering these
vulnerabilities. The analysis includes 35 representative vulnerabilities of hy-
percall handlers (i.e., hypercall vulnerabilities). Hypercalls are software traps
from a kernel of a VM to the hypervisor. The hypercall interface of hypervisors,
among device drivers and VM exit events, is one of the attack surfaces that hy-
pervisors expose. Triggering a hypercall vulnerability may lead to a crash of
the hypervisor or to altering the hypervisor’s memory. We analyze the origins
of the considered hypercall vulnerabilities, demonstrate and analyze possible
attacks that trigger them (i.e., hypercall attacks), develop hypercall attack models
(i.e., systematized activities of attackers targeting the hypercall interface), and
discuss future research directions focusing on approaches for securing hypercall
interfaces.

• A novel approach for evaluating IDSs enabling the generation of workloads that
contain attacks targeting hypervisors, that is, hypercall attacks. We propose an
approach for evaluating IDSs using attack injection (i.e., controlled execution of
attacks during regular operation of the environment where an IDS under test
is deployed). The injection of attacks is performed based on attack models that
capture realistic attack scenarios. We use the hypercall attack models developed
as part of this thesis for injecting hypercall attacks.

• A novel metric and measurement methodology for quantifying the attack detec-
tion accuracy of IDSs in virtualized environments that feature elastic resource
provisioning. We demonstrate how the elasticity of resource allocations in such
environments may impact the IDS attack detection accuracy and show that using

xiv

existing metrics in such environments may lead to practically challenging and
inaccurate measurements. We also demonstrate the practical use of the metric we
propose through a set of case studies, where we evaluate common conventional
IDSs deployed as VNFs.

In summary, this thesis presents the first systematization of the state-of-the-art on
IDS evaluation, considering workloads, metrics and measurement methodologies as
integral parts of every IDS evaluation approach. In addition, we are the first to examine
the hypercall attack surface of hypervisors in detail and to propose an approach using
attack injection for evaluating IDSs in virtualized environments. Finally, this thesis
presents the first metric and measurement methodology for quantifying the attack
detection accuracy of IDSs in virtualized environments that feature elastic resource
provisioning.

From a technical perspective, as part of the proposed approach for evaluating IDSs,
this thesis presents hInjector, a tool for injecting hypercall attacks. We designed hIn-
jector to enable the rigorous, representative, and practically feasible evaluation of
IDSs using attack injection. We demonstrate the application and practical useful-
ness of hInjector, as well as of the proposed approach, by evaluating a representative
hypervisor-based IDS designed to detect hypercall attacks. While we focus on evaluat-
ing the capabilities of IDSs to detect hypercall attacks, the proposed IDS evaluation
approach can be generalized and applied in a broader context. For example, it may be
directly used to also evaluate security mechanisms of hypervisors, such as hypercall
access control (AC) mechanisms. It may also be applied to evaluate the capabilities
of IDSs to detect attacks involving operations that are functionally similar to hyper-
calls, for example, the input/output control (ioctl) calls that the Kernel-based Virtual
Machine (KVM) hypervisor supports.
For IDSs in virtualized environments featuring elastic resource provisioning, our

approach for injecting hypercall attacks can be applied in combination with the attack
detection accuracy metric and measurement methodology we propose. Our approach
for injecting hypercall attacks, and our metric and measurement methodology, can
also be applied independently beyond the scenarios considered in this thesis. The
wide spectrum of security mechanisms in virtualized environments whose evaluation
can directly benefit from the contributions of this thesis (e.g., hypervisor-based IDSs,
IDSs deployed as VNFs, and AC mechanisms) reflects the practical implication of the
thesis.

xv

Zusammenfassung

Virtualisierung ermöglicht die Erstellung virtueller Instanzen physikalischer Geräte,
wie z.B. Netzwerkgeräten und Prozessoren. In einem virtualisierten System (welches
von einem Hypervisor kontrolliert wird), wird von virtuellen Maschinen (engl. virtual
machine - VM) gemeinsam auf Ressourcen zugegriffen. Die Virtualisierung wird
zunehmend als technische Möglichkeit in Betracht gezogen, um durch Serverkonsoli-
dierung Kosten zu reduzieren und die Flexibilität physikalischer Infrastrukturen zu
erhöhen. Auch wenn die Virtualisierung viele Vorteile bietet, so ergeben sich doch
neue Herausforderungen im Bereich der IT-Sicherheit — ein Hypervisor bietet nämlich
neuartige Angriffsflächen.

Bei der Angriffserkennung handelt es sich um einen weitverbreiteten IT-Sicherheits-
mechanismus, mit welchem bosartige Aktivitäten in Rechnern oder Netzwerken iden-
tifiziert werden. So können Angriffe rechtzeitig gestoppt oder Sicherheitsverletzungen
in ihrer Schwere gemindert werden. Als Folge der weiten Verbreitung von Virtual-
isierung ergibt sich der verstärkte Einsatz konventioneller, hard- oder softwarebasierter
Angriffserkennungssysteme (engl. intrusion detection system - IDS) im Rahmen von
dedizierten VMs als virtuelle Netzwerkfunktionen (engl. virtual network function
- VNF). Zusätzlich wurden im Forschungs- und Industrieumfeld IDSs konkret für
die Verwendung in virtualisierten Umgebungen entwickelt (d.h. hypervisor-basierte
IDSs), die in Virtualisierungsebenenmit Komponenten innerhalb des Hypervisors bzw.
innerhalb einer dedizierten VM eingesetzt werden. Letztere werden immer üblicher,
weil sich die Anzahl der virtualisierten Rechenzentren kontinuierlich vermehrt und
im Paradigma des Cloud-Computings die Virtualisierung eine Schlüsseltechnologie
darstellt.

Um die Risiken durch Sicherheitsverletzungen zu minimieren, sind Methoden und
Verfahren zur Bewertung eines IDS von zentraler Bedeutung. Zum Beispiel können
unterschiedliche IDSs hinsichtlich ihrer Angriffserkennungsgenauigkeit verglichen
werden. Dies hilft um das IDS zu identifizieren und einzusetzen, dessen Leistung als
optimal zu bewerten ist. So vermindert sich das Risiko einer Sicherheitsverletzung.
Jedoch fehlen Methoden bzw. Verfahren zur realistischen und präzisen Bewertung der
Angriffserkennungsgenauigkeit von IDSs in virtualisierten Umgebungen (d.h. IDSs
eingesetzt als VNFs oder hypervisor-basierte IDSs). Hierfür sind Arbeitslasten für
die Sensoren von zu evaluierenden IDSs notwendig, die Angriffe auf den Hypervisor
enthalten. Angriffe auf den Hypervisor sind sehr kritisch, weil sie z.B. Speicherinhalte
eines Hypervisors so verändern können, dass dieser schädlichen Code mit erhöhten
Privilegien ausführt. Ebenfalls existieren keine Metriken und Messmethodiken, mit
denen die Angriffserkennungsgenauigkeit von IDSs in elastischen Umgebungen (d.h.
bedarfsgerechte Zuweisungen vonHardware-Ressourcen zuVMs) präzise quantifiziert

xvii

Zusammenfassung

werden kann. Bei modernen Hypervisoren können virtuelle CPUs sowie Speichere-
inheiten während des Betriebs an die dedizierte VM zugewiesen werden, in welcher
die Angriffserkennung des IDSs ausgeführt wird. Die Zuweisung von Ressourcen
im laufenden Betrieb (“Hotplugging“) kann sich beträchtlich auf die Angriffserken-
nungsgenauigkeit von zu evaluierenden IDSs auswirken, was jedoch von existierenden
Metriken nicht berücksichtigt wird. Dies hat ggf. ungenaue Messungen zur Folge, was
sich entsprechend im Einsatz von fehlerhaft konfigurierten oder mängelbehafteten
IDSs widerspiegelt und so das Risiko von Sicherheitsverletzungen erhöht.

Diese Arbeit präsentiert Beiträge, die die Standardkomponenten eines jeden Szenar-
ios zur Systembewertung umfassen: Arbeitslasten, Metriken und Messmethodiken.
Die wissenschaftlichen Beiträge dieser Arbeit sind:

• Eine umfassende Systematisierung der verwendeten Praktiken und des aktuelles
Standes bei der Bewertung von IDSs. Die Systematisierung enthält: (i) die Defini-
tion eines Entwurfraumes für die IDS-Bewertung, welches praktische und theo-
retische Arbeiten im Bereich IDS-Bewertung systematisch in einen einheitlichen
Kontext stellt; (ii) einen Überblick über verwendete Praktiken im Bereich IDS-
Bewertung, der Ansätze und Methodiken jedes Teils des Entwurfraumes bein-
haltet; (iii) und eine Sammlung an Fallstudien, die demonstriert, wie unter-
schiedliche IDS-Bewertungsansätze in der Praxis angewendet werden. Vor dem
Hintergrund der beträchtlichen Menge bestehender praktischer und theoretis-
cher Arbeiten im Bereich IDS-Bewertung erweist sich die Systematisierung als
vorteilhaft zur Verbesserung des allgemeinen Themenverständnisses, indem ein
Überblick zur aktuellen Sachlage des Themengebietes geliefert wird. Zusätzlich
ist dies vorteilhaft bei der Identifizierung und Gegenüberstellung von Vor- und
Nachteilen unterschiedlicher IDS-Bewertungsmethodiken und -praktiken. Es
hilft ebenfalls Vorgaben und Empfehlungen für die Bewertung gegenwärtiger
wie auch zukünftiger IDSs zu identifizieren.

• Eine detaillierte Analyse von Schwachstellen von Hypervisoren wird präsentiert,
sowie eine Menge von Angriffsmodellen, die die Aktivitäten eines Angreifers
umfassen, der diese Schwachstellen auslöst. Diese Analyse umfasst 35 Schwach-
stellen in Hypercall-Routinen, sogenannte Hypercall-Schwachstellen. Hypercalls
sind an denHypervisor gerichtete „Software-Traps“ aus dem Betriebssystemkern
einer VM. Die Hypercall-Schnittstelle von Hypervisoren ist — neben Geräte-
treibern und „VM exit“-Ereignissen — eine ihrer Angriffsflächen. Wird die
gegenüber einem Hypercall bestehende Schwachstelle ausgenutzt, kann dies zu
einem Absturz des Hypervisors oder zu einer Änderung seines Speicherinhalts
führen. Wir analysieren die Gründe der betrachteten Hypercall-Schwachstellen,
demonstrieren und analysieren Angriffe, die solche Schwachstellen ausnutzen
(d.h. Hypercall-Angriffe), entwickeln Hypercall-Angriffsmodelle (nämlich sys-
tematisierte, auf die Schnittstelle der Hypercalls gerichtete Aktivitäten der An-
greifer) und diskutieren zukünftige Forschungsrichtungen, die Ansätze betra-
chten, um die Schnittstellen von Hypercalls abzusichern.

• Ein neuartiger Ansatz zur Bewertung von IDSs, der die Generierung von Ar-
beitslasten ermöglichen, die Hypercall-Angriffe enthalten. Wir schlagen einen

xviii

Ansatz zur Bewertung von IDSs durch die Injektion vonAngriffen (d.h. Hypercall-
Angriffen) vor. Es handelt sich hier um die kontrollierte Ausführung von An-
griffen in einer regulären Systemumgebung, in welcher das betrachtete IDS
eingesetzt wird. Die Injektion von Angriffen folgt Angriffsmodellen, die durch
Analyse realistischer Angriffe erstellt wurden. Wir verwenden die als Teil dieser
Arbeit dargestellten Hypercall-Angriffsmodelle zur Injektion von Hypercall-
Angriffen.

• Eine neuartige Metrik und Messmethodik zur präzisen Quantifizierung der
Angriffserkennungsgenauigkeit von IDSs in virtualisierten elastischen Umge-
bungen. Wir demonstrieren, wie die Elastizität virtualisierter Umgebungen sich
auf die Angriffserkennungsgenauigkeit von IDSs auswirkt und zeigen, dass die
Verwendung existierender Metriken zu schwierigen und ungenauen Messungen
bei der Bewertung von IDSs in virtualisierten elastischen Umgebungen führen.
Ausserdem zeigen wir den praktischen Nutzen der von uns vorgeschlagenen
Metrik in mehreren Fallstudien.

Zusammenfassend präsentiert diese Arbeit die erste Systematisierung des Stands
der Technik bei der Bewertung von IDSs unter Beachtung der Arbeitslasten, Metriken
und Messmethodiken als integraler Teil eines jeden Ansatzes zur IDS Bewertung.
Außerdem sind wir die ersten, die Hypercall-Angriffsflächen im Detail untersuchen
und die einenAnsatz zur Bewertung von IDSs in virtualisiertenUmgebungen durch die
Injektion von Angriffen vorschlagen. Abschließend präsentiert diese Arbeit die erste
Metrik und Messmethodik zur Quantifizierung der Angriffserkennungsgenauigkeit
von IDSs in virtualisierten elastischen Umgebungen.

Aus technischer Sicht präsentieren wir in dieser Arbeit, als Teil des vorgeschlagenen
Ansatzes zur Bewertung von IDSs, ein Werkzeug mit der Bezeichnung „hInjector“,
welches zur Injektion von Hypercall-Angriffen dient. Dieses Werkzeug wurde entwor-
fen, um die gründliche, repräsentative und praktisch umsetzbare Bewertung von IDSs
per Injektion von Angriffen zu ermöglichen. Wir demonstrieren die Anwendung und
den praktischen Wert sowohl von hInjector als auch des vorgeschlagenen Ansatzes
durch die Bewertung eines repräsentativen, hypervisor-basierten IDS, das zur Erken-
nung von Hypercall-Angriffen konzipiert ist. Während wir uns auf die Bewertung
der Fähigkeiten von IDSs zur Erkennung von Hypercall-Angriffen fokusieren, kann
der vorgeschlagene Ansatz verallgemeinert und in einem breiteren Kontext angewen-
det werden. Zum Beispiel kann er direkt verwendet werden, um auch Hypervisor-
Sicherheitsmechanismen, nämlich etwa Hypercall-Zugangskontrollmechanismen, zu
bewerten. Der Ansatz kann auch angewendet werden für die Bewertung von IDSs, die
der Erkennung von Angriffen basierend auf Operationen dienen, die eine funktionelle
Ähnlichkeit zu Hypercalls aufweisen. Solche Operationen sind z.B. die “input/output
control (ioctl)” Aufrufe, die vom “Kernel-based Virtual Machine (KVM)”-Hypervisor
unterstützt werden.
Für IDSs, die in elastischen virtualisierten Umgebungen eingesetzt werden, kann

unser Ansatz zur Injektion von Hypercall-Angriffen in Verbindung mit der von uns
vorgeschlagenen Metrik und Messmethodik angewendet werden. Beide können auch
unabhängig von den in dieser Arbeit betrachteten Szenarien angewendet werden. Das

xix

Zusammenfassung

breite Spektrum von Sicherheitsmechanismen (z.B. hypervisor-basierte IDSs, IDSs
eingesetzt als VNFs und Zugangskontrollmechanismen), deren Bewertung von den
Beiträgen dieser Arbeit profitieren, spiegelt ihre Praktikabilität wider.

xx

Chapter 1

Introduction

1.1 Motivation

Virtualization is a concept of the 1960’s allowing the creation of logical (“virtual”)
instances of physical devices, such as networks, storage or processing units. In recent
years, virtualization has received increasing interest, both from industry and academia,
as a way to reduce costs through server consolidation and to enhance the flexibility of
physical infrastructures. In a virtualized system, governed by a hypervisor, resources
such as processor time, disk capacity, and network bandwidth are shared among virtual
machines (VMs). Each VMaccesses the physical resources of the infrastructure through
the hypervisor and is entitled to a predefined fraction of capacity. Modern hypervisors
also providemechanisms for elastic resource provisioning allowing to adapt the system
to workload variations such as load spikes. Under elastic resource provisioning (which
we also refer to as elasticity), we understand on-demand provisioning (i.e., allocation
or deallocation) of virtualized hardware resources to VMs.
While server consolidation through virtualization provides many benefits, it also

introduces some new challenges; that is, the introduction of a hypervisor and the
allocation of potentially multiple VMs on a single physical server are additional critical
aspects introducing new potential threats and vulnerabilities [Abh15], [PBSL13]. For
instance, Gens et al. [GMV+10] report that security is a major concern for users of
modern virtualized service infrastructures, followed by availability and performance.
Some critical security issues include data integrity, authentication, application security,
and so on [SK11]. In addition, attackers are actively exploring virtualization-specific
attack surfaces such as hypervisors.
A common defensive instrument against security threats are intrusion detection

systems (IDSs). They monitor on-going activities in the protected network(s) and
host(s), detecting potentially malicious activities. The detection of malicious activities
enables the timely reaction in order to stop an on-going attack, or to mitigate the impact
of a security breach.
The adoption of virtualization technology has lead to the emergence of novel IDSs

specifically designed to operate in virtualized environments (i.e., hypervisor-based IDSs)
such as AdjointVM [Kon11], VMFence [JXZ+11], and Advanced Cloud Protection
System (ACPS) [LDP11]. Such IDSs typically perform host intrusion detection and are
deployed in the virtualization layer, with components both inside the hypervisor and

1

Chapter 1: Introduction

in a designated VM, which has several benefits [MKA+13]. Hypervisor-based IDSs
can monitor the network and/or host activities of all guest VMs at the same time.1
Further, they are isolated from, and transparent to, malicious users of the guest VMs
since they do not operate inside the guest VMs, but instead leverage functionalities of
the underlying hypervisor. In addition, some hypervisor-based IDSs can also detect
attacks specifically targeted at the hypervisor. Hypervisor-based IDSs are becoming
increasingly common with the growing proliferation of virtualized data centers and
the advent of the cloud computing paradigm, for which virtualization is as a key
enabling technology. Intrusion detection in cloud environments has been recently
receiving increasing attention, given that security concerns are still one of the greatest
showstoppers for the wide adoption of cloud computing [GMV+10].
The increasing adoption of virtualization has resulted in the practice of deploying

conventional IDSs (e.g., hardware IDS appliances or common software-based IDSs)
in designated VMs as virtual network functions (VNFs). For instance, a network-
based IDS (e.g., Snort [Roe99]) may be deployed in a designated VM and configured
to tap into the physical network interface card used by all VMs. Thus, the IDS can
monitor the network activities of all VMs at the same time while being isolated from,
and transparent to, their users. Further, in comparison to deploying hardware IDS
appliances, which are expensive and challenging tomanage, deploying IDSs as VNFs is
cost-effective and the management of such IDSs is easier. It is important to emphasize
that the network function virtualization technology introduces new security risks
that have not yet been investigated in detail. We refer the reader to [Ale16] for more
information.
To minimize the risk of security breaches, methods and techniques for evaluating

the performance of IDSs in a realistic and reliable manner are needed. The benefits of
IDS evaluation are manyfold. For instance, one may compare different IDSs in terms of
their attack detection accuracy in order to deploy an IDS that operates optimally in a
given environment, thus reducing the risks of a security breach. Further, one may tune
an already deployed IDS by varying its configuration parameters and investigating
their influence through evaluation tests. This enables comparison of the evaluation
results with respect to the configuration space of the IDS and can help to identify an
optimal configuration. IDS evaluation is of interest to many different types of users and
professionals in the field of communication systems and information security. This
includes researchers, who typically evaluate novel IDS algorithms and architectures
with respect to specific IDS properties that are subject of research; industrial software
architects, who typically evaluate IDSs by carrying out internationally standardized
large scale tests; and IT security officers, who evaluate IDSs in order to select an IDS
that is optimal for protecting a given environment, or to optimize the configuration of
an already deployed IDS. We discuss more on application scenarios of IDS evaluation
in Section 2.2.1.
IDS evaluation, in general, has proven to be a challenging task riddled with many

1In this thesis, we use the terms guest VM andVM interchangeably. We use the term host VM to explicitly
refer to a VM that has higher privileges than the other VMs co-located with it and is used for managing (i.e.,
administering) the virtualized environment where it resides.

2

1.2 Problem Statement: Shortcomings of Existing Approaches

difficulties, such as the lack of realistic evaluation data, flawed methodologies, and
manymore. Many of these challenges have been subject of existingwork in the research
community, e.g., [SYB04], [Ran01], [McH00]. However, to the best of our knowledge, no
approaches, methods, and tools for the evaluation of IDSs in virtualized environments
(i.e., hypervisor-based IDSs or IDSs deployed as VNFs) currently exist. We argue that
conventional approaches to IDS evaluation do not satisfy the requirements to enable
rigorous and representative evaluation of IDSs in virtualized environments.

In this thesis, we focus on IDS evaluation requirements in the context of virtualized
environments, considering the following requirements with respect to the standard
components — workloads, metrics, and measurement methodologies— that comprise any
system evaluation scenario:

• the use of workloads that contain virtualization-specific attacks, that is, attacks
initiated from malicious guest VMs and targeting the underlying hypervisors — we
argue that such workloads are needed for testing IDSs that have the functionality
to detect attacks targeting hypervisors;

• the use of metrics and measurement methodologies for measuring the attack
detection accuracy of IDSs taking elasticity, a feature of modern virtualized
infrastructures, into account — we argue that such metrics and methodologies
are needed for the accurate measurement of the attack detection accuracy of IDSs
in virtualized environments (i.e., hypervisor-based IDSs or IDSs deployed as
VNFs).

1.2 Problem Statement: Shortcomings of Existing
Approaches

1.2.1 Workloads

As we mentioned in Section 1.1, workloads that contain virtualization-specific attacks,
that is, attacks initiated from malicious VMs and targeting the underlying hypervisors,
are needed. Such workloads are used to exercise the sensors of evaluated IDSs that
have the functionality to detect attacks targeting hypervisors. Many hypervisor-based
IDSs, such as Collabra [BSNS11a] and Xenini [MM11], and some conventional IDSs
deployed as VNFs, such as Open Source Security (OSSEC) [oss], have the functionality
to detect attacks targeting hypervisors; that is, OSSEC can be configured to analyze
log files produced by a hypervisor (e.g., by Xen [xena]) and detect attacks targeting the
hypervisor.

Attacks targeting hypervisors are of high severity since they may result in crashing a
hypervisor including all VMs running on top of it. They may also result in altering the
hypervisors’s memory, which enables the execution of malicious code with hypervisor
privileges. The lack of appropriate workloads for the evaluation of IDSs that have the
functionality to detect attacks targeting hypervisors can lead to the deployment of

3

Chapter 1: Introduction

IDSs that do not operate optimally (e.g., exhibit low attack detection accuracy). This
increases the risk of severe security breaches in virtualized environments.

When it comes to evaluating an IDS, one needs malicious workloads (i.e., workloads
that contain attacks) and benign (regular, normal) workloads (i.e., workloads that do not
contain attacks). Malicious workloads are used to subject an IDS under test to attack
scenarios (as done by Reeves et al. [RRL+12] and Gornitz et al. [GKRB09]). Benign
workloads are used, for example, to evaluate the monitoring performance overhead or
the capacity of an IDS (as done by Bharadwaja et al. [BSNS11a]). Workloads normally
take an executable form or a trace form (traces generated by recording the execution of
activities for later replay). We now review approaches for the evaluation of IDSs using
malicious workloads, which are in the focus of this thesis (see Section 1.1).
Malicious workloads in executable form can be obtained from exploit databases con-

taining attack scripts. One has a choice of assembling an exploit database by himself or
using a readily available one. Amajor disadvantage of the manual assembly is the high
cost of the attack script collection process. Locating the attack scripts needed for trigger-
ing specific vulnerabilities and obtaining the required vulnerable software is normally
time-consuming. In addition, once the needed attack scripts are found, they typically
have to be customized for the specific target environment. To assemble an exploit
database, IDS evaluators normally obtain attack scripts from public exploit repositories,
such as 1337day [inj], Exploit database [exp], Packetstorm [pst], SecuriTeam [seca], and
Securityfocus [secb]. Alternatively, IDS evaluators may employ a penetration testing
tool as a readily available exploit database. The Metasploit framework [PtsM] has
been extensively used for evaluating IDSs (see, for example, Gornitz et al. [GKRB09]
and Nasr et al. [NKF12]). At the time of writing, the popular exploit repositories and
penetration testing tools do not contain, or contain a very small number of, attacks
targeting hypervisors. This makes them unsuitable for evaluating IDSs that have the
functionality to detect such attacks.
As an alternative approach to using an exploit database, one can use the attack

injection technique to generatemaliciousworkloads in executable form. Attack injection
is the controlled execution of attacks during regular operation of the environment
where an IDS under test is deployed. This technique enables IDS testing by attacking
the target platform with respect to attack models or by executing vulnerable code
injected in the platform (see, for example, Fonseca et al. [FVM09]). Attack injection
is typically used in cases where the collection of attack scripts is unfeasible. The
application of this technique for generating workloads that contain attacks targeting
hypervisors has not been investigated.

Malicious workloads in trace form can be generated by acquiring or generating traces.
Real-world production traces can be acquired from proprietary organizations. Such
traces subject an IDS under test to a workload as observed during operation in a real
production environment. However, they are usually very difficult to obtain mainly
due to the unwillingness of industrial organizations to share operational traces.
In contrast to proprietary traces, one can acquire publicly available traces without

any legal constraints. However, publicly available traces often contain errors and

4

1.2 Problem Statement: Shortcomings of Existing Approaches

they quickly become outdated after their public release since the recorded attacks
have limited shelf-life. The most frequently used publicly available traces (see, for
example, Alserhani et al. [AAA+10], Yu et al. [YD11], and Raja et al. [RAR12]) are the
Defense Advanced Research Projects Agency (DARPA) [LHF+00] [IDE] and the derived
Knowledge Discovery and Data Mining (KDD) Cup 99 [UoC] datasets. IDS evaluators
may also use publicly available traces from trace repositories such as Cooperative
Association for Internet Data Analysis (CAIDA) [cai], Defense Readiness Condition
(DEFCON) [CtCtF], Internet TrafficArchive (ITA) [ita], and Lawrence BerkeleyNational
Laboratory/International Computer Science Institute (LBNL/ISCI) [lbn]. None of the
commonly used publicly available traces contain attacks targeting hypervisors.

IDS evaluators may generate traces in a testbed environment or deploy a honeypot
in order to capture malicious activities. Generating traces in a testbed environment
may be done by using the previously mentioned methods to generate workloads in
executable form whereby the executed workloads are captured and stored in trace
files. The generation of traces in a testbed environment is challenging since the costs
of building a testbed that scales to realistic production environments may be high and
the used trace generation method may produce faulty workloads.
Honeypots enable the recording of host and/or network malicious activities per-

formed by an attacker without revealing their purpose. By mimicking real systems
and vulnerable services, honeypots record the interaction between the attack target
and the attack itself. Security researchers often use the honeyd [hon] honeypot, which
is equipped with many logging and log processing utilities. We are not aware of
honeypots that are able to record the interaction between a VM and the underlying
hypervisor, that is, of honeypots that are able to record attacks targeting hypervisors.
To summarize, the application of the above approaches for the generation of work-

loads that contain attacks targeting hypervisors has not been investigated. Given the
potential severity of these attacks, the lack of appropriate workloads for the evaluation
of IDSs that have the functionality to detect attacks targeting hypervisors is a critical
issue — it can lead to the deployment of IDSs that do not operate optimally, which
increases the risk of severe security breaches in virtualized environments.

1.2.2 Metrics and Measurement Methodologies

We distinguish between two categories of IDS evaluation metrics: performance-related
and security-related metrics. Performance-related metrics are metrics that quantify non-
functional properties of an IDS under test, such as capacity, performance overhead, and
resource consumption. For instance, Meng et al. [ML12] consider workload processing
throughput, Lombardi et al. [LDP11] consider performance overhead, Mohammed et
al. [MOL+11] consider power consumption, and Sinha et al. [SJP06] consider mem-
ory consumption. Security-related metrics are metrics that quantify attack detection
properties of an IDS under test (e.g., attack detection accuracy). Next, we focus on
security-related metrics, which are in the focus of this thesis (see Section 1.1).

A common aspect of all existing security-related metrics is that they are defined with

5

Chapter 1: Introduction

respect to a fixed set of hardware resources available to the IDS under test [MK12]. Mell
et al. [MHL+03] and Hall et al. [HW02] confirm that the values of existing IDS evalua-
tionmetrics express the attack detection accuracy of an IDS only for a specific hardware
environment in which the IDS is expected to reside during operation. However, many
virtualized infrastructures support elastic resource provisioning; that is, resources can
be provisioned and used by the IDS on-demand during operation [HKR13]. For instance,
the Xen and VMware virtualization platforms allow for hotplugging virtual CPUs
(vCPUs) and memory on the designated VM where the intrusion detection engine of
hypervisor-based IDSs, or conventional IDSs deployed as VNFs, typically operates (see
Section 1.1). This may have a significant impact on many properties of the evaluated
IDS, including its attack detection accuracy.

Based on the above, we argue that the use of conventional metrics (i.e., existing IDS
attack detection accuracymetrics that do not take elasticity of virtualized environments
into account) may lead to inaccurate measurements in cases where the on-demand
provisioning of resources to an IDS under test has significant impact on its attack
detection accuracy. This, in turn, may result in the deployment of misconfigured
or ill-performing IDSs in production environments, increasing the risk of security
breaches. We argue that novel metrics and measurement methodologies for measuring
the attack detection accuracy of IDSs in virtualized environments featuring elasticity
are needed. Such metrics and methodologies should take into account the behavior of
the IDS under test as its operational environment changes. Next, we provide a compact
overview of conventional security-related metrics commonly used in practice.
We distinguish between basic and composite security-related metrics. Basic metrics

are the true positive rate, the false positive rate, the positive predictive value, and the
negative predictive value. These metrics quantify various individual attack detection
properties. The true positive rate quantifies the probability that an alert generated
by an IDS is really an intrusion. The false positive rate quantifies the probability that
an alert generated by an IDS is not an intrusion, but a regular benign activity. The
respective complementary metrics (i.e., the true negative rate and the false negative
rate) are also relevant. The positive predictive value (PPV) quantifies the probability
that there is an intrusion when an IDS generates an alert. The negative predictive
value (NPV) quantifies the probability that there is no intrusion when an IDS does not
generate an alert.
Although the above IDS properties are quantified individually, they need to be

analyzed together in order to accurately characterize the attack detection accuracy of
a given IDS. In order to analyze relationships between basic metrics, IDS evaluators
typically combine basic metrics into composite metrics. Such an analysis is typically
used to discover an optimal IDS operating point — an IDS configuration that yields
optimal values of both the true and false positive detection rate — or to compare
multiple IDSs. It is a common practice to use Receiver Operating Characteristic (ROC)
curve to investigate the relationship between the measured true positive and false
positive detection rates of an IDS. A ROC curve is a two-dimensional depiction of the
accuracy of a detector as it plots the true positive rate against the corresponding false
positive rate [MR04].

6

1.3 Contributions of this Thesis

System evaluation components	

Workloads

Injection of attacks
targeting hypervisors

C2: Injection of
hypercall attacks

C3: Analysis of
hypercall

vulnerabilities

C1: Systematization on
state-of-the-art on IDS

evaluation

C4: Metric and measurement
methodology that take elasticity

into account

Metrics and measurement
methodologies

Security-related metrics

Figure 1.1: Focus and contributions of this thesis.

Security researchers have proposed metrics that are more accurate and expressive
than ROC curves. They can be classified into two main categories: metrics that use
cost-based measurement methodologies and metrics that use information-theory mea-
surement methodologies. Two of the most prominent metrics that belong to these
categories are the expected cost metric proposed by Gaffney et al. [GU01] and the
intrusion detection capability metric proposed by Gu et al. [GFD+06]. The expected
cost metric uses a cost model to quantify the cost of the operation of an IDS under
test. The intrusion detection capability metric aims to quantify the attack detection
accuracy of an IDS in an objective manner by modeling the input to, and output of, the
evaluated IDS as a stream of random variables. The latter enables the quantification of
the attack detection accuracy as the reduction of the uncertainty of the IDS input after
the IDS output is known.
To summarize, all of the basic and composite security-related metrics discussed

above are defined with respect to a fixed set of hardware resources available to
the IDS under test, that is, they do not take elastic resource provisioning into ac-
count [MHL+03], [HW02]. Therefore, using these metrics for evaluating IDSs deployed
in virtualized environments may lead to inaccurate measurements. We argue that
novel metrics and measurement methodologies, which take into account the behav-
ior of an IDS as its operational environment changes, are needed. Such metrics and
methodologies would allow to quantify the attack detection accuracy of IDSs deployed
in virtualized environments in an accurate manner. In addition, they would allow to
quantify the ability of the IDS to scale its attack detection efficiency as resources are
allocated to it, or deallocated from it, during operation.

1.3 Contributions of this Thesis

In Figure 1.1, we depict an overview of the focus and contributions of this thesis. The
contributions (marked in bold in Figure 1.1) can be classified according to the standard
components of any system evaluation scenario: workloads, metrics, and measurement

7

Chapter 1: Introduction

methodologies. They can be further divided into scientific and technical contributions.
The scientific contributions are:

(i) Contribution 1 (C1, see Figure 1.1): a comprehensive systematization of the common
practices and the state-of-the-art on IDS evaluation including:

• definition of an IDS evaluation design space allowing to put existing practical and
theoretical work into a common context in a systematic manner;

• overview of common practices in IDS evaluation reviewing existing evaluation
approaches and methods related to each part of the design space;

• a set of case studies demonstrating how different IDS evaluation approaches are
applied in practice.

Given the significant amount of existing practical and theoretical work related to
IDS evaluation, the presented systematization is benefitial for improving the gen-
eral understanding of the topic by providing an overview of the current state of the
field. In addition, it is beneficial for identifying and contrasting advantages and dis-
advantages of different IDS evaluation methods and practices, while also helping to
identify specific requirements and best practices for evaluating current and future IDSs.

(ii)Contribution 2 (C2, see Figure 1.1): a novel approach for evaluating IDSs enabling the
generation of workloads that contain attacks targeting hypervisors, that is, hypercall
attacks. Hypercalls are software traps from a kernel of a semi- or fully paravirtualized
guest VM to the hypervisor. They can, for example, enable intrusion into a vulnerable
hypervisor, initiated from a malicious VM kernel, through the hypervisor’s hypercall
interface. The triggering of a vulnerability of a hypercall handler (i.e., a hypercall
vulnerability) may crash the hypervisor or lead to altering the hypervisor’s memory.
This enables the execution of malicious code with hypervisor privileges (see the work
of Rutkowska et al. [RW]). In the context of this thesis, under hypercall attack, we
understand any malicious hypercall activity.
In this thesis, we propose an approach for evaluating IDSs using attack injection

(i.e., injection of hypercall attacks, see Section 1.2.1). We focus on attack injection as an
approach for generating malicious workloads that contain hypercall attacks since the
collection of attack scripts that demonstrate such attacks is unfeasible, that is, publicly
available scripts that demonstrate hypercall attacks are very rare [MPA+14], [HL09].
Workloads that contain hypercall attacks are a key requirement for evaluating the

attack detection accuracy of IDSs designed to detect hypercall attacks. Such work-
loads are needed to exercise the sensors of an IDS monitoring the hypercall interface
of a hypervisor. The research and industrial communities have developed security
mechanisms that can detect hypercall attacks. These include IDSs that can be config-
ured to analyze in real-time log files with information on executed hypercalls, such
as Xenini [MM11] and the de-facto standard host-based IDS OSSEC [oss], as well as
access control (AC) systems, such as Xen Security Modules - Flux Advanced Security
Kernel (XSM-FLASK) distributed with the Xen hypervisor. Given the potential sever-

8

1.3 Contributions of this Thesis

ity of hypercall attacks, the rigorous evaluation of IDSs designed to detect hypercall
attacks using workloads that contain such attacks is crucial for preventing high-impact
breaches in virtualized environments.
The approach we propose may be applied conceptually not only for evaluating

IDSs designed to detect hypercall attacks, but also attacks involving the execution
of operations that are functionally similar to hypercalls. Such operations are, for
example, the input/output control (ioctl) calls that the Kernel-based Virtual Machine
(KVM) hypervisor supports. By enabling the generation of workloads that contain
hypercall attacks, this thesis contributes towards addressing the issue of the lack of IDS
evaluation workloads that contain virtualization-specific attacks (see Section 1.2.1).

For the injection of realistic hypercall attacks, representative hypercall attack models
are required (see Section 1.2.1). Note that the injection of attacks is performed with
respect to attack models constructed by analysing realistic attacks. Attack models are
systematized activities of attackers targeting a given attack surface. Publicly disclosed
reports describing hypercall vulnerabilities (e.g., CVE-2013-4494, CVE-2013-3898) are
currently the only available source of information, however, they only provide high-
level descriptions. As a result, the characterization of hypercall vulnerabilities and
hypercall attacks is challenging. It warrants a detailed investigation of existing vul-
nerabilities, which can only be done by reverse-engineering released patches fixing
the vulnerabilities. The latter is crucial for the construction of representative attack
models, which, in turn, are a prerequisite for the injection of realistic hypercall attacks.
This brings us to the next contribution of this thesis.

(iii) Contribution 3 (C3, see Figure 1.1): an in-depth analysis of common vulnerabilities
of modern hypervisors, as well as a set of attack models capturing the activities of
attackers triggering these vulnerabilities. The analysis includes 35 representative vul-
nerabilities of hypercall handlers discovered by searching major vulnerability report
databases (e.g., cvedetails [CVEj]). We discuss issues, challenges, and gaps that apply
specifically to securing hypercall interfaces. Our analysis is based on information
obtained by reverse engineering released patches fixing the considered vulnerabilities.
More specifically, this thesis contributes:

• a comprehensive analysis and systematization of the origins of the considered
hypercall vulnerabilities,

• a demonstration of possible attacks triggering the hypercall vulnerabilities and
evaluation of their effects,

• a set of hypercall attack models based on an in-depth analysis of the activities
for executing hypercall attacks, and

• a discussion of future research directions focusing on both proactive and reactive
approaches for securing hypercall interfaces.

To the best of our knowledge, there is no previous work examining the hypercall
attack surface in detail.

(iv) Contribution 4 (C4, see Figure 1.1): a novel metric and measurement methodology

9

Chapter 1: Introduction

for quantifying the attack detection accuracy of IDSs in virtualized environments that
feature elastic resource provisioning; that is, a metric and measurement methodol-
ogy that take the elasticity aspects of virtualized environments into account. More
specifically, this thesis:

• demonstrates how the elasticity of resource allocations in virtualized environ-
ments may impact the IDS attack detection accuracy;

• shows that using conventional IDS evaluation metrics in such environments may
lead to practically challenging and inaccurate measurements;

• proposes and demonstrates the practical use of a novel metric and measurement
methodology that allow for quantifying the impact of elasticity on the IDS attack
detection accuracy.

We designed the new metric with respect to a set of specific criteria for accurate and
practically feasible IDS evaluation. Our metric is meant to complement conventional
metrics — it is specifically designed for evaluating IDSs that perform run-time moni-
toring and operate in virtualized environments with elastic resource provisioning. The
metric can be used to quantify the attack detection accuracy of such IDSs. This enables
the identification and deployment of optimally performing IDSs, thus reducing the
risk of security breaches in virtualized environments.

From a technical perspective, as part of the proposed approach for evaluating IDSs in
virtualized environments, this thesis presents hInjector, an open-source tool for injecting
hypercall attacks. We designed hInjector to achieve the challenging goal of satisfying
the following key requirements for the rigorous, representative, and practically feasible
evaluation of IDSs in virtualized environments: injection of realistic attacks, during
regular system operation, and in a non-disruptive manner (e.g., prevention of potential
crashes due to the injected attacks).
We demonstrate in this thesis the application of the proposed approach for eval-

uating IDSs and the practical usefulness of hInjector by evaluating Xenini [MM11],
a representative IDS designed to detect hypercall attacks. We inject realistic attacks
triggering publicly disclosed hypercall vulnerabilities (e.g., CVE-2012-5525 [CVEg],
CVE-2012-3495 [CVEb], and CVE-2012-5513 [CVEf]) as well as specifically crafted
evasive attacks — attacks specifically crafted to not be easily detectable by an IDS. We
extensively evaluate Xenini considering multiple alternative configurations of the IDS,
that is, varying the sensitiveness of the IDS for labeling a given activity as malicious.
We calculate values of attack detection accuracy metrics, such as true and false positive
rate, and plot ROC curves (see Section 1.2.2). The obtained results match the expected
behavior of Xenini (e.g., the more sensitive the IDS, the higher true and false positive
rates it exhibits), which shows the practical usefulness of the approach we propose.
Our approach is the first to enable an extensive evaluation at this level of detail and
accuracy.
While we focus on evaluating the capabilities of IDSs to detect hypercall attacks,

the proposed IDS evaluation approach can be generalized and applied in a broader
context. For example, it may be directly used to also evaluate security mechanisms of

10

1.4 Outline

hypervisors, such as hypercall access control (AC) mechanisms. It may also be applied
to evaluate the capabilities of IDSs to detect attacks involving operations that are
functionally similar to hypercalls, for example, the ioctl calls that the KVM hypervisor
supports.

We also demonstrate in this thesis the practical use of the metric and measurement
methodology we propose by evaluating two conventional IDSs (i.e., Snort [Roe99] and
Suricata [sur]) deployed as VNFs running on top of the Xen hypervisor. We consider
15 different configurations of the IDSs and the hypervisor performing elastic resource
provisioning. The obtained metric values match the expected behavior of the metric
with respect to the criteria according to which we designed the metric. This shows the
accuracy and practical usefulness of the metric and measurement methodology we
propose.

For IDSs in virtualized environments featuring elastic resource provisioning, our
approach for injecting hypercall attacks can be applied in combination with the attack
detection accuracy metric and measurement methodology we propose. Our approach
for injecting hypercall attacks, and our metric and measurement methodology, can
also be applied independently beyond the scenarios considered in this thesis. The
wide spectrum of security mechanisms in virtualized environments whose evaluation
can directly benefit from the contributions of this thesis (e.g., hypervisor-based IDSs,
IDSs deployed as VNFs, and AC mechanisms) reflects the practical implication of the
thesis.

1.4 Outline

This thesis is structured into seven main chapters, including the introductory chapter
(Chapter 1), and one appendix chapter.

In Chapter 2, we provide the background that is essential for understanding the
topic of IDS evaluation. We discuss several types of attacks that we refer to throughout
the thesis, and the role of intrusion detection in relation to other security mechanisms.
In addition, we define and discuss different types of IDSs. Further, we provide an
overview of major developments in the area of IDS evaluation in a chronological
manner. Finally, we demonstrate thewide applicability and relevance of IDS evaluation
by discussing various application scenarios.

In Chapter 3, we analyze the current state of IDS evaluation. To this end, we define
an IDS evaluation design space structured into three parts — workloads, metrics, and
measurementmethodology—which are considered as the standard components of any
evaluation experiment. We systematize and review different approaches for generating
or obtaining workloads for evaluating IDSs. Further, we systematize and review IDS
evaluation metrics, and we demonstrate the use of these metrics for comparing IDSs.
In addition, we systematize IDS properties that are typically evaluated in practice. We
also discuss and practically demonstrate the respective measurement methodologies.
Finally, we discuss challenges that apply to evaluating IDSs specifically designed for
deployment and operation in virtualized environments (i.e., hypervisor-based IDSs)

11

Chapter 1: Introduction

and we present guidelines for planning IDS evaluation studies based on the lessons
learned.

In Chapter 4, we characterize the hypercall attack surface based on analyzing a set of
vulnerabilities of hypercall handlers. We systematize and discuss the errors that caused
the considered vulnerabilities, and activities for executing attacks triggering them.
We also demonstrate attacks triggering the considered vulnerabilities and analyze
their effects. Finally, we suggest an action plan for improving the security of hypercall
interfaces.
In Chapter 5, we propose a novel approach for the rigorous evaluation of IDSs in

virtualized environments, with a focus on IDSs designed to detect attacks leveraging
or targeting the hypervisor via its hypercall interface. We present hInjector, a tool
for generating IDS evaluation workloads by injecting such attacks during regular
operation. We demonstrate the application of our approach and show its practical
usefulness by evaluating a representative hypervisor-based IDS designed to detect
hypercall attacks. The virtualized environment of the industry-standard benchmark
SPECvirt_sc2013 [spea] is used as a testbed, whose drivers generate workloads repre-
sentative of real-life workloads.

In Chapter 6, we demonstrate the impact of elasticity on IDS attack detection accuracy.
In addition, we propose a novel metric and measurement methodology for accurately
quantifying the accuracy of IDSs in virtualized environments featuring elasticity. We
demonstrate their practical use through case studies involving commonly used IDSs.
Chapter 7 concludes this thesis by summarizing its contributions and gives an

outlook on future research.
In Chapter A, we provide in-depth technical information on publicly disclosed

vulnerabilities of hypercall handlers, that is, on a selected representative subset of
the vulnerabilities we consider in Chapter 4. Our vulnerability analysis is based
on reverse engineering the released patches that fix the considered vulnerabilities.
For each analyzed vulnerability, we provide background information essential for
understanding the vulnerability, and information on the vulnerable hypercall handler
and the error causing the vulnerability. We also show how the vulnerability can be
triggered and discuss the state of the targeted hypervisor after the vulnerability has
been triggered.

12

Chapter 2

Foundations

2.1 Intrusion Detection Systems

2.1.1 Attacks and Common Security Mechanisms

A given system (i.e., a host) is considered as secure if it has the properties of confiden-
tiality, integrity, and availability of its data and services [Sta02], commonly known as
the CIA triad. Under confidentiality, we understand the protection of data against its
release to unauthorized parties. Under integrity, we understand the protection of data
and/or services against modifications by unauthorized parties. Under availability,
we understand the protection of services such that they are ready to be used when
needed.
Attacks are deliberate attempts to violate the previously mentioned security prop-

erties [Shi99]. There are many different types of attacks with respect to various at-
tack properties. Security researchers have developed many attack categorization
schemes (i.e., attack taxonomies) designed for different purposes. For instance, Nasr
et al. [NAEKF11] propose an attack taxonomy useful for classifying attacks used in
intrusion detection system (IDS) evaluation studies, while Hansman et al. [HH05]
define an attack taxonomy for general use.
In this section, for the sake of completeness, we discuss only the types of attacks

that we refer to in the rest of the thesis when discussing IDS evaluation approaches.
We stress that we do not aim to provide an extensive coverage of attack types as that is
out of the scope of this thesis. We also stress that some attack types, although relevant,
are out of the scope of IDSs, as confirmed by international standards (see National
Institute of Standards and Technology (NIST)’s guide to IDSs [SM07]). Such are, for
example, spamming and information fishing attacks.

According to the source of execution of an attack from the perspective of the targeted
system, we distinguish between remote and local attacks. A remote attack is an attack that
targets a service of a system available over a network and is carried out over a network
connection, i.e., the Internet or a local area network (LAN) connection, between the
attacker and the targeted service. An example of a remote attack is an Standard Query
Language (SQL) injection attack. When executing such an attack, an attacker normally
inserts a malicious SQL query into an entry field of a database-driven web application
and executes it. This leads to, for example, obtaining access to sensitive data stored

13

Chapter 2: Foundations

in the database (e.g., passwords), deleting or adding database records, and so on.
For detailed information on SQL injection attacks, we refer the reader to the work of
Halfond et al. [HVO06]. In Figure 2.1a, we depict a scenario where an SQL injection
attack is executed against a database-driven web application with the goal of obtaining
sensitive data.

Web server Database server

Database
Network connection

Sensitive data

request

Sensitive data

Network connection

Attacker

Web application

Malicious SQL

query

Sensitive data

(a)

User mode

Kernel mode

Malicious user

Regular

user
Keylogger pressed key

Log file

reads

records

Host

intercepts

Application

Deployed in the kernel by the

malicious user. It modifies

kernel functions to intercept and

record pressed keyboard keys.

(b)

Figure 2.1: An example of a (a) remote attack - SQL injection attack, and (b) local attack -
deployment of a keylogger.

Local attacks are executed by users of the targeted system itself, which results, for
example, in privilege escalation or unauthorized access to sensitive files. An example
of a local attack is the kernel attack. Such an attack violates the integrity of the targeted
system’s kernel by altering its regular behavior to the benefit of the attacker. For
instance, specific kernel functions may be modified in order to record activities of the
users of a given system, such as the pressing of keyboard keys. The real-time recording
of pressed keyboard keys is a feature of a specific class of malicious software known
as keyloggers. In Figure 2.1b, we depict a scenario where a malicious user deploys a
keylogger in a host’s kernel, an action that violates its integrity by modifying specific
kernel functions in order to intercept and record pressed keys.
Besides intrusion detection, there are many other security mechanisms used to

enforce the properties of confidentiality, integrity, and availability of system data and

14

2.1 Intrusion Detection Systems

services. Kruegel et al. [KVV05] classify security mechanisms by taking an attack-
centric approach distinguishing between attack prevention, attack avoidance, and attack
detectionmechanisms. Based on this classification, we put intrusion detection into a
common context with other security mechanisms, as depicted in Figure 2.2.

Confidentiality!

Integrity!

Availability!

Figure 2.2: Intrusion detection in relation to other common security mechanisms.

The attack prevention class includes securitymechanisms that prevent attackers from
reaching, or gaining access to, the targeted system. A representative mechanism that
belongs to this class is access control, which uses the concept of identity to distinguish
between authorized and unauthorized parties. For instance, firewalls distinguish
between different parties trying to reach a given system over a network connection
based, for example, on their Internet Protocol (IP) addresses. According to access
control policies, firewalls may allow or deny access to the system.

The attack avoidance class includes security mechanisms that modify the data stored
in the targeted system such that it would be of no use to an attacker in case of an
intrusion. A representative mechanism that belongs to this class is data encryption,
which is typically implemented using encryption algorithms such as Rivest Shamir
Adleman (RSA), Data Encryption Standard (DES), and so on.

The attack detection class includes security mechanisms that detect on-going attacks
under the assumption that an attacker can reach, or gain access to, the targeted system
and interact with it. A representative security mechanism that belongs to this class is
intrusion detection.

15

Chapter 2: Foundations

2.1.2 Intrusion Detection Systems: A Systematization

According to Scarfone et al. [SM07] from NIST, intrusion detection is “the process of
monitoring the events occurring in a computer system or network and analyzing them for signs
of possible incidents, which are violations or imminent threats of violation of computer security
policies, acceptable use policies, or standard security practices.” Given the above definition,
an IDS can be defined as the software that automates the intrusion detection process.

Intrusion Detection Systems

Monitored platform

Host-based

Network-based

Hybrid

Attack detection method

Misuse-based

Anomaly-based

Hybrid

Monitoring method

Real-time

Polling

Deployment architecture

Non-distributed

Distributed

Figure 2.3: Different types of IDSs.

IDSs can be categorized according to many different properties. In the rest of this
section, we present a categorization of IDSs with respect to the properties that we
consider relevant for evaluating and comparing different systems. We refer the reader
to [DDW99] for an in-depth categorization of IDSs. In Figure 2.3, we depict an IDS
categorization scheme that we constructed by considering the following properties of
IDSs:

(i) Monitored platform: According to the target platform that IDSs monitor, they can be
categorized into host-based, network-based, or hybrid IDSs.

Host-based IDSsmonitor the activities of the users of the hostwhere they are deployed,
which often includes the behavior of applications running on the host, in order to
detect local attacks. Host-based IDSs are typically able to detect a variety of local
attacks such as unauthorized modifications of sensitive files or abnormal execution
behaviors of applications. Open Source Security (OSSEC) [oss] and Tripwire [tri] are
among the most popular host-based IDSs at the time of writing.

Network-based IDSsmonitor the network traffic that is destined for, and/or originates
from, a single host or a set of hosts that constitute a network environment, in order
to detect remote attacks. A network-based IDS is typically deployed at the perimeter
of a network such that it can monitor all incoming and/or outgoing network traffic.
Snort [Roe99], Bro [TBNSM], and Suricata [sur] are among the most popular network-
based IDSs at the time of writing.
Hybrid IDSs are a combination of host-based and network-based IDSs. A typical

hybrid IDS is deployed in the host that it monitors as a host-based IDS. An example of
a hybrid IDS is VMFence [JXZ+09].

16

2.1 Intrusion Detection Systems

In Figure 2.4, we depict a typical IDS deployment scenario where a network-based
IDS is deployed at the perimeter of a LAN (i.e., in the LAN’s gateway used to connect
it with a public network) in order to monitor all incoming and outgoing traffic. Further,
a host-based IDS, monitoring filesystem changes and application behavior, is deployed
in each of the hosts connected to the LAN.

(ii) Attack detection method: According to the employed attack detection method, IDSs
can be categorized into misuse-based, anomaly-based, or hybrid IDSs.

Public network/
Internet

Gateway
Traffic

Network-based IDS LAN

Host

Host-based IDS

FilesystemApplications

monitors

Host

Host-based IDS

FilesystemApplications

monitors

Host

Host-based IDS

FilesystemApplications

monitors

Host

Host-based IDS

FilesystemApplications

monitors

Host

Host-based IDS

FilesystemApplications

monitors

Figure 2.4: Deployment scenario of a network-based IDS and multiple host-based IDSs.

Misuse-based IDSs evaluate system and/or network activities against a set of signa-
tures of known attacks. An attack signature is a unique arrangement of information
used to identify attack attempts exploiting known vulnerabilities. For instance, the
popular network-based IDS Snort [Roe99] is a misuse-based IDS that matches the con-
tent of network packets against a set of signatures and issues an alert if it finds a match.
Given that misuse-based IDSs use signatures of known attacks for detecting attacks,
they are not able to detect zero-day attacks. Under zero-day attack, we understand
an attack that exploits a vulnerability that has not been publicly disclosed before the
execution of the attack. The notion “zero-day” indicates that such an attack occurs on
“day zero” of public awareness of the exploited vulnerability.

Anomaly-based IDSs use a profile of normal (i.e., regular) network and/or system
activities as a reference to distinguish between regular activities and anomalous activi-
ties, the latter being treated as attacks. Anomaly-based IDSsmust be initially trained by
monitoring regular activities in order to construct regular activity profiles. In contrast
to misuse-based IDSs, anomaly-based IDSs are able to detect zero-day attacks as well as
known attacks, since both typically manifest themselves through anomalies. However,
depending on the quality of their training and the sensitivity of the employed attack
detection algorithms, anomaly-based IDSs may often mislabel regular activities as
anomalous, which is their major disadvantage. Under sensitivity of an attack detection
algorithm, we understand the smallest deviation of monitored system or network

17

Chapter 2: Foundations

activities from a regular activity profile, for which the algorithm labels the activities as
anomalous.

Hybrid IDSs use both misuse-based and anomaly-based attack detection methods.

(iii) Monitoring method: According to the employed monitoring method, IDSs can
be categorized into real-time monitoring or polling IDSs.
Real-time monitoring IDSs, also known as event-driven IDSs, analyze system and/or

network activities as they occur. An example of a real-time monitoring IDS is the
network-based IDS Snort [Roe99], which intercepts and analyzes network packets in
order to detect attacks. Another example is the file integrity monitoring component
of the host-based IDS OSSEC [oss], which performs real-time monitoring in order to
inspect occuring filesystem activities (e.g., file write and read operations).

In contrast to real-time monitoring IDSs, polling IDSs do not intercept executed activ-
ities in order to obtain input data for analysis, but rather obtain such data periodically
in an asynchronous manner. Some polling IDSs, known as log analysis IDSs, obtain
input data in the form of log files where system and/or network activities that have
already occurred are stored. Alternatively, polling IDSs periodically inspect relevant
system components, for example, content of memory regions allocated to the kernel
in order to detect kernel attacks. The vast majority of the IDSs that use polling as a
monitoring method are host-based IDSs, such as Wizard [GR03] and OSSEC [oss].

(iv) Deployment architecture: According to their deployment architecture, IDSs can
be categorized into non-distributed or distributed IDSs.

Non-distributed IDSs, also known as centralized IDSs, perform the same functions and
are deployed in an identical manner to hybrid, host-, or network-based IDSs, which
we discussed in detail earlier. In the following, we focus on distributed IDSs, which
have distinct characteristics due to their specific deployment architecture.

Distributed IDSs consist of multiple intrusion detection sub-systems (also known as
nodes or agents) that communicate and/or exchange intrusion detection-relevant data
(e.g., attack alerts, records of monitored activities). The communication is between the
agents themselves or with a centralized server that aggregates information obtained
from the agents and/or performs tasks such as management of the agents, analysis of
the data provided by them, and so on.

Because of its architecture, a distributed IDS maintains a global view of the network
and/or host activities occuring at multiple sites which may even be sparsely geograph-
ically distributed. In addition to attacks targeting individual hosts, the latter also
enables the detection of coordinated attacks. Under coordinated attack, we understand
carefully orchestrated attack that targets multiple hosts at specific moments in time
towards achieving a given malicious goal. However, the benefits of using a distributed
IDS come at the cost of network overhead caused by the communication required for
its operation. Example of a distributed IDS is the host-based IDS OSSEC [oss], which
may be configured to operate in a distributed manner.

In Table 2.1, we summarize the categorization of IDSs presented above.

18

2.2 Evaluation of Intrusion Detection Systems

Table 2.1: Categorization of intrusion detection systems.

Property IDS type Description

Monitored
platform

Host-based An IDS that monitors the activities on the system (i.e., the host) where
it is deployed in order to detect local attacks — attacks executed by
users of the targeted system itself (e.g., OSSEC [oss]).

Network-based An IDS that monitors network traffic in order to detect remote attacks
— attacks carried out over a network connection (e.g., Snort [Roe99]).

Hybrid An IDS that is a combination of host and network-based IDSs
(see [JXZ+09]).

Attack
detection
method

Misuse-based An IDS that evaluates system and/or network activities against a set
of signatures of known attacks (e.g., Snort [Roe99]); therefore, it is not
able to detect zero-day attacks — attacks that exploit vulnerabilities
that have not been publicly disclosed before the execution of the
attacks.

Anomaly-
based

An IDS that uses a baseline profile of regular network and/or system
activities as a reference to distinguish between regular and anomalous
activities, the latter being treated as attacks (see [ATJ+10]); therefore,
it is able to detect zero-day as well as known attacks, however, it
may often mislabel regular activities as anomalous, which is its major
disadvantage. An anomaly-based IDS must be trained by monitoring
regular activities in order to construct baseline activity profiles.

Hybrid An IDS that uses both misuse-based and anomaly-based attack detec-
tion methods (see [MP13]).

Monitoring
method

Real-time An IDS that analyzes system and/or network activities as they occur
(e.g., Snort [Roe99]).

Polling An IDS that does not analyze system and/or network activities as
they occur, but obtains input data for analysis periodically in an
asynchronous manner (e.g., OSSEC [oss]).

Deployment
architecture

Non-
distributed

A non-compound IDS that can be deployed only at a single location
(e.g., Snort [Roe99]).

Distributed A compound IDS that consists of multiple intrusion detection sub-
systems that can be deployed at different locations and communicate
to exchange intrusion detection-relevant data, for example, attack
alerts (e.g., OSSEC [oss], which can be configured to operate in a
distributed manner). Distributed IDSs can detect coordinated attacks
targeting multiple sites in a given time order.

2.2 Evaluation of Intrusion Detection Systems

2.2.1 Application Scenarios

Aswementioned in Section 1.1, IDS evaluation helps in answering twomain high-level
questions: How well an IDS performs?, and How well an IDS performs when compared to
other IDSs? The answers to these questions are of interest to many different types of
professionals in the field of communications and information security. This includes

19

Chapter 2: Foundations

IDS designers, both researchers and industrial software architects, as well as IDS users,
such as IT security officers. In this section, we demonstrate the broad relevance of IDS
evaluation by discussing its relevance in the context of the mentioned professions.
Researchers advance the field of intrusion detection by designing novel intrusion

detection methods and/or IDS architectures. They typically focus on designing IDSs
that are superior in terms of given IDS properties that are subject of research, for
example, attack detection accuracy or workload processing capacity. To demonstrate
the value of the research outcome, researchers typically perform small-scale evaluation
studies comparing the proposed IDS with other IDSs in terms of the considered IDS
properties. For instance, Meng et al. [ML12] measure workload processing throughput,
Mohammed et al. [MOL+11] measure power consumption, and Sinha et al. [SJP06]
measure memory consumption. Further, in order to demonstrate that the proposed
IDSs are practically useful, researchers also evaluate IDS properties that are not neces-
sarily in the focus of their research, but are relevant from a practical perspective. For
example, Lombardi et al. [LDP11] measure the performance overhead incurred by the
IDS they propose.

Industrial software architects design IDSs with an extensive set of features according
to their demand on themarket. IDSs, in this context, are typically evaluated by carrying
out tests of a large scale. The latter are part of regular quality assurance procedures
before releasing a product for sale. They normally use internationally standardized
tests for evaluating IDSs in a standard and comprehensive manner. For instance, Mi-
crosoft’s Internet Security and Acceleration (ISA) Server 2006 [ISA], which features
intrusion detection, has been evaluated according to the international standard Com-
mon Criteria framework for evaluating IT security products [mic]. Standardized IDS
tests are performed in strictly controlled environments and normally by independent
testing laboratories, such as NSS Labs [nssa], to ensure credibility of the results.
In contrast to IDS evaluation studies performed by researchers, evaluation studies

in industry normally include the evaluation of IDS properties that are relevant from a
marketing perspective. An example of such a property is the financial cost of deploying
and maintaining an IDS, which is evaluated as part of the IDS tests performed by NSS
Labs.
IT security officers use IDSs to protect environments they are in charge of from

malicious activities. They may evaluate IDSs, for example, when designing security
architectures, in order to select an IDS that is considered as optimal for protecting a
given environment. Further, if a security architecture is already in place, an IT security
officer may evaluate the performance of the selected IDS for different configurations
in order to find an optimal configuration. The performance is typically very sensitive
to the way the IDS is configured.
In addition to security and performance-related aspects, as part of IDS evaluation

studies, further usability-related aspects may also be considered. This is to be expected
since IT security officers deal with IDSs on a daily basis. For instance, security officers
in charge of protecting large-scale environments may be cognitively overloaded by the
output produced by the deployed IDS(s), an issue acknowledged by many researchers

20

2.2 Evaluation of Intrusion Detection Systems

(e.g., Komlodi et al. [KGL04]). Thus, the ability to produce structured output that can
be analyzed in an efficient manner is an important property often considered when
evaluating IDSs.

2.2.2 Historical Overview

In Figure 2.5, we depict chronologically ordered dates that mark major developments
in the area of IDS evaluation from its inception until the present date.

The earliest effort on evaluating IDSs in a systematic manner is the work of Puketza
et al. [PZC+96], [PCOM97]. They presented an approach for evaluating IDSs based
on principles of the field of software systems testing. Puketza et al. were the first to
develop a framework for evaluating IDSs, which they describe in detail in their work
from 1997 [PCOM97]. They used the framework to evaluate a network-based IDS in
terms of attack detection accuracy, resource consumption, and performance under
stress.
The years of 1998, 1999, and 2000 mark a major accomplishment in the area of

IDS evaluation. The Lincoln Laboratory at Massachusetts Institute of Technology
(MIT), sponsored by Defense Advanced Research Projects Agency (DARPA), evaluated
multiple IDSs using generated trace files that contain host and network activities of
benign and malicious nature. The latter are commonly known as the DARPA datasets.
Cunningham et al. [CLF+99] describe in detail the approach taken to generate the
DARPA datasets. The DARPA datasets are still extensively used in IDS evaluation
studies.

In 1998, Debar et al. [DDWL98] from the International Business Machines Corpora-
tion (IBM) Zurich Research Laboratory developed a workbench for evaluating IDSs.
The workbench enabled the execution of attack scripts stored in a database maintained
internally at IBM and the generation of regular workloads for training anomaly-based
IDSs. Debar et al. demonstrated the use of the workbench by evaluating multiple
host-based IDSs.

A recent effort to support the rigorous evaluation of IDSs is being driven by Symantec.
Dumitras et al. [DS11] presented the Symantec’s Worldwide Intelligence Network
Environment (WINE) datasets [Wor], which contain local and remote attacks (see
Table 2.1). They also presented an evaluation platform that makes use of the datasets
and is available for use by researchers for evaluating security mechanisms. However,
since the datasets are captured from real network infrastructures and systems, and
therefore contain private user data, they can only be accessed on-site at Symantec in
order to avoid legal issues. The large scale of this project is indicated by the fact that
Symantec continuously monitors and records malicious activities using more than
240,000 sensors deployed in 200 countries.

In addition to attacks, which can be used for evaluating IDSs, theWINE datasets con-
tain samples of malware (i.e., malicious software, such as trojans or viruses), which can
be used for evaluating malware detection systems (e.g., anti-virus systems). In contrast
to IDSs, which are designed to detect on-going attacks, malware detection systems are

21

Chapter 2: Foundations

1
9
9
5

2
0
1
5

G
affn

ey
 an

d
 U
lv
ila an

d
 G
u
 et al. p

ro
p
o
se n

o
v
el m

etrics

S
h
irav

i et al. an
d
 F
o
n
seca et al. d

ev
elo

p

m
eth

o
d
s fo

r th
e cu

sto
m
izab

le g
en
eratio

n
 o
f w

o
rk
lo
ad
s

R
an
u
m
 an

d
 M

ell et al. d
iscu

ss en
d
u
rin

g
 issu

es in
 ID

S
 ev

alu
atio

n

1
9
9
7

1
9
9
8

D
eb
ar et al. d

ev
elo

p
 a w

o
rk
b
en
ch

fo
r ev

alu
atin

g
 ID

S
es

1
9
9
9

R
esearch

ers fro
m
 L
in
co
ln
 L
ab
o
rato

ry
 at M

IT
 g
en
erate trace files

fo
r ev

alu
atin

g
 ID

S
es an

d
 ev

alu
ate m

u
ltip

le ID
S
es

2
0
0
0

1
9
9
6

 P
u
k
etza et al. d

ev
elo

p
 an

 ap
p
ro
ach

 an
d
 a fram

ew
o
rk

 fo
r ev

alu
atin

g
 ID

S
es in

 a sy
stem

atic m
an
n
er

2
0
1
1

D
u
m
itras et al. p

resen
t th

e W
IN

E
 d
atasets

an
d
 a p

latfo
rm

 fo
r ev

alu
atin

g
 IT

 secu
rity

 sy
stem

s

2
0
0
0
-
2
0
1
5

 ID
S
 ev

alu
atio

n
 stu

d
ies are carried

 o
u
t b
y
 research

ers an
d
 o
ccasio

n
ally

 ap
p
ear in

 trad
e m

ag
azin

e articles

1
9
9
8

2
0
1
4

2
0
0
1

2
0
0
1

2
0
0
3

2
0
1
2

2
0
0
6

1
9
9
9
-
2
0
1
5

N
S
S
 L
ab
s p

u
b
lish

es m
eth

o
d
o
lo
g
ies fo

r ev
alu

atin
g
 ID

S
es

2
0
1
0
-
2
0
1
5

M
A
W
IL
ab
 is u

p
d
ated

 d
aily

Figure
2.5:Tim

elim
e
show

ing
datesthatm

ark
m
ajordevelopm

entsin
the

area
ofID

S
evaluation.

22

2.3 Summary

designed to detect malware running on a given host, whose installation normally takes
place after an intrusion (i.e., a successful attack) has occurred. Evaluation of malware
detection systems is outside of the scope of this work.
There have been many small-scale IDS evaluation efforts between 2000 and today.

Articles reviewing and comparing IDSs occasionally appear in trade magazines, such
as the IDS evaluation studies presented in the SC magazine in 2011 [SC]. Following
the rising interest of researchers in intrusion detection since 2000, many IDS evaluation
studies have been presented as part of publications proposing novel intrusion detection
techniques or IDS evaluation methods.

Several works published between 2000 and today have had long-term impact on the
IDS evaluation area: Ranum [Ran01] and Mell et al. [MHL+03] proposed approaches
and gave recommendations towards addressing enduring issues in IDS evaluation
(e.g., use of faulty or unrepresentative workloads, inaccurate interpretation of results
from IDS evaluation studies); Gaffney et al. [GU01] and Gu et al. [GFD+06] were the
first to propose metrics for quantifying IDS attack detection accuracy that use specific
measurement methods in order to address issues in using the conventional metrics
at the time, such as the Receiver Operating Characteristic (ROC) curve; focusing on
the issue of using unrepresentative workloads, Shiravi et al. [SSTG12] and Fonesca et
al. [FVM14] developed methods for the customizable generation of IDS evaluation
workloads that closely resemble real-world workloads at the time they are generated.

In 2010, the Measurement and Analysis on the WIDE Internet (MAWI) Working
Group of the Widely Integrated Distributed Environment (WIDE) project announced
MAWILab, a repository of publicly available traces intended for use in IDS evaluation
studies [FBAF10], [MAW]. This is a significant effort to enable the representative
evaluation ofmodern network-based IDSs. The trace files inMAWILab contain network
traffic captured from a trans-Pacific 150Mbps link between Japan and the United States.
They contain regular network traffic as well as attacks, which are labeled before the
public release of the traces using a variety of attack labeling methods. MAWILab has
been updated daily since its release until the present date.
In 1999, NSS Labs, an information security research and testing organization, pio-

neered third party testing of IDSs with the publication of the first systematic, criteria-
driven methodology for IDS testing. From 1999 until the present date, NSS Labs has
been continuously supplying methodologies for testing IDSs to the public following
trends in IDS design. These methodologies may serve as guidelines for the rigorous
testing of IDSs. For instance, in 2015, NSS Labs published a methodology for testing
next-generation IDSs [NGI], that is, IDSs designed to detect novel threats, such as
advanced persistent threats (APTs) and social media threats.

2.3 Summary

In this chapter, we provided the background knowledge essential for understanding
the topic of intrusion detection and IDS evaluation. We discussed different types
of attacks and put intrusion detection into a common context with other security

23

Chapter 2: Foundations

mechanisms. We also defined different types of IDSs. We systematized the latter
according to the monitored platform, the attack detection method, the monitoring
method, and the deployment architecture. In addition, we demonstrated the wide
applicability of IDS evaluation by discussing its relevance to researchers, industrial
software architects, and IT security officers. Finally, we provided a historical overview
of major developments in the area of IDS evaluation ordering them chronologically.

24

Chapter 3

IDS Evaluation Design Space: A
Survey of Common Practices

In this chapter, we present an IDS evaluation design space structured into three parts
— workloads (Section 3.2), metrics (Section 3.3), and measurement methodology (Sec-
tion 3.4), which are in the focus of this thesis (see Section 1.1). The systematization
presented in this chapter includes 124 references out of which 65 are peer-reviewed
research publications and technical reports, and 59 are links to specific tool information
sites, relevant data, and similar.
Although they have a lot in common when it comes to evaluation, different types

of IDSs also pose challenges and requirements that apply specifically for each IDS
type. When a given category or part of the design space relates closely to a particular
IDS type, we stress such a relation in our discussions. We do so especially when
considering evaluation methodologies in Section 3.4, where we round up and finalize
the IDS evaluation design space.
The work presented in this chapter has been published in [MVK+15].

3.1 Related Work

There are only a few previous efforts that provide an overview of the existing work
on IDS evaluation. However, they do not cover developments until the current date
and/or are focusing on specific aspects, as opposed to providing a broad overview of
the field as presented in this chapter.

Athanasiades et al. [AAL+03] focus on IDS evaluation methodologies analyzing sev-
eral existing IDS evaluation tools and environments at the time of writing (i.e., 2003). In
particular, they analyze the Defense Advanced Research Projects Agency (DARPA) en-
vironment [IDE] and the Lincoln Adaptable Real-time Information Assurance Testbed
(LARIAT) environment [RCF+01]. Further, they evaluate the usability of multiple tools
used in IDS evaluation experiments such as the test suite Nidsbench [nid]. Finally, they
describe several conducted IDS evaluation studies, including IDS evaluation studies
performed by trade magazines.

Zanero [Zan06] identifies IDS evaluation requirements with respect to different
types of IDSs and intrusion detection techniques. He also provides a brief overview

25

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

of the employed IDS evaluation workloads and environments at the time of writing
(i.e., 2006). This includes the Neohapsis Open Security Evaluation Criteria (OSEC)
environment [neo], the DARPA datasets [LHF+00], and similar. Finally, he concludes
that the evaluation of IDSs is an open research area riddled with many challenges.
Some researchers are focusing on specific aspects in the context of their own work

analyzing, for example, the existing work on IDS evaluation related to one particular
evaluation component, that is, either workloads, metrics or methodology. For instance,
Debar et al. [DM02] provide an overview of several IDS evaluation methodologies
considering both approaches followed by research institutes (e.g., the IDS evaluation
platform at University of California (UC) Davis [PCOM97]) and by commercial organi-
zations [MS01]. Further, Gu et al. [GFD+06] provide a brief overview of various IDS
evaluation metrics.
In summary, to the best of our knowledge, no global and broad overview of the

IDS evaluation field has been published so far, systematizing existing knowledge, best
practices, and experiences in a comprehensive and up-to-date manner. To the best
of our knowledge, we are the first to systematically consider workloads, metrics and
measurementmethodologies as integral parts of every IDS evaluation approach. In this
chapter, we track the development of relevant practical and research work in the field
of IDS evaluation until the current date and we identify milestone accomplishments.
We mention commonly used tools and we provide references to technical manuals
and related information sources. We also discuss topics that have been, and still are,
actively debated in the IDS evaluation community.

3.2 Workloads

In Figure 3.1, we depict the workload part of the IDS evaluation design space. In order
to evaluate an IDS, we need both malicious and benign workloads. These can be used
separately (e.g., as pure malicious or pure benign workloads) to measure the capacity
of an IDS as in [BSNS11a] and [JXZ+11], or its attack coverage as in [RRL+12]. Pure
benign workloads are workloads that do not contain attacks, whereas pure malicious
workloads are workloads that contain only attacks. Alternatively, one can use mixed
workloads (i.e., workloads that are a mixture of pure benign and pure malicious work-
loads) to subject an IDS under test to realistic attack scenarios as in [YD11], [ATJ+10],
and [SJP06].
IDS evaluation workloads normally take an executable form for live testing of an

IDS, or a trace form, generated by recording a live execution of workloads for later
replay. The trace replay is performed with tools designed to process trace files — a
common combination is the use of the tool tcpdump [PR] for capturing network traces
for subsequent replay by tcpreplay [Tcpb]. A major advantage of using workloads
in executable form is that they closely resemble a real workload as monitored by an
IDS during operation. However, a malicious workload in executable form requires
a specific victim environment which can be expensive and time-consuming to setup
(see [DDWL98]). In contrast, such an environment is not always required for replaying

26

3.2 Workloads

Workload

[content]

Pure benign Mixed

[form]

Executable Trace

Generation Acquisition [method] [method]

Workload
drivers

Manual
generation

Exploit database

Vulnerability and
attack injection

Pure
malicious

Figure 3.1: IDS evaluation design space: Workloads [There are three types of workloads with
respect to workload content: pure benign (workloads that do not contain attacks), pure malicious
(workloads that contain only attacks), and mixed • There are two types of pure benign, pure
malicious, or mixed workloads with respect to their form: executable and trace • There are two
methods for generating pure benign executable workloads: use of workload drivers (Section 3.2.1)
and manual generation (Section 3.2.2) • There are two methods for generating pure malicious
executable workloads: use of an exploit database (Section 3.2.3), and vulnerability and attack injection
(Section 3.2.4) • There are two methods for generating pure benign, pure malicious, or mixed
workloads in trace form: acquisition (Section 3.2.5) and generation (Section 3.2.6)].

workload traces. Further, multiple evaluation runs are typically required to ensure
statistical significance of the observed system behavior. However, replicating evalua-
tion experiments when using executable malicious workloads is usually challenging
since the execution of attacks might crash the victim environment or render it in an
unstable state. Moreover, the process of restoring the environment to an identical state
as before the execution of the attacks may be very time-consuming.

In the following, we first discuss different methods for the generation of benign and
malicious workloads in executable form (see Figure 3.1). We discuss the use of workload
drivers and manual generation approaches for generating pure benign workloads. We
also discuss the use of an exploit database and vulnerability and attack injection techniques
for generating pure malicious workloads. We note that mixed workloads in executable
form can be generated by using in combination the previously mentioned methods
for generating pure benign and pure malicious workloads. Finally, we discuss meth-
ods for obtaining pure benign, pure malicious or mixed workloads in a trace form,
distinguishing between trace acquisition and trace generation.

3.2.1 Pure Benign→ Executable Form→Workload Drivers

For the purpose of live IDS testing, a common practice is to use benign workload
drivers to generate artificial pure benign workloads with different characteristics.

27

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

Some of the commonly used workload drivers are: SPEC CPU2000 [SPEb] for CPU-
intensive workloads; iozone [IFB] and Postmark [Kat97] for file input/output (I/O)-
intensive workloads; httpbench [Htt], dkftpbench [Dkf], and ApacheBench [aAHSBT]
for network-intensive workloads; and UnixBench [Uni] for system-wide workloads that
exercise not only the hardware, but also the operating system. Experiments using the
mentioned tools were performed in [GPB+03], [PKSZ04], [CM06], [RJX08], [ZWGW08],
[JXZ+09], [LDP11], [JXZ+11], and [RRL+12]. As expected, the CPU- and file I/O-
intensive drivers have been employed mainly for evaluating host-based IDSs, while
the network-intensive drivers for evaluating network-based IDSs. We look at the IDS
properties typically quantified using these drivers when we discuss IDS evaluation
methodologies in Section 3.4.
A major advantage of using benign workload drivers is the ability to customize

the workload in terms of its temporal and intensity characteristics. For instance, one
may configure a workload driver to gradually increase the workload intensity over
time, as typically done when evaluating the workload processing capacity of an IDS.
A disadvantage is that the workloads generated by such drivers often do not closely
resemble real-life workloads. In the case when realistic benign workloads are needed
(e.g., to be used as background activities mixed with attacks), a reasonable alternative
is the manual generation of benign workloads.

3.2.2 Pure Benign→ Executable Form→Manual Generation

Under manual generation of workloads, we understand the execution of real system
users’ tasks known to exercise specific system resources, which is typically applied
in the context of evaluating host-based IDSs. For example, a common approach is
to use: file encoding or tracing tasks to emulate CPU-intensive tasks (e.g., Dunlap et
al. [DKC+02] perform ray-tracing, Srivastava et al. [SSG08] perform video transcoding,
Lombardi et al. [LDP11] perform mp3 file encoding); file conversion and copying
of large files to emulate file I/O-intensive tasks (e.g., Lombardi et al. [LDP11] and
Allalouf et al. [ABYSS10] use the UNIX command dd to perform file copy operations);
kernel compilation to emulate mixed (i.e., both CPU- and file I/O-intensive) tasks (e.g.,
performed by Wright et al. [WCS+02], Dunlap et al. [DKC+02], Riley et al. [RJX08],
Lombard et al. [LDP11], and Reeves et al. [RRL+12]).
Provided that it is based on a realistic activity model, this approach of benign

workload generation enables the generation of workloads with a behavior similar
to the one observed by an IDS during regular system operation. Thus, it is suitable
when realistic benign workloads are required (e.g., for training and evaluation of
anomaly-based IDSs). Also, it is suitable for generation of workload traces capturing
realistic workloads executed in a recording testbed, a topic that we discuss later in
Section 3.2.6. However, the manual benign workload generation does not support
workload customization as workload drivers do, and might require a substantial
amount of manpower.
In Table 3.1, we provide an overview of the use of the discussed methods for gen-

erating pure benign workloads in practice. We also provide stepwise guidelines (see

28

3.2 Workloads

Table 3.1, section ‘Selection guidelines’) for selecting an approach from those presented
in Table 3.1 to apply in a given IDS evaluation study, that is, to evaluate a given IDS
property (e.g., workload processing capacity or performance overhead, see Section 3.4).

3.2.3 Pure Malicious→ Executable Form→ Exploit Database

Pure malicious workloads in executable form are used for evaluating the attack de-
tection coverage of IDSs (see Section 3.4). As pure malicious workloads in executable
form, security researchers typically use an exploit (i.e., an attack script) database. They
can assemble an exploit database by themselves, or use a readily available one.

Exploit Database→Manual Assembly

A major disadvantage of the manual assembly is the high cost of the attack script
collection process. Locating the attack scripts needed for exploiting specific vulnerabil-
ities and obtaining the required vulnerable software is typically time-consuming. In
addition, once the needed attack scripts are found, they typically have to be adapted to
exploit the vulnerabilities of the victim environments, especiallywhen the attack scripts
exploit local system vulnerabilities for evaluating host-based IDSs. This includes, for
example, time-consuming adaptation of employed exploitation techniques.
Depending on the size of a manually assembled exploit database, the previously

mentioned activities might require a considerable amount of manpower in order to
be completed in a reasonable time frame. For instance, Mell et al. [MHL+03] report
that based on previous experiences, a single attack script requires approximately
one person-week to modify the script’s code, to test it, and to integrate it in an IDS
evaluation environment. Mell et al. [MHL+03] also report that in 2001 the average
number of attack scripts used for evaluating IDSs was in the range of 9 to 66. We
observe that some recent works, such as [LDP11], use as low as 4 attack scripts.
To assemble an exploit database, IDS evaluators normally obtain attack scripts

from public exploit repositories. In Table 3.2, we list popular exploit repositories
characterized according to the criteria ‘exploit verification’, ‘vulnerable software’, and
‘vulnerability identifiers’ (see Table 3.2, section ‘Categorization criteria’). Given that an
exploit repository hosts a limited number of attack scripts, an IDS evaluator normally
does not search only a single repository, but asmany as it takes until the desired number
of attack scripts is obtained. In this process, we recommend that an IDS evaluator
prioritizes the exploit repository ‘Exploit database’ (marked in bold in Table 3.2) since
it fulfills more criteria than any other repository presented in Table 3.2 (see Table 3.2,
section ‘Categorization criteria’, for an overview of the benefits of a repository fulfilling
the criteria ‘exploit verification’, ‘vulnerable software’, and ‘vulnerability identifiers’).

Publicly available attack scripts normally do not feature techniques for evaluating the
ability of an IDS to detect evasive attacks. Adapting publicly available attack scripts to
feature techniques for evaluating the ability of an IDS to detect evasive attacks normally
requires an in-depth knowledge of the architecture and inner working mechanisms

29

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

Table 3.1: Practices for generating pure benign workloads in executable form [W: workload
drivers, M: manual generation].

Reference Method / Workload type / [Approach / Workload driver]
[ABYSS10] M / I/O-intensive / Creating, deleting and truncating files, appending data to

files; M / Mixed / Compilation of libraries
[CPX+13] M / CPU-intensive / Compiling Java code;M / Network-intensive / Web surf-

ing, Telnet sessions; M / I/O-intensive / Reading PDF files;W / CPU-intensive
/ SPEC CPU2000

[DKC+02] M / CPU-intensive / Ray tracing; M / Mixed / Kernel compilation; W /
Network-intensive / SPECweb99 [SPEc]

[GPB+03] M / CPU-intensive / Building SSH server;W / I/O-intensive / Postmark
[JXZ+11] W / I/O-intensive / iozone; W / Network-intensive / Apachebench, dkftp-

bench
[FJGS+00] M / Network-intensive / Executing traceroute

[LMJ07] M / CPU-intensive / Executing Linux commands (ps, who); M / Mixed /
Executing Linux commands (find, ls); M / Network-intensive / Downloading
files

[ML12] M / Network-intensive / Web surfing, transmitting files
[PKSZ04] M / I/O-intensive / File read operations; W / CPU-intensive / Am-utils [TBA-

SoU]; W / I/O-intensive / Postmark
[RRL+12] M / Mixed / Server and kernel compilation; W / CPU-intensive / SPEC

CPU2000; W / Mixed / lmbench [LTfPA]
[RJX08] M / Mixed / Kernel compilation, executing insmod;W / Mixed / Unixbench;

W / Network-intensive / Apachebench
[SSG08] M / CPU-intensive / Encoding files; M / I/O-intensive / Copying files; M /

Mixed / Video file compression and decompression, kernel compilation
[WCS+02] M / Mixed / Kernel compilation; W / Network-intensive / Webstone [MWBI];

W / Mixed / lmbench
[ZWGW08] W / I/O-intensive / iozone

Selection guidelines

1) Select a method for generating workloads, that is, use of workload drivers (‘workload drivers’ in Table 3.1)
or manual generation, by taking the advantages and disadvantages of the different methods into account (see
Section 3.2.1 and Section 3.2.2). In Section 3.4, in the context of IDS evaluation methodologies, we present
IDS evaluation scenarios where the different methods are applied for evaluating various IDS properties.

2) Select the type of workloads (e.g., CPU- or I/O-intensive) that is required for evaluating the considered IDS
property. For instance, CPU- and/or I/O-intensive workloads are required for evaluating the performance
overhead of a host-based IDS, and network-intensive workloads are required for evaluating any property of
a network-based IDS. In Section 3.4, we present IDS evaluation scenarios where workloads of the different
types are used for evaluating IDS properties.

3) Depending on the selection made in step 1), select an approach for manually generating workloads or a
workload driver. This is normally done based on subjective criteria (e.g., prior experience with using a given
workload driver). In an effort to provide general recommendations for selecting an approach for manually
generating workloads / a workload driver, we mark the most popular approaches / workload drivers in
bold. Based on what is reported in the surveyed work, we argue that the popularity of the workload drivers
marked in bold is due to high configurability, representativeness of the workloads they generate, and ease of
use.

30

3.2 Workloads

Table 3.2: Popular exploit repositories.

Exploit database Exploit
verification

Vulnerable
software

Vulnerability
identifiers

C
V
E

O
SV

D
B

Bu
gT

ra
q

1337day
(http://0day.today/)

x

Exploit database
(http://www.exploit-db.com/)

x x x x

Packetstorm
(http://packetstormsecurity.com/)

x x

SecuriTeam
(http://www.securiteam.com/exploits/)

x x

Securityfocus
(http://www.securityfocus.com/)

◦ x x

Categorization criteria

Criteria Description
Exploit
verification

An exploit repository that fulfills this criterion maintains a record for each hosted attack
script indicating whether the script has been empirically verified to successfully exploit
a specific vulnerability. This helps IDS evaluators to identify attack scripts that they can
easily adapt to their specific requirements.

Vulnerable
software

An exploit repository that fulfills this criterion provides a download link to the specific
vulnerable software that can be exploited by different attack scripts. This helps IDS
evaluators to quickly obtain this software and use it to experiment with the scripts.
◦marks partial fulfillment of this criteiron — an exploit repository that partially fulfills
this criterion provides a link to the website of the vendor of the vulnerable software
instead of a download link to the software, due to which it takes more time for an IDS
evaluator to obtain the vulnerable software.

Vulnerability
identifiers

An exploit repository that fulfills this criterion can be searched based on standard vul-
nerability identifiers. This enables IDS evaluators to quickly locate an attack script that
exploits a given vulnerability. Common Vulnerabilities and Exposures (CVE) [CVEC],
Open Sourced Vulnerability Database (OSVDB) [OSVDO], and BugTraq [Bug] are the
de-facto standard vulnerability enumeration systems.

of the IDS, a topic that we discuss in detail in Section 3.4.1. Such a knowledge may
be challenging to obtain if the evaluated IDS is closed source. Thus, IDS evaluators
use third-party tools when executing attack scripts, such as Nikto [Nik]. Cheng et
al. [CLLL12] provide an overview of IDS evasion techniques and discuss the use of the
previously mentioned and similar tools for evaluating IDSs.

Exploit Database→ Readily Available Exploit Database

To alleviate the above mentioned issues, many researchers employ penetration testing
tools as a readily available exploit database. We discuss in detail the Metasploit

31

http://0day.today/
http://www.exploit-db.com/
http://packetstormsecurity.com/
http://www.securiteam.com/exploits/
http://www.securityfocus.com/

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

framework [PtsM], since it is the most popular penetration testing tool used extensively
in both past and recent IDS evaluation experiments (e.g., by Nasr et al. [NKF12]).
Some other penetration testing tools are Nikto, w3af [w3a], and Nessus [Nes]. The
interest in Metasploit is not surprising, given that Metasploit enables a customizable
and automated platform exploitation by using an exploit database that is maintained
up-to-date and is freely available. However, although convenient, penetration testing
frameworks have some critical limitations. Gadelrab [GER08] analyzes theMetasploit’s
database showing that most of the exploits are executed from remote sources, and
therefore, they are most useful when evaluating network-based IDSs and are of limited
use for evaluating host-based IDSs.

In order to provide an up-to-date characterization of Metasploit’s exploit database,
we analyzed the exploit database of Metasploit version 4.7, the most recent release
at the time of writing. In Table 3.3, we categorize Metasploit’s exploits according
to the criteria ‘execution source’, ‘target platforms’, and ‘exploit rank’ [MFER] (see
Table 3.3, section ‘Categorization criteria’). Similarly to Gadelrab [GER08], we observe
that Metasploit’s exploit database contains mostly remote exploits, which makes it
most useful for evaluating network-based IDSs. We also observe that a big portion
of the exploits in the Metasploit’s database have a ‘great’ and ‘excellent’ rank. This
indicates that an IDS evaluator can use many attack scripts from Metasploit’s database
without crashing the victim platform(s). Finally, as we can see in Table 3.3, most of the
remote and local exploits exploit vulnerabilities of Windows platforms.

3.2.4 Pure Malicious→ Executable Form→ Vulnerability and
Attack Injection

An alternative approach to the use of an exploit database is the use of the vulnerability
and attack injection technique. Vulnerability and attack injection enables live IDS
testing by first artificially injecting exploitable vulnerable code in a target platform
and then attacking the platform. Although not yet mature, this technique is useful
in cases where collection of attack scripts that exploit vulnerabilities is unfeasible.
As the injected vulnerable code may be exploitable remotely or locally, vulnerability
and attack injection is useful for evaluating both host-based and network-based IDSs.
However, injecting attacks such that the sensors of an IDS under test are exercised may
require in-depth knowledge of the architecure and inner working mechanisms of the
IDS.

Vulnerability and attack injection relies on the principles of themore general research
area of fault injection. Fault injection is an approach for validating specific fault
handling mechanisms and assessing the impact of faults in actual systems. In recent
years, the interest in software fault injection has increased providing a basis for many
research works on emulation of software faults. A specific application of software fault
injection is injection of software faults that represent security vulnerabilities. Fonesca
et al. [FVM14] proposed an approach that enables the automated vulnerability and
attack injection of web applications, which is suitable for evaluating network-based
IDSs.

32

3.2 Workloads

Table 3.3: Characterization of Metasploit’s exploit database.

Execution source
Remote Local

Exploit rank
Target platforms A

IX
IO

S
BS

D
I

U
ni
x

Fr
ee
BS

D
H
P-
U
X

Ir
ix

Li
nu

x
N
et
w
ar
e

O
S
X

So
la
ris

W
in
do

w
s

M
ul
ti-
pl
at
fo
rm

To
ta
l(
pe

rr
an

k)

Li
nu

x
O
S
X

W
in
do

w
s

M
ul
ti-
pl
at
fo
rm

To
ta
l(
pe

rr
an

k)

Manual 4 3 1 5 2 15 0
Low 10 10 0
Average 1 1 4 1 8 1 120 3 139 2 2
Normal 2 7 2 251 6 268 2 2
Good 2 14 1 159 9 185 0
Great 2 1 1 3 8 1 3 147 17 183 2 2 4
Excellent 1 70 1 1 30 2 5 89 84 283 2 8 1 11
Total (per platform) 2 3 1 78 4 1 1 66 2 14 9 781 121 4 2 12 1
Total 1083 19

Categorization criteria
Criteria Description
Execution source An exploit can be executed from a remote (i.e., a remote exploit), or a local source

(i.e., a local exploit). Remote exploits are used for evaluating network-based IDSs,
whereas local exploits are used for evaluating host-based IDSs. The amount of
remote and local exploits in an exploit database indicates its suitability for evaluating
network- and host-based IDSs.

Target platforms Each exploit is designed to exploit a vulnerability of a single or multiple target
platforms (i.e., multi-platform exploits), such as Linux, Solaris, or Windows. An
exploit database covering a wide range of platforms is beneficial since, for example,
it can be used to evaluate a variety of IDSs for different target platforms.

Exploit rank Each exploit in Metasploit’s database is ranked according to its impact on the target
platform as shown below. The use of attack scripts that do not crash the target
platform (e.g., scripts ranked as ‘excellent’) significantly reduces the time spent on
restoring it (see Section 3.2).
Manual: An exploit of this rank almost never successfully exploits a vulnerability

and nearly always crashes the target platform.
Low: An exploit of this rank almost never successfully exploits a vulnerability or

successfully exploits a vulnerability in under 50% of the cases if the target
platform is popular.

Average: An exploit of this rank is unreliable and rarely successfully exploits a
vulnerability.

Normal: An exploit of this rank successfully exploits a vulnerability, but only a
vulnerability of a specific version of the target platform and cannot reliably
auto-detect a vulnerable platform.

Good: An exploit of this rank has a default target platform (i.e., a platform that the
exploit almost always successfully exploits), which is widely used.

Great: An exploit of this rank has a default target platform and detects a vulnerable
platform.

Excellent: An exploit of this rank almost always successfully exploits a vulnerability
and never crashes the target platform.

33

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

Attack
Injector

Web
application

Database
proxy

Database

2. Attack!

IDS

1. Inject vulnerability!

4. Notify!

3. Identify signature!

Attack!

Attack! Attack!

Figure 3.2: Use of vulnerability and attack injection to evaluate a network-based IDS.

We discuss a scenario where the approach of Fonesca et al. [FVM14] is applied for
evaluating a network-based IDS that monitors network traffic to a database, which com-
municates with a web application, in order to detect Standard Query Language (SQL)
injection attacks. Fonesca et al. [FVM14] built a Vulnerability Injector, a mechanism that
injects vulnerabilities in the source code of web applications, and an Attack Injector, a
mechanism that exploits the injected vulnerabilities. In order to inject vulnerabilities,
the Vulnerability Injector first analyzes the application source code searching for lo-
cations where realistic vulnerabilities can be injected by code mutation. The Attack
Injector then interacts with the web application in order to deliver attack payloads.

In Figure 3.2, we depict the approach of Fonesca et al. [FVM14] First, the Vulnerability
Injector injects a vulnerability in the web application (“1. Inject vulnerability” in
Figure 3.2), followed by the Attack Injector which delivers an attack payload with a
given signature, that is, an attack identifier (“2. Attack” in Figure 3.2). The attack
payload is targeted at the database (“Attack” in Figure 3.2). Fonesca et al. [FVM14]
developed a database proxy that monitors the communication between the application
and the database in order to identify the presence of attack signatures. When the
proxy identifies the signature of the delivered attack payload (“3. Identify signature”
in Figure 3.2), it notifies the Attack Injector that the attack payload has reached the
database (“4. Notify” in Figure 3.2). In this way, the Attack Injector builds a “ground
truth” knowledge. “Ground truth” is information about the attacks used as malicious
workloads in a given IDS evaluation study (e.g., time of execution of the attacks). The
output of an IDS under test is compared with “ground truth” information in order to
quantify the attack detection accuracy of the IDS, a topic that we discuss in detail in
Section 3.3.

3.2.5 Pure Malicious/Pure Benign/Mixed→ Trace Form→ Trace
Acquisition

Under trace acquisition, we understand the process of obtaining real-world production
traces from an organization (i.e., non-public, proprietary traces), or obtaining publicly

34

3.2 Workloads

available traces that are intended for use in security research.

Trace Acquisition→ Real-world Production Traces

Real-world production traces subject an IDS under test to a workload as observed
during operation in a real production environment. However, they are usually very
difficult to obtain mainly due to the unwilligness of industrial organizations to share
operational traces because of privacy concerns. Thus, real-world traces are usually
anonymized by using tools for that purpose. Such is the tool tcpmkpub [tcpa], which
anonymizes network traces by modifying recorded network packets at multiple layers
of the Transport Control Protocol/Internet Protocol (TCP/IP) network stack.
Some organizations are reluctant even towards trace anonymization due to the

possibility of information leakages. For instance, trace files may be deanonymized
to reveal sensitive internal information (e.g., Internet Protocol (IP) addresses, port
numbers, network topologies). Coull et al. [CWM+07] demonstrate the severity of
trace deanonymization by revealing anonymized information with 66% - 100% ac-
curacy based on the traces provided by the Lawrence Berkeley National Laboratory
(LBNL/ISCI) [lbn].

When it comes to the use of anonymization techniques on traces for IDS evalua-
tion, Seeberg et al. [SP07] identify the following challenging requirements: (i) during
anonymization, the smallest possible amount of intrusion detection relevant data
should be removed, and (ii) assurance needs to be attained that no private and other
sensitive information remains in the trace files after anonymization. For an IDS evalua-
tor, the first requirement is of greatest concern since an anonymizer might remove data
that is relevant for a given IDS under test. Therefore, the provisioning of extensive and
accurate metadata on how a given trace file has been anonymized is crucial.
Another challenge is that attacks in real-world production traces are usually not

labeled and traces may contain unknown attacks making the construction of the
“ground truth" time-consuming since attacks have to be labeled manually. Lack of
“ground truth” information severely limits the usability of trace files in IDS evaluation.
For instance, it might be impossible to quantify the false negative detection rate of an
IDS under test (see Section 3.3).

Trace Acquisition→ Publicly Available Traces

In contrast to real-world traces, one can obtain publicly available traces without any
legal constraints. However, the use of such traces has certain risks. For instance,
publicly available traces often contain errors and quickly become outdated after their
release since the recorded attacks have limited shelf-life. Consequently, claims on the
generalizability of results from IDS evaluation studies based on publicly available
traces can often be questioned. An in-depth knowledge about the characteristics of
recorded activities in publicly available traces (e.g., types and distributions of recorded
attacks) is a requirement for the accurate interpretation of results from IDS evaluation
studies based on such traces.

35

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

The DARPA [IDE] and the derived Knowledge Discovery and Data Mining Cup 1999
(KDD’99) [UoC] datasets are the result of one of the most notable efforts up-to-date to
provide publicly available data for security research. In three consecutive years (i.e.,
1998, 1999, and 2000), three separate editions of the DARPA datasets have been made
available. Since they contain local and remote attacks, the DARPA datasets are suitable
for evaluating host- and network-based IDSs. They also contain training data, which
makes them useful for evaluating anomaly-based IDSs. However, the DARPA and
the KDD’99 datasets are currently considered outdated and have been often criticized
(see [SP10] and [McH00]). Despite the criticism, these traces are still used in many
recent IDS evaluation experiments (e.g., by Yu et al. [YD11] and Raja et al. [RAR12]).
In Table 3.4, we provide an overview of popular repositories of publicly available

traces categorized according to multiple criteria (see Table 3.4, section ‘Categorization
criteria’): the Cooperative Association for Internet Data Analysis (CAIDA) [cai], the
Defense Readiness Condition (DEFCON) [CtCtF], the DARPA/KDD’99 ([IDE], [UoC]),
the Internet Traffic Archive (ITA) [ita], the Lawrence Berkeley National Laboratory
(LBNL/ISCI) [lbn], and the Measurement and Analysis on the WIDE Internet (MAW-
ILab) trace repositories [FBAF10]. We also provide stepwise guidelines (see Table 3.4,
section ‘Selection guidelines’) for selecting a trace repository from those presented
in Table 3.4 to use in a given IDS evaluation study, that is, to evaluate a given IDS
property (see Section 3.4).

3.2.6 Pure Malicious/Pure Benign/Mixed→ Trace Form→ Trace
Generation

Under trace generation, we understand the process of generating traces by the IDS eval-
uator himself. To avoid the issues with acquiring traces (see Section 3.2.5), researchers
generate traces in a testbed environment, or deploy a honeypot in order to capture
malicious activities.

Trace Generation→ Testbed Environment

Different ways to generate traces that contain benign and malicious workloads in a
testbed environment include using the previously mentioned methods for generating
workloads in executable form (e.g., use of workload drivers, manual generation) and
capturing and storing the executed workloads in trace files. The generation of traces in
a testbed environment is challenging due to several concerns. For instance, the costs
of building a testbed that scales to realistic production environments may be high.
Further, the method for trace generation may produce faulty or simplistic workloads.
Sommer et al. [SP10] warn that activities captured in small testbed environments differ
fundamentaly from activities in a real-life environment. Finally, the methods used to
generate traces are not flexible enough to timely follow the attack and benign activity
trends.

36

3.2 Workloads

Ta
bl
e
3.
4:

Re
po

si
to
rie

so
fp

ub
lic

ly
av

ai
la
bl
e
tr
ac
es
.

Tr
ac
e
re
po

si
to
ry

C
on

te
nt

A
ct
iv
iti
es

La
be

le
d

R
ea

lis
tic

A
no

ny
m
iz
ed

M
et
ad

at
a

A
cc
es
s
re
st
ri
ct
io
ns

C
A
ID

A
M
ix
ed

N
et
w
or
k

N
o

Ye
s

Pa
rt
ia
lly

(a
)

Ye
s

Pa
rt
ia
l(b

)

D
EF

CO
N

Pu
re

m
al
ic
io
us

N
et
w
or
k

N
o

N
o

N
o

N
o

N
o

D
A
RP

A
/K

D
D
’9
9

M
ix
ed

N
et
w
or
k/

H
os
t

Ye
s

N
o

N
o

Ye
s

N
o

IT
A

Pu
re

be
ni
gn

N
et
w
or
k

n/
a

Ye
s

Pa
rt
ia
lly

(c
)

N
o

N
o

LB
N
L

Pu
re

be
ni
gn

N
et
w
or
k

n/
a

Ye
s

Ye
s

Ye
s

N
o

M
AW

IL
ab

M
ix
ed

N
et
w
or
k

Ye
s

Ye
s

Ye
s

Ye
s

N
o

C
at
eg

or
iz
at
io
n
cr
ite

ri
a

C
ri
te
ri
a

D
es
cr
ip
tio

n
C
on

te
nt

Th
e
tr
ac
es

ho
st
ed

in
a
re
po

si
to
ry

m
ay

co
nt
ai
n
on

ly
be

ni
gn

ac
tiv

iti
es

(p
ur
e
be

ni
gn

),
on

ly
at
ta
ck

s(
pu

re
m
al
ic
io
us

),
or

bo
th

be
ni
gn

ac
tiv

iti
es

an
d
at
ta
ck

s(
m
ix
ed

,s
ee

Fi
gu

re
3.
1)
.

A
ct
iv
iti
es

Th
e
tr
ac
es

ho
st
ed

in
a
re
po

si
to
ry

m
ay

co
nt
ai
n
ne

tw
or
k
an

d/
or

ho
st
ac
tiv

iti
es
.T

he
fo
rm

er
ar
e
ne

ed
ed

fo
re

va
lu
at
in
g
ne

tw
or
k-

ba
se
d
ID

Ss
an

d
th
e
la
tte

rf
or

ev
al
ua

tin
g
ho

st
-b
as
ed

ID
Ss
.

La
be

le
d

Th
e
at
ta
ck

sr
ec
or
de

d
in

th
e
tr
ac
es

ho
st
ed

in
a
re
po

si
to
ry

m
ay
,o

rm
ay

no
tb

e,
la
be

le
d.

La
be

le
d
at
ta
ck

se
na

bl
e
an

ID
S
ev

al
ua

to
r

to
ob

se
rv
e
w
he

th
er

th
e
ID

S
un

de
rt
es
td

et
ec
ts

th
e
re
co
rd
ed

at
ta
ck

s.
Re

al
is
tic

Th
e
tr
ac
es

ho
st
ed

in
a
re
po

si
to
ry

m
ay
,o

rm
ay

no
tb

e,
re
al
is
tic

.A
tr
ac
e
is
co
ns

id
er
ed

to
be

re
al
is
tic

if
it
ha

s
be

en
ca
pt
ur
ed

du
rin

g
re
gu

la
ro

pe
ra
tio

n
of

an
en

vi
ro
nm

en
ta

nd
ha

sn
ot

be
en

m
od

ifi
ed

[S
ST

G
12

].
A
no

ny
m
iz
ed

Th
e
tr
ac
es

ho
st
ed

in
a
re
po

si
to
ry

m
ay
,o

rm
ay

no
tb

e,
an

on
ym

iz
ed

.A
no

ny
m
iz
ed

tr
ac
es

m
ay

la
ck

in
fo
rm

at
io
n
th
at

is
cr
uc

ia
l

fo
ri
nt
ru

si
on

de
te
ct
io
n
(s
ee

Se
ct
io
n
3.
2.
5)
.

M
et
ad

at
a

M
et
ad

at
a
on

ho
w

ac
tiv

iti
es

st
or
ed

in
tr
ac
e
fil
es

ha
ve

be
en

re
co
rd
ed

an
d
an

on
ym

iz
ed

m
ay
,o

rm
ay

no
tb

e,
pr
ov

id
ed

.M
et
ad

at
a

is
im

po
rt
an

tf
or

ac
cu

ra
te
ly

in
te
rp

re
tin

g
re
su

lts
fr
om

ID
S
ev

al
ua

tio
n
ex
pe

rim
en

ts
(s
ee

Se
ct
io
n
3.
2.
5)
.

A
cc
es
sr

es
tr
ic
tio

ns
Th

e
tr
ac
es

ho
st
ed

in
a
re
po

si
to
ry

m
ay

be
av

ai
la
bl
e
to

th
e
ge

ne
ra
lp

ub
lic

or
on

ly
to

ce
rt
ai
n
in
di
vi
du

al
st

ha
ts

at
is
fy

sp
ec
ifi
c

re
qu

ire
m
en

ts
,f
or

ex
am

pl
e,
em

pl
oy

m
en

tb
y
a
re
se
ar
ch

or
ga

ni
za

tio
n
or

a
go

ve
rn
m
en

ta
ge

nc
y.

Se
le
ct
io
n
gu

id
el
in
es

1)
Se

le
ct

th
e
tr
ac
e
re
po

si
to
rie

sw
ith

th
e
ap

pr
op

ria
te

va
lu
e
of

th
e
cr
ite

rio
n
‘a
ct
iv
iti
es
’w

ith
re
sp

ec
tt
o
th
e
ty
pe

of
th
e
te
st
ed

ID
S
(i.
e.
,n

et
w
or
k-

or
ho

st
-b
as
ed

ID
S)
;t
ha

ti
s,
‘n
et
w
or
k’

fo
re

va
lu
at
in
g
ne

tw
or
k-
ba

se
d
ID

Ss
,‘
ho

st
’f
or

ev
al
ua

tin
g
ho

st
-b
as
ed

ID
Ss
.

2)
Se

le
ct

th
e
tr
ac
e
re
po

si
to
rie

sw
ith

th
e
ap

pr
op

ria
te

va
lu
e
of

th
e
cr
ite

rio
n
‘c
on

te
nt
’w

ith
re
sp

ec
tt
o
th
e
ev

al
ua

te
d
ID

S
pr
op

er
ty
,f
or

ex
am

pl
e,
‘p
ur
e
m
al
ic
io
us

’
fo
re

va
lu
at
in
g
at
ta
ck

de
te
ct
io
n
co
ve

ra
ge

,‘
m
ix
ed

’f
or

ev
al
ua

tin
g
at
ta
ck

de
te
ct
io
n
ac
cu

ra
cy
,a

nd
so

on
.I
n
Se

ct
io
n
3.
4,

w
e
pr
ov

id
e
de

ta
ils

on
th
e
us

e
of

pu
re

m
al
ic
io
us

,p
ur
e
be

ni
gn

,o
rm

ix
ed

w
or
kl
oa

ds
fo
re

va
lu
at
in
g
di
ffe

re
nt

ID
S
pr
op

er
tie

s(
se
e
Ta

bl
e
3.
7)
.

3)
Se

le
ct

th
e
re
po

si
to
ry

w
ith

va
lu
es

of
th
e
cr
ite

ria
‘la

be
le
d’
,‘
re
al
is
tic

’,
‘a
no

ny
m
iz
ed

’,
‘m

et
ad

at
a’,

an
d
‘a
cc
es
sr

es
tr
ic
tio

ns
’s
uc

h
th
at

th
e
be

ne
fit

of
us

in
g
th
e

re
po

si
to
ry

is
m
ax

im
al

(s
ee

Ta
bl
e
3.
4,
se
ct
io
n
‘C
at
eg

or
iz
at
io
n
cr
ite

ri
a’,

fo
ra

n
ov

er
vi
ew

of
th
e
be

ne
fit
so

fa
tr
ac
e
re
po

si
to
ry

fu
lfi
lli
ng

or
no

tf
ul
fil
lin

g
th
e

pr
ev

io
us

ly
m
en

tio
ne

d
cr
ite

ria
).

(a
)T

he
IP

ad
dr

es
se
sr

ec
or
de

d
in

so
m
e
tr
ac
e
fil
es

ar
e
an

on
ym

iz
ed

.
(b
)S

om
e
tr
ac
e
fil
es

ar
e
av

ai
la
bl
e
on

ly
to

m
em

be
rs

of
C
A
ID

A’
sm

em
be

rs
hi
p
pr
og

ra
m
.

(c
)S

om
e
tr
ac
e
fil
es

ar
e
an

on
ym

iz
ed

su
ch

th
at

IP
ad

dr
es
se
sa

re
m
od

ifi
ed

an
d
al
lp

ac
ke

tc
on

te
nt
sa

re
re
m
ov

ed
.

37

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

A common approach to alleviate the previously mentioned issue of generating faulty
and unrealistic workloads is to observe the network and/or host activities in a real-life
production environment in order to construct a realistic activity model. The latter can
then be used as a basis for the generation of live workloads that closely resemble the
real observed workloads for the purpose of recording trace files.

The previously mentioned DARPA datasets were generated according to the above
approach. More specifically, Cunningham et al. [CLF+99] observed the network ac-
tivities in an Air Force base by deploying network traffic sniffers to record types and
amounts of used network services. They also identified representative workstation
users (e.g., programmers, secretaries, system administrators) and associated host work-
loads, so that they could recreate the activity of these users. As malicious workloads,
besides surveillance/probing attacks, they used scripted and real attackers to execute
a set of exploits against the testbed environment. Overall, Cunningham et al. [CLF+99]
demonstrated the use of manual benign workload generation (Section 3.2.2) based on
a realistic activity model to generate and record benign workloads, and live execution
of attacks from an exploit database (Section 3.2.3) to generate and record malicious
workloads.

Although useful, the use of the above mentioned approach for the generation of
realistic traces results in one-time datasets, that is, datasets that resemble the real-
world only for a given (short) time period after the trace generation. Given that the
characteristics of intrusions and of benign workloads are rapidly changing over time,
one-time datasets are considered as inappropriate for a representative IDS evaluation.
The above issue has motivated a major current research direction focusing on the

generation of traces in a testbed environment, in a customizable and scientifically
rigorous manner. To this end, Shiravi et al. [SSTG12] in 2012 proposed the use of
workload profiles enabling the specification and customization ofmalicious and benign
network traffic that can be captured in trace files for evaluating network-based IDSs.
Shiravi et al. [SSTG12] introduced α-profiles for the specification of attack scenarios
with attack description languages, and β-profiles for the specification of mathematical
distributions or behaviors of certain entities (e.g., distribution of network packet sizes,
payload sizes, and similar).

According to Shiravi et al. [SSTG12], the α− and β−profiles support the generation
of datasets that can be modified, extended, and reproduced, so that they remain up-
to-date as network usage trends change over time. Using the specifications defined
in the profiles, one can generate both malicious and benign workloads in a testbed
environment for recording. We refer the reader to [SSTG12] for further information on
the practical use of such profiles.

In Figure 3.3a and Figure 3.3b, we depict distributions ofHyper Text Transfer Protocol
(HTTP) requests made over a period of 24 hours by a real user browsing websites
and by an agent using β− profiles, respectively. The distributions were observed by
Shiravi et al. [SSTG12] who showed that the measurement data can be best modeled
using a Beta distribution as shown in Figure 3.3a. Given the great similarity between
the histograms depicted in Figure 3.3a and Figure 3.3b, one can conclude that the

38

3.2 Workloads

(a)

(b)

Figure 3.3: HistogramofHTTP requestsmade by (a) a real user, and (b) an agent usingβ−profiles
[cf. [SSTG12]].

β−profiles proposed by Shiravi et al. [SSTG12] can be used for generating benign
workloads that closely resemble real workloads.

Trace Generation→ Honeypots

By mimicking real systems and/or vulnerable services, honeypots enable the inter-
action and recording of host and/or network malicious activities performed by an
attacker without revealing their purpose. Since honeypots are usually isolated from
production platforms, most of the interactions that they observe are malicious, making
honeypots ideal for generation of puremalicious traces. However, given that honeypots
interact with real attackers, the outcome of a trace generation campaign performed
by using a honeypot (e.g., amount and types of recorded attacks) is uncertain since it
cannot be planned in advance and controlled.

39

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

Low-interaction

Hybrid

High-interaction

Pure

Level of interaction

honeyd (http://www.honeyd.org/)
nepenthes (http://nepenthes.carnivore.it/)
honeytrap (http://honeytrap.carnivore.it/)
HoneyC (https://projects.honeynet.org/honeyc)

honeybrid (http://honeybrid.sourceforge.net/)
HoneySpider (http://www.honeyspider.net/)

Sebek (http://projects.honeynet.org/sebek)
Argos (http://www.few.vu.nl/argos/)
Capture-HPC (https://projects.honeynet.org/capture-hpc/wiki)
HoneyClient (http://www.honeyclient.org/)

Production systems

Figure 3.4: Honeypots of different levels of interaction.

Based on their level of interaction with attackers, honeypots can be categorized into
low-interaction, high-interaction, and pure honeypots. Low-interaction honeypots
mimic only specific vulnerable services by using scripts, high-interaction honeypots
mimic production systems by using actual operating systems, and pure honeypots are
full-fledged production systems equipped with logging tools.
Low-interaction honeypots are not flexible, can be easily detected by attackers,

and cannot interact with zero-day attacks (see Section 2.1.2). However, they are not
expensive to maintain and are useful for recording malicious activities that can be
easily labeled. High-interaction and pure honeypots are flexible, can interact with
zero-day attacks, and are not easily detectable, however, they are expensive to maintain
and require time-consuming analysis of recorded activities for the purpose of labeling
recorded attacks in order to construct “ground truth”. There are also hybrid honeypots,
which combine the advantages of low- and high-interaction honeypots. In Figure 3.4,
we present commonly used honeypots of the previouslymentioned levels of interaction.

3.3 Metrics

In Figure 3.5, we depict the metrics part of the IDS evaluation design space. We distin-
quish between two metric categories: (i) performance-related metrics, and (ii) security-
related metrics (see Section 1.2.2). Under performance-related metrics, we consider
metrics that quantify the non-functional properties of an IDS under test, such as capac-
ity (see, for example, [ML12]) and resource consumption (see, for example, [SJP06]). In
this chapter, we focus on security-related metrics. Under security-related metrics, we
consider metrics that quantify the attack detection accuracy of an IDS.

We distinguish between basic and composite security-related metrics. We provide in

40

3.3 Metrics

Metrics

Security-
related

Performance-
related

[aspect]

[form]

Composite Basic

[method]

Cost-based
Information-

theoretic

Figure 3.5: IDS evaluation design space: Metrics [There are two types of metrics with respect to
the aspect of IDS behavior they quantify: security-related (quantify IDS attack detection accuracy)
and performance-related (quantify non-functional IDS properties) • There are two types of security-
related metrics with respect to metric form: basic (Section 3.3.1) and composite (metrics derived
from basic metrics, Section 3.3.2) • There are two types of composite metrics with respect to
used measurement method (Section 3.3.2): cost-based and information-theoretic].

Table 3.5 an overview of the most commonly used basic and composite security-related
metrics. We also show the notation, formulas, and value domains of used symbols
(including variables). In Table 3.5, P and p denote a probability, R denotes the set of
real numbers, R+ denotes the set of positive real numbers excluding zero, and R+

0

denotes the set of positive real numbers including zero.

3.3.1 Security-related→ Basic

The basic metrics quantify various individual attack detection properties. Although
they are quantified individually, these properties need to be analyzed together in
order to accurately characterize the attack detection efficiency of an IDS. For instance,
the false negative rate β = P (¬A|I) quantifies the probability that an IDS does not
generate an alert when an intrusion occurs; therefore, the true positive rate 1− β =
1 − P (¬A|I) = P (A|I) quantifies the probability that an alert generated by an IDS
is really an intrusion. The false positive rate α = P (A|¬I) quantifies the probability
that an alert generated by an IDS is not an intrusion, but a regular benign activity;
therefore, the true negative rate 1 − α = 1 − P (A|¬I) = P (¬A|¬I) quantifies the
probability that an IDS does not generate an alert when an intrusion does not occur.
In IDS evaluation experiments, the output of the IDS under test is compared with
“ground truth” information in order to calculate the basic metrics (see Section 3.2.4).

Other basic metrics are the positive predictive value (PPV) and the negative predic-
tive value (NPV). The first quantifies the probability that there is an intrusion when
an IDS generates an alert whereas the latter quantifies the probability that there is no

41

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

Table 3.5: Common metrics for quantifying IDS attack detection accuracy.

Metric form Metric Annotation/Formula

Basic

False negative rate β = P (¬A|I)

Truepositive rate 1− β = 1− P (¬A|I) = P (A|I)

False positive rate α = P (A|¬I)

True negative rate 1− α = 1− P (A|¬I) = P (¬A|¬I)

Positive predictive value P (I|A) =
P (I)P (A|I)

P (I)P (A|I)+P (¬I)P (A|¬I)

Negative predictive value P (¬I|¬A) =
P (¬I)P (¬A|¬I)

P (¬I)P (¬A|¬I)+P (I)P (¬A|I)

Composite
Expected cost Cexp = Min(CβB, (1 − α)(1 − B)) + Min(C(1 −

β)B,α(1−B))

Intrusiondetection capability CID =
I(X;Y)
H(X)

Notations and properties of used symbols

Symbol Meaning Formula/Value domain

A Alert event: An IDS generates an attack alert n/a

I Intrusion event: An attack is performed n/a

Cα Cost of an IDS generating an alert when an intrusion
has not occured

Cα ∈ R+
0

Cβ Cost of an IDS failing to detect an intrusion Cβ ∈ R+

C Cost ratio: The ratio between the costs Cα and Cβ Cβ/Cα : C ∈ R+
0

B Base rate: Prior probability that an intrusion event
occurs

P (I) : B ∈ R→ [0; 1]

X IDS input: Discrete random variable used to model
input to an IDS such thatX = 0 represents a benign
activity and X = 1 represents a malicious activity
(i.e., an intrusion)

X = 0 ∨X = 1

Y IDS output: Discrete random variable used to model
the generation of alerts by an IDS such that Y = 0
represents no alert and Y = 1 represents an alert

Y = 0 ∨ Y = 1

H(X) Uncertainty ofX : Entropy measure quantifying the
uncertainty of the IDS inputX

−
∑
x p(x)logp(x) : x = 0 ∨ x =

1, p(x) ∈ R→ [0; 1]

I(X;Y) Mutual information: The amount of information
shared between the random variablesX and Y (i.e.,
the amount of reduction of the uncertainty of the IDS
input (X) after the IDS output (Y) is known)

∑
x

∑
y p(x, y)log

p(x,y)
p(x)p(y)

: x =

0 ∨ x = 1, y = 0 ∨ y = 1, p(x) ∧
p(y) ∧ p(x, y) ∈ R → [0; 1], 0 ≤
I(X;Y) ≤ H(X)

intrusion when an IDS does not generate an alert. These metrics are calculated by using
the Bayesian theorem for calculating a conditional probability (see Table 3.5). PPV and

42

3.3 Metrics

NPV are interesting from a usability perspective, for example, in situations when an
intrusion alert triggers an attack response. In such situations, low values of PPV and
NPV indicate that the considered IDS is not optimal for deployment. For example, a
low value of PPV (therefore a high value of its complement 1 − P (I|A) = P (¬I|A))
indicates that the considered IDS may often cause the triggering of attack response
actions when no real attacks have actually occured.

3.3.2 Security-related→ Composite

Security researchers often combine the basic metrics in order to analyze relationships
between them. Such an analysis is used to discover an optimal IDS operating point (i.e.,
an IDS configuration which yields optimal values of both the true and false positive
detection rate) or to compare multiple IDSs. In this section, we focus on comparing
the applicability of composite security-related metrics for the purpose of comparing
IDSs, which includes the identification of optimal IDS operating points.

A Receiver Operating Characteristic (ROC) curve plots true positive rate against the
corresponding false positive rate exhibited by a detector. In the context of IDSs, a ROC
curve depicts multiple IDS operating points of an IDS under test and, as such, it is
useful for identifying an optimal operating point or for comparing multiple IDSs.
An open issue is how to determine a proper unit and measurement granularity

for the false positive and true positive rates based on which a ROC curve is plotted.
Different units of measurement might yield different rates and therefore, the selection
of a proper unit is considered as a task that needs to be performed with care. Gu et
al. [GFD+06] acknowledge the importance and scope of the above issue by referring to
it as: “general problem for all the existing [IDS] evaluation metrics”. Gu et al. [GFD+06]
discuss this issue in the context of the evaluation of network-based IDSs. They state that
depending on the unit of analysis in a network-based IDS, at least two different units
of measurement exist (i.e., a unit of packet and flow), which makes the comparison
of IDSs with these units of analysis challenging. Gu et al. [GFD+06] recommend the
conversion of different units of measurement to the same unit when possible for a
fair and meaningful IDS comparison (e.g., conversion of a packet-level to a flow-level
unit by defining a flow as malicious when it contains a malicious packet). Next, we
analyze and demonstrate the use of ROC curves and related metrics through a case
study scenario.
Case study #1: Let’s consider the comparison of two IDSs, IDS1 and IDS2, and

analyze the relationship between the true positive (1 − β) and the false positive (α)
detection rate. We assume that for IDS1, 1− β is related to α with a power function
(i.e., 1−β = αk) such that k = 0.002182. We assume that for IDS2, 1−β is related to α
with an exponential function (i.e., 1− β = 1− 0.00765e−208.32α). We obtain the values
of k, α, and the coefficients of the exponential function from [GU01]. We calculate the
values of 1− β for IDS1 and IDS2 for α = {0.005, 0.010, 0.015}. The respective values
are shown in Table 3.6.

In Figure 3.6a, we depict the ROC curves that express the relationship between 1−β

43

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

Table 3.6: Values of 1− β, PPVID , Cexp, Crec, and CID for IDS1 and IDS2.

IDS1 IDS2

α PPVZRC 1− β PPVID Cexp/rec CID 1− β PPVID Cexp/rec CID

0.005 0,9569 0.9885 0,9565 0.016 0.9159 0.973 0,9558 0.032 0.8867
0.010 0,9174 0.99 0,9167 0.019 0.8807 0.99047 0,9167 0.019 0.8817
0.015 0,8811 0.9909 0,8801 0.022 0.8509 0.99664 0,8807 0.017 0.8635

and α for IDS1 and IDS2. The ROC curves intersect approximately at 1− β = 0.99
and α = 0.01. Thus, the better IDS cannot be identified in a straightforward manner.
An IDS is considered as better if it features a higher true positive detection rate (1− β)
at all operating points along the ROC curve.

An intuitive solution to the above problem, as suggested by Durst et al. [DCW+99],
is to compare the area under the ROC curves (i.e., AUC1 :

∫ α=0.015

α=0.005
α0.002182dα and

AUC2 :
∫ α=0.015

α=0.005
(1−0.00765e−208.32α)dα). However, Gu et al. [GFD+06] consider such

a comparison as unfair, since it is based on all operating points of the compared IDSs,
while in reality a given IDS is always configured according to a single operating point.

The ROC curves depicted in Figure 3.6a do not express the impact of the rate of
occurence of intrusion events (B = P (I)), known as base rate, on α and 1−β. The attack
detection performance of an IDS should be assessed with respect to a base rate measure
in order for such an assessment to be accurate (see [Axe00]). The error occurring when
α and 1− β are assessed without taking the base rate into account is known as the base
rate fallacy.
In order to address the above issue, Nasr et al. [NKF12] propose a metric called

intrusion detection effectiveness (EID). EID is calculated based on comparing the ideal
and actual performance of an IDS depicted in the form of IDS operation curves
called zero reference curve (ZRC) and actual IDS operation curve, respectively. An
IDS operation curve plots PPV, which contains measure of the base rate B (see Ta-
ble 3.5), against α. Given a specific value of B, the ZRC plots PPV (denoted by
PPVZRC) calculated assuming an ideal operation of the tested IDS; that is, the IDS
does not miss attacks (1 − β = 1). The actual IDS operation curve plots the actual
PPV (denoted by PPVID) exhibited by the IDS. The value of EID is the normal-
ized variance between the ZRC and the actual IDS operation curve over the inter-
val [0, TFP], where TFP is the maximum acceptable α exhibited by the IDS; that is,
EID = 1∫ TFP

0 PPVZRCdα
(
∫ TFP

0
PPVZRCdα −

∫ TFP

0
PPVIDdα), EID ∈ [0; 1], such that

the lesser EID the better the performance of the IDS under test.
In Table 3.6, we present PPVZRC and PPVID for IDS1 and IDS2, calculated as-

suming that B = 0.1. In Figure 3.6b and Figure 3.6c (the axes are in logarithmic scale),
we depict the ZRC and the actual IDS operation curve for IDS1 and IDS2. These
curves are very similar due to the high PPVs (i.e., close to the ideal PPV — PPVZRC)
exhibited by IDS1 and IDS2. We calculate EID of 0.0004 for IDS1 and EID of 0.0011

44

3.3 Metrics

0.4 0.6 0.8 1 1.2 1.4 1.6

·10−2

0.97

0.98

0.99

1

False positive rate (α)

T
ru
e
p
os
it
iv
e
ra
te

(1
−

β
)

IDS1 IDS2 AUC1 AUC2

(a)

TFP

10−2.3 10−2.2 10−2.1 10−2 10−1.9 10−1.8

10
−
0
.0
6

1
0
−
0
.0
4

10
−
0
.0
2

False positive rate (α)

P
os
it
iv
e
p
re
d
ic
ti
ve

va
lu
e
(P

P
V
)

PPVZRC PPVID

(b) IDS1

TFP

10−2.3 10−2.2 10−2.1 10−2 10−1.9 10−1.8

10
−
0
.0
6

10
−
0
.0
4

10
−
0
.0
2

False positive rate (α)

P
os
it
iv
e
p
re
d
ic
ti
ve

va
lu
e
(P

P
V
)

PPVZRC PPVID

(c) IDS2

Figure 3.6: IDS comparison with (a) ROC curves, (b) – (c) intrusion detection effectiveness
metric.

for IDS2 (TFP = 0.01), based on which we conclude that IDS1 performs better.
Although EID expresses the impact of the base rate on α and 1− β, it suffers from

the same issue as the metric proposed by Durst et al. [DCW+99]; that is, a comparison
of IDSs based onEID may bemisguiding, since it is based onmultiple operating points
of the compared IDSs (see [GFD+06]).

Cost-based and Information-theoretic Metrics

Due to the above mentioned issues, researchers have proposed novel metrics that can
be classified into two main categories: (i) metrics that use cost-based measurement

45

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

methods, and (ii) metrics that use information-theory measurement methods (see
Figure 3.5). In the following, we discussmetrics that belong to these categories focusing
on the expected cost and intrusion detection capability metrics described in the seminal
works of Gaffney et al. [GU01] and Gu et al. [GFD+06].

Cost-based metrics Gaffney et al. [GU01] propose the measure of cost as an IDS
evaluation parameter. They combine ROC curve analysis with cost estimation by
associating an estimated cost with each IDS operating point. The measure of cost is
relevant in scenarios where a response that may be costly is taken (e.g., stopping a
network service) when an IDS generates an attack alert. Gaffney et al. [GU01] introduce
a cost ratio C = Cβ/Cα, where Cα is the cost of an IDS alert when an intrusion has
not occured, and Cβ is the cost of not detecting an intrusion when it has occurred.
Gaffney et al. [GU01] use the cost ratio to calculate the expected cost Cexp of an IDS
operating at a given operating point (see Table 3.5). Using Cexp, one can compare IDSs
by comparing the estimated costs when each IDS operates at its optimal operating
point. The IDS that has lower Cexp associated with its optimal operating point is
considered as better. An IDS operating point is considered as optimal if it has the
lowest Cexp associated with it compared to the other operating points.
The formula of Cexp (see Table 3.5) can be obtained by analyzing the decision tree

depicted in Figure 3.7a. The decision tree shows the costs that may be incurred by an
IDS (e.g., Cα and Cβ) with respect to the operation of the IDS (i.e., generation of alerts)
and the responses that can be taken; uncertain events (e.g., the generation of an alert)
are depicted by circles and actions are depicted by squares. In Figure 3.7a, we depict
the probabilities p1 = P (A), p2 = P (I|A) = PPV , and p3 = P (I|¬A) (see Table 3.5).
The formula of Cexp is obtained by “rolling back” the tree depicted in Figure 3.7a;
that is, from right to left, the expected cost at an event node is the sum of products of
probabilities and costs for each branch, and the expected cost at an action node is the
minimum of expected costs on its branches. The formula of Cexp shown in Table 3.5
can be derived using the basic algebra of probability theory (see [GU01]).
A recent work proposing a cost-based IDS evaluation metric is [Men12]. Meng et

al. [Men12] propose a metric called relative expected cost (Crec). This metric is intended
for comparing modern IDSs that use false alert filters (see, for example, [CLC+10]). A
false alert filter detects false alerts generated by an IDS. The response taken when a
false alert filter labels an alert as false is filtering out the alert before it is reported by
the IDS. Crec is based on the previously discussed expected cost metric. In contrast to
Cexp, Crec measures cost associated with the accuracy of an IDS’s false alert filter at
classifying alerts as true or false, which can be used as an IDS comparison parameter.
Crec can be associated with each IDS operating point on a ROC curve and can be used
for comparing IDSs same as Cexp.
The formula of Crec (Crec = CβB + α(1−B)) can be obtained in a way similar to

obtaining the formula of Cexp, that is, by “rolling back” the decision tree depicted
in Figure 3.7b (see [Men12]). This tree is a modified version of the tree depicted in
Figure 3.7a. In Figure 3.7b, p1 denotes the probability that the false alert filter reports
a true alert, p2 denotes the conditional probability of true alert given that the filter

46

3.3 Metrics

Alert

p1

Response

0
Intrusion

Cα

No intrusion

p2

1-p2

No response

Cβ

Intrusion

0

No intrusion

p2

1-p2

No alert

1-p1

Response

0
Intrusion

Cα

No intrusion

p3

1-p3

No response

Cβ

Intrusion

0

No intrusion

p3

1-p3

(a)

True

alert

p1

Response

Cα
True alert

0

False alert

p2

1-p2

No response

0

True alert

Cβ

False alert

p2

1-p2

False

alert

1-p1

Response

Cα
True alert

0

False alert

p3

1-p3

No response

0

True alert

Cβ

False alert

p3

1-p3

(b)

Figure 3.7: Decision tree for calculating (a) expected cost, and (b) relative expected cost.

reports a true alert, and p3 denotes the conditional probability of true alert given that
the filter reports a false alert. In the context of the work of Meng et al. [Men12], α
and β denote the false positive and false negative rate exhibited by a false alert filter.
Further, B denotes the prior probability of a false alert, and Cα and Cβ denote the cost
of classifying a false alert as a true alert, and the cost of classifying and filtering out a
true alert as a false alert, respectively. C is the cost ratio Cβ/Cα.

47

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

Although the discussed cost-based metrics enable straightforward comparison of
IDSs, they depend on the cost ratio C. To calculate the cost ratio, one would need a
cost-analysis model that can estimate Cα and Cβ , which might be difficult to construct
in reality. Cost-analysis models take parameters into consideration that might not be
easy to measure, or might not be measurable at all (e.g., man-hours, system down-
time). Further, Cexp and Crec enable the comparison of IDSs based on a subjective
measure making the metrics unsuitable for objective comparisons [GFD+06]. However,
cost-based metrics may be of value when the relationships between the different attack
detection costs (e.g., cost of missing an attack, cost of a false alert) can be estimated and
when such estimations would be considered as sufficently accurate. For instance, given
a statement such as “a false alert is twice as costly as a missed attack”, a cost-based metric
would be crucial to identify an optimal IDS operating point. Next, we demonstrate the
use of the expected cost metric (Cexp) and the relative expected cost metric (Crec) for
comparing IDSs through a case study scenario.

0.4 0.6 0.8 1 1.2 1.4 1.6

·10−2

0.97

0.98

0.99

1

False positive rate (α)

T
ru
e
p
o
si
ti
ve

ra
te

(1
−

β
)

IDS1 IDS2

[Cexp/rec = 0.017]

[Cexp/rec = 0.016]

(a)

0.4 0.6 0.8 1 1.2 1.4 1.6

·10−2

0.8

0.85

0.9

0.95

1

False positive rate (α)

In
tr
u
si
on

d
et
ec
ti
on

ca
p
ab

il
it
y
(C

I
D
)

IDS1 IDS2

[CID = 0.8867]

[CID = 0.9159]

(b)

Figure 3.8: IDS comparison with (a) expected cost and relative expected cost metric, (b) intrusion
detection capability metric.

Case study #2: First, we compare IDS1 and IDS2 (see Case study #1) using Cexp.
The IDS that has lower Cexp associated with its optimal operating point (i.e., the point
that has the lowest Cexp associated with it) is considered as better. To determine the
optimal operating points of IDS1 and IDS2, we calculate Cexp for each operating
point of the two IDSs. To calculate Cexp, we assume that C = 10 (i.e., the cost of not
responding to an attack is 10 times higher than the cost of responding to a false alert)
and B = 0.10. We present the values of Cexp in Table 3.6. The optimal operating point
of IDS1 is (0.005, 0.9885), and of IDS2 is (0.015, 0.99664). Since the minimal Cexp of
IDS1 (0.016) is smaller than the minimal Cexp of IDS2 (0.017), we conclude that IDS1

performs better. In Figure 3.8a, we depict the ROC curves annotated with the minimal
Cexp of IDS1 and IDS2.

48

3.3 Metrics

We now compare IDS1 and IDS2 usingCrec. The IDS that has lowerCrec associated
with its optimal operating point (i.e., the point that has the lowest Crec associated with
it) is considered as better. To calculate Crec, we assume that C = 10, B = 0.10, and
that IDS1 and IDS2 use false alert filters. We present the values of Crec in Table 3.6.
For the sake of simplicity, we assume that α and 1− β exhibited by IDS1 and IDS2

(see Case study #1 and Table 3.6) correspond to α and 1 − β exhibited by the IDS’s
false alert filters. This results in identical values of Crec and Cexp. Using the same
approach for comparing IDSs as the one we used when comparing IDSs using Cexp,
we conclude that IDS1 performs better than IDS2 in terms of incurred costs that are
associated with the accuracy of the IDSs’ false alert filters. In Figure 3.8a, we depict
the ROC curves annotated with the minimal Crec of IDS1 and IDS2.

Information-theoretic metrics Another approach for evaluating the attack detection
accuracy of an IDS is the information-theoretic approach. Gu et al. [GFD+06] propose
a metric called intrusion detection capability (CID, see Table 3.5). They model the
input to an IDS as a stream of a random variable X (X = 1 denotes an intrusion,
X = 0 denotes benign activity), and the IDS output as a stream of a random variable Y
(Y = 1 denotes IDS alert, Y = 0 denotes no alert). The input and output stream have a
certain degree of uncertainty reflected by the entropies H(X) and H(Y), respectively.
Thus, Gu et al. [GFD+06] model the number of correct guesses of an IDS, that is,
I(X;Y), as mutual shared information between the random variablesX and Y , that
is, I(X;Y) = H(X) −H(X|Y). CID is obtained by normalizing I(X;Y) with H(X)
(see Table 3.5).
CID incorporates the uncertainty of the input stream H(X) (i.e., the distribution of

intrusions in the IDS input) and the accuracy of an IDS under test I(X;Y); that is, CID
incorporates the base rate B, the true positive rate (1− β), and the false positive rate
(α). For the definition of the relationship between CID, on the one hand, and B, 1− β,
and α, on the other hand, we refer the reader to [GFD+06]. Given this relationship,
a value of CID may be assigned to any operating point of an IDS on the ROC curve.
With this assignment, one obtains a new curve (i.e., a CID curve).

The information-theoretic approach is generic and enables the evaluation of IDSs
of different designs. For instance, Meng et al. [YMLFK13] discuss the application of
the intrusion detection capability metric for quantifying the attack detection accuracy
of IDSs that use false alert filters. They fine-tune this metric and develop a metric
called false alarm reduction capability, RCFA = I(X;Y)

H(X) . In the context of the work of
Meng et al. [YMLFK13], X denotes the input to a false alert filter (i.e., alerts generated
by an IDS) and Y denotes the filter’s output. Meng et al. [YMLFK13] show that the
information-theoretic approach can be applied in practice for evaluating IDSs that
use false alert filters by evaluating Snort [Roe99] configured to use a variety of false
alert filters. Next, we show how one can compare IDSs using the intrusion detection
capability metric (CID) through a case study scenario.
Case study #3: Assuming a base rate ofB = 0.10, we calculatedCID for the operating

points of IDS1 and IDS2 (see Case study #1) presented in Table 3.6. In Figure 3.8b,

49

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

we depict the CID curves of IDS1 and IDS2. A CID curve provides a straightforward
identification of the optimal operating point of an IDS (i.e., the point that marks the
highest CID). One can compare IDSs by analyzing the maximum CID of each IDS
and considering as better performing the IDS whose optimal operating point has
higher CID associated with it. From Table 3.6, one would consider IDS1 to perform
better since it has greater maximum CID (0.9159) than the maximum CID of IDS2

(0.8867). In contrast to the previously discussed expected cost metric, CID is not based
on subjective measures such as cost, which makes it suitable for objective comparison
of IDSs.

3.4 Measurement Methodology

Under measurement methodology, we understand the specification of the IDS proper-
ties of interest (e.g., attack detection accuracy, capacity) and of the employedworkloads
andmetrics for evaluating the properties. After examining IDS evaluation experiments
covering different types of IDSs, we identified nine IDS properties that are commonly
considered in practice. In Table 3.7, we present these properties, some of which are
grouped into categories. For the sake of clarity, we also present definitions of the
IDS properties attack detection accuracy, attack coverage, performance overhead, and
workload processing capacity. Further, in Table 3.7, we provide an overview of the
workload and metric requirements (see Section 3.2 and Section 3.3) for evaluating
the different properties. In Table 3.8, we list references to the surveyed publications
where representative studies that investigate the respective properties can be found.
Table 3.8 compares the surveyed work in terms of types of tested IDSs (see Table 2.1)
and considered IDS properties. This enables the identification of common trends in
evaluating IDS properties for different types of IDSs. Next, we discuss such trends
and provide recommendations and key best practices, which we identified based on
reported benefits of applying the practices. We also present observed quantitative val-
ues (e.g., acceptable performance overheads and attack detection speeds) and relevant
observations (e.g., evasion techniques to which current IDSs are vulnerable) that may
serve as reference points for designing and evaluating future IDSs.

Attack detection accuracy/attack coverage: As expected, these properties are eval-
uated for IDSs of all types. Due to the longevity of their presence on the IDS evaluation
scene, the DARPA and the KDD’99 Cup datasets (see Section 3.2.5) represent at this
time standard workloads for comparing novel anomaly-based IDSs with their past
counterparts in terms of their attack detection accuracy. For the sake of representa-
tiveness, we recommend the evaluation of a single IDS using not the DARPA and the
KDD’99 Cup datasets, but workloads that contain current attacks (see Section 3.2). We
observed that the attack detection rates of IDSs reported in the surveyed work vary
greatly, that is, between 8% and 97%, measures which largely depend on the configu-
rations of the tested IDSs (see Section 3.3) and the applied evaluation methodologies.

Attack detection and reporting speed: This property is typically evaluated for dis-

50

3.4 Measurement Methodology

Table 3.7: IDS evaluation design space: Measurement methodology.

IDS Property Workloads Metrics
[content] [aspect] [form]
Attack detection-related

Attackdetection accuracy mixed security-related basic, composite
Attack coverage puremalicious security-related basic
Resistance to evasion techniques puremalicious, mixed security-related basic
Attack detection and reporting speed mixed performance-related n/a

Resource consumption-related
CPUconsumption

pure benign performance-related n/aMemory consumption
Network consumption
Performance overhead pure benign performance-related n/a
Workloadprocessing capacity pure benign performance-related n/a

Definitions of IDS properties

IDS Property Definition
Attackdetection accuracy The attack detection accuracy of an IDS in the presence of mixed work-

loads.

Attack coverage The attack detection accuracy of an IDS in the presence of attacks without
any background benign activity.

Performance overhead The overhead incurred by an IDS on the system and/or network environ-
ment where it is deployed. Under overhead, we understand performance
degradation of users’ tasks/operations caused by: (a) consumption of
system resources (e.g., CPU, memory) by the IDS, and/or (b) interception
and analysis of the workloads of users’ tasks/operations (e.g., network
packets) by the IDS.

Workloadprocessing capacity The rate of arrival of workloads to an IDS for processing, in relation to
the amount of workloads that the IDS discards (i.e., does not manage
to process). For instance, in the context of network-based IDSs, capacity
is normally measured as the rate of arrival of network packets to an
IDS over time, in relation to the amount of discarded packets over time.
The capacity of an IDS may also be defined as the maximum workload
processing rate of the IDS such that there are no discarded workloads.

tributed IDSs. Each node of a distributed IDS typically reports an on-going attack to
the rest of the nodes, or to a designated node, when it detects a malicious activity (see
Section 2.1.2). Thus, the attack detection speed of a distributed IDS is best evaluated
by measuring the time needed for the IDS to converge to a state in which all its nodes,
or the designated nodes, are notified of an on-going attack (see the work of Hassan-
zadeh et al. [HS11] and Sen et al. [SUBP08], who consider delays up to 3 seconds as
acceptable). The fast detection and reporting of an attack by an IDS node is important
for the timely detection of coordinated attacks targeting multiple sites.

51

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

Table
3.8:C

om
parison

ofpracticesin
evaluating

ID
S
properties.

R
eference

ID
S
Type

ID
S
Properties

Distributed (D)
Non-distributed (N)

Anomaly-based (A)
Misuse-based (M)
Hybrid (Hy)

Host-based (H)
Network-based (N)
Hybrid (Hy)

Attack detection
accuracy

Attack coverage

Resistance to
evasion techniques

Attack detection and
reporting speed

CPU consumption

Memory consumption

Network consumption

Performance
overhead

Workload processing
capacity

[A
TJ +

10]
N

A
H
y

x
[A

LD
11]

N
M

N
x

[C
M
06]

N
A

H
x

x
x

[C
PX

+
13]

D
M

N
x

x
x

x
[G

R03]
N

H
y

H
x

x
[H

S11]
D

M
N

x
x

x
x

[JXZ
+
09],[JXZ

+
11]

N
H
y

H
y

x
x

x
[FJG

S
+
00]

N
H
y

N
x

x
[K

Z05]
D

A
N

x
x

[SJP06]
N

M
N

x
x

x
[LM

J07],[LD
P11],[RRL

+
12],[Roe99]

N
A

H
x

x
[D

eh12],[RA
R12],[RJX08]

N
A

H
x

x
[SU

BP08]
D

A
N

x
x

x
[SSG

08]
N

A
H

x
x

x
[SSW

X13]
D

A
N

x
x

[ZW
G
W

08]
N

A
H

x
x

52

3.4 Measurement Methodology

Resistance to evasion techniques: We observe that the evaluation of attack detec-
tion accuracy/attack coverage is prioritized over evaluation of resistance to evasion
techniques. Sommer et al. [SP10] confirm this trend stating that resistance to evasion
techniques is of limited importance from a practical perspective since most real-life
attacks perform mass exploitation instead of targeting particular IDS flaws. However,
a single successful IDS evasion attack poses the danger of a high-impact intrusion;
therefore, it is a good practice to consider the resistance to evasion techniques in IDS
evaluation studies.
We observed that Metasploit (see Section 3.2.3) is considered the optimal tool for

executing IDS evasive attacks, which is required for evaluating resistance to evasion
techniques. This is because Metasploit provides a freely available and regularly main-
tained attack execution environment supporting awide range of IDS evasive techniques.
By analyzing the decision-making processes of the IDSs proposed in the surveyed
work for labeling an activity as benign or malicious, we observed that many IDSs
are vulnerable to temporally crafted attacks (e.g., short-lived or multi-step attacks
executed by delaying the execution of the attack steps, see [SSG08]). The execution of
such attacks is supported by Metasploit.

Resource consumption-related: These properties are typically evaluated for IDSs
deployed in resource constrained environments. An example is the evaluation of the
resource consumption of a distributed IDS operating in wireless ad-hoc networks,
which enables the measurement of the power consumption of its nodes. This is impor-
tant since the computing nodes in a wireless ad-hoc network typically rely on a battery
as a power source delivering a limited amount of power. Since the power consumption
of software (i.e., of an IDS node) is difficult to measure, it can be best observed by
using a model that estimates power consumption based on resource consumption
measurements (see [HS11]).
The network consumption in particular is often evaluated for distributed IDSs

(see [SUBP08]). The nodes of a typical distributed IDS exchange messages that contain
information relevant for intrusion detection (see Section 2.1.2). This may consume a
significant amount of the network bandwidth of the environment where the IDS is
deployed. For instance, Sen et al. [SUBP08] consider the exchange of 120 messages
over 160 seconds as a very high network consumption.

Performance overhead: This property is normally evaluated for host-based IDSs since
they are known to cause performance degradation of the tasks running in the system
where they are deployed. Performance overhead is evaluated by executing tasks twice,
once with the tested IDS being inactive, and once with it being active (see [LMJ07]).
The differences between the measured task execution speeds reveal the imposed per-
formance overhead. Performance overhead is normally evaluated using workloads in
executable form generated by workload drivers (see Section 3.2.1). Workload drivers
enable the straighforward generation of live customized workloads in a repeatable
manner. In general, overheads under 10%, relative to the execution time of tasks mea-
sured when the tested IDS is inactive, are considered acceptable.

53

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

Workload processing capacity: This property is normally evaluated for network-based
IDSs that monitor workloads at high rates. For instance, some studies consider work-
load rates as high as 1 million packets per second and report percentage of discarded
packets of around 50%. Workload processing capacity is best evaluated using traces or
workloads generated by workload drivers since they allow for the generation of work-
loads at user-defined speeds. This enables the accurate measurement of the workload
processing capacity of an IDS (e.g., of the particular network traffic speed such that a
given network-based IDS under test does not discard packets, see Table 3.7). Further, it
is a good practice to evaluate the workload processing capacity of an IDS together with
its resource consumption (e.g., Sinha et al. [SJP06] observe the resource consumption
of an IDS for various workload intensities). This enables an IDS evaluator to observe
how resource consumption scales as workload intensity increases.
Next, we survey common approaches for evaluating the IDS properties presented

in Table 3.7. In addition, we demonstrate through case studies how these approaches
and the discussed best practices have been applied in the surveyed work; that is, we
round-up the IDS evaluation design space by demonstrating the applicability of the
different types of workloads and metrics with respect to their inherent characteristics
(see Section 3.2 and Section 3.3).

3.4.1 Attack Detection-related Properties

We start by considering the properties attack coverage, attack detection accuracy, and
resistance to evasion techniques. Note that we do not discuss the IDS property attack
detection and reporting speed. The approach for evaluating this property is almost
identical to that of attack detection accuracy with the only difference being in the used
metrics (i.e., performance-related metrics that quantify time instead of security-related
metrics).

Attack Coverage

The attack coverage of an IDS is typically evaluated with the goal of measuring the
ability of the IDS to detect various attacks targeted at the specific system/network
environment that it protects [MHL+03]. Given that the attack coverage of an IDS
is its attack detection accuracy in the presence of attacks without any background
benign activity (see Table 3.7), it is evaluated by using pure malicious workloads. The
used pure malicious workloads should not have IDS evasive characteristics since such
workloads are used for evaluating resistance to evasion techniques, which is a separate
property. Further, only basic metrics that do not contain measures of false alerts are
used (e.g., true positive rate). Note that an IDS might generate false alerts only in the
presence of background benign activity.

Case study #4: We evaluate the attack coverage of the IDS Snort [Roe99], which
uses misuse-based attack detection techniques. We consider a scenario where Snort is
deployed in, and monitors the network traffic of, a server hosting web applications

54

3.4 Measurement Methodology

Table 3.9: Attack coverage of Snort [X - detected / x - not detected].

Targeted vulnerability (CVE ID) Platform Detected
CVE-2011-3192 Apache x
CVE-2010-1870 Apache Struts X

CVE-2012-0391 Apache Struts x
CVE-2013-2251 Apache Struts x
CVE-2013-2115/CVE-2013-1966 Apache Struts X

CVE-2009-0580 Apache Tomcat x
CVE-2009-3843 Apache Tomcat x
CVE-2010-2227 Apache Tomcat x

using the Apache 2.2.16 server software, extended with the Tomcat 6.0.35 and Struts
1.3.10 frameworks. We tested Snort 2.9.22 using a database of signatures dated 11th
July 2013. Given the architecture of the platform protected by Snort, attacks relevant
for evaluating the attack coverage of Snort in this scenario are attacks targeting Apache,
Tomcat, and Struts.

We used the Metasploit framework to generate pure malicious workloads (see Sec-
tion 3.2.3). We use Metasploit’s exploit database for the sake of convenience — Metas-
ploit provides a readily-available exploit database that contains attack scripts targeting
the platforms Apache, Tomcat, and Struts. We executed 8 attack scripts from a host
that we refer to as the “attacking host”. In order to eliminate benign network traffic
destined for the web server, we used a firewall to isolate the web server in a way such
that it was reachable only for the attacking host. In Table 3.9, we list the CVE identifiers
of the vulnerabilities targeted by the executed attack scripts, and the respective target
platforms. In Table 3.9, we present the results of the study. Snort detected 2 attacks,
thus exhibiting a true positive rate of 0.25.

Resistance to Evasion Techniques

The evaluation of the IDS property resistance to evasion techniques involves the execu-
tion of attacks using techniques such that there is a strong possibility that a tested IDS
does not detect the attacks. The decision about what evasion techniques should be
used in a given study is based on knowledge about the IDS’s decision-making process
for labeling an activity as benign or malicious. For instance, one may evade an IDS
that matches string content of network packets to signatures by modifying the content
of malicious packets in a way such that the IDS cannot match them to signatures, a
technique known as string obfuscation.
As workloads for evaluating resistance to evasion techniques, one may use pure

malicious or mixed workloads. Pure malicious workloads are used to determine
which evasion techniques can be used for successfully evading an IDS, not taking
into account benign activity as a factor. Mixed workloads are used in scenarios where

55

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

Table 3.10: Resistance to evasion techniques of Snort [X - detected / x - not detected].

Evasion technique Targeted vulnerability (CVE ID)
CVE 2010-1870 CVE 2013-2115

HTTP::uri_use_backslashes X X

HTTP::uri_fake_end X X

HTTP::pad_get_params X x
HTTP::uri_fake_params_start X X

HTTP::uri_encode_mode (u-random; hex-random) X x
HTTP::pad_method_uri_count X X

HTTP::method_random_valid X x
HTTP::header_folding X X

HTTP::uri_full_url X X

HTTP::pad_post_params X x
HTTP::uri_dir_fake_relative X X

HTTP::pad_uri_version_type (apache; tab) X X

HTTP::uri_dir_self_reference X X

HTTP::method_random_case X X

benign activities are important for evading an IDS. For instance, a network-based IDS
designed to detect multi-step attacks (i.e., attacks that consist of several sequential
attacks) may be constrained in the number of network packets that it can buffer for the
purpose of attack tracking. Thus, one may evade the IDS by delaying the execution of
the sequential attacks and generating benign network traffic between the executions.

The metrics used for quantifying resistance to evasion techniques are basic metrics
that do not contain measures of false alerts (e.g., true positive rate) since the goal is to
measure the accuracy of an IDS in detecting only evasive attacks.

Case study #5: Following up on the results of Case study #4 (see Table 3.9), we now
investigate whether Snort is still able to detect the attacks targeting the vulnerabilities
CVE 2010-1870 and CVE 2013-2115/CVE 2013-1966 when evasion techniques are
applied. We used Metasploit to apply IDS evasive techniques to the considered attacks
since it enables the convenient execution of a wide range of IDS evasive attacks. Given
that Snort matches string content of network packets to signatures [Roe99], we used
the string obfuscation evasion techniques provided by Metasploit. The applied IDS
evasion techniques modify HTTP request strings stored in malicious network packets.
In Table 3.10, we list the evasion techniques that we applied to each of the executed
attacks (for details on the techniques see [Fos07]).
In Table 3.10, we present the detection score of Snort. It can be observed that

Snort detected most of the executed evasive attacks and failed to detect the attack
targeting the vulnerability CVE 2013-2115/CVE 2013-1966when the evasive techniques
HTTP::pad_get_params, HTTP::uri_encode_mode, HTTP::method_random_valid, and
HTTP::pad_post_params were applied. Snort detected 24 out of 28 attack executions,

56

3.4 Measurement Methodology

thus exhibiting a true positive rate of 0.85.

Attack Detection Accuracy

By evaluation of the attack detection accuracy of an IDS, we mean evaluation of the
accuracy of the IDS in detecting attacks mixed with benign activities (see Table 3.7).
Attack detection accuracy is quantified using security-related metrics that include
measures of false alerts. This is important since an IDS under test might mislabel some
benign activities as malicious. We demonstrated quantification of attack detection
accuracy in Section 3.3.2.
Case study #6: We evaluate the attack detection accuracy of Snort 2.9.22 using a

database of signatures dated 11th July 2013. We used the DARPA datasets as mixed
workloads (see Section 3.2.5); we replayed a trace file from the 1998 DARPA datasets
with tcpreplay [Tcpb].1,2 In order to calculate values of security-related metrics that
contain measures of false alerts, we used the “ground truth” files provided by the
Lincoln Laboratory atMassachusetts Institute of Technology (MIT).3 These files contain
information useful for uniquely identifying each attack recorded in the trace file we
replayed, such as time of execution. We compared the “ground truth” information
with the alerts produced by Snort in order to calculate the number of detected and
missed attacks as well as the number of false alerts. This is required for calculating
values of security-related metrics.

With its default configuration enabled, Snort detected almost all attacks. However,
Snort also issued false alerts — Snort’s rule with ID 1417 led to mislabeling many
benign Simple Network Management Protocol (SNMP) packets as malicious. There-
fore, we examined the influence of the configuration parameter threshold on the
attack detection accuracy of Snort. The parameter threshold is used for reducing the
number of false alerts by suppressing signatures that often mislabel benign activities
as malicious. A signature may be supressed such that it is configured to not generate
an alert for a specific number of times (specified with the keyword count) during a
given time interval (specified with the keyword seconds).

The measurement of the attack detection accuracy of an IDS for different configura-
tions of the IDS enables the identification of an optimal operating point (see Section 3.3).
Wemeasured the attack detection accuracy of Snort for 5 different configurationswhere
the signature with ID 1417 was suppressed by setting the value of count to 2, 3, 4, 5,
and 6, while seconds was set to 120. We also measured the attack detection accuracy
of Snort when its default configuration was used, according to which the signature
with ID 1417 is not suppressed.

In Table 3.11, we present values of basic security-related metrics (see Section 3.3.1).
One can observe that the values of α and 1−β decrease as the value of count increases

1The trace file we replayed is available at https://www.ll.mit.edu/ideval/data/1998/testing/
week1/monday/tcpdump.gz

2We used tcpreplay in all IDS evaluation studies presented in this thesis where we replayed traces.
3We discussed the importance of “ground truth” information in Section 3.2.5. The “ground truth” files

that we used are available at [dar].

57

https://www.ll.mit.edu/ideval/data/1998/testing/week1/monday/tcpdump.gz
https://www.ll.mit.edu/ideval/data/1998/testing/week1/monday/tcpdump.gz

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

— increasing the value of count leads to decreasing the number of generated false
alerts, which is manifested by the decreasing values of α. However, increasing the
value of count also leads to worsening of the true positive rate 1− β. This is a typical
trade-off situation between the true and the false positive rate of an IDS. Next, we
calculate values of composite security-related metrics.

Table 3.11: Attack detection accuracy of Snort — basic metrics [seconds=120].

Configuration Metrics
α 1− β PPV NPV

count=6 0.0008 0.333 0.9788 0.9310
count=5 0.0011 0.416 0.9768 0.9390
count=4 0.0013 0.5 0.9771 0.9473
count=3 0.0017 0.624 0.9761 0.9598
count=2 0.0024 0.833 0.9747 0.9817
Default configuration 0.0026 0.958 0.9762 0.9953

In Figure 3.9a, we depict an ROC curve providing an overview of the trade-off
mentioned above. In addition, in Figure 3.9a, we annotate the depicted operating
points with the associated estimated costs Cexp. The values of the estimated costs
are values of the expected cost metric (see Section 3.3.2). To calculate values of the
expected cost metric, we assumed a cost ratio C of 10. The base rate B is 0.10. Once we
calculated the cost associated with each operating point, we were able to identify the
optimal operating point (i.e., the operating point that has the lowest Cexp associated
with it) — (0.0026, 0.958). Based on our findings, we conclude that Snort operates
optimally in terms of cost when configured with its default settings.

In Figure 3.9b, we depict the values of the intrusion detection capability metric CID
(see Section 3.3.2) for the considered operating points. The CID curve depicted in
Figure 3.9b enables the identification of the optimal operating point of Snort in terms
of intrusion detection capability (i.e., the point that marks the highest CID) — (0.0026,
0.958), which marks a CID of 0.883. We conclude that Snort operates optimally in
terms of intrusion detection capability when configured with its default settings.

3.4.2 Resource Consumption-related Properties

The resource consumption-related properties are evaluated using pure benign work-
loads that: (i) are considered as regular for the environment where the IDS under test
operates, or (ii) exhibit extreme behavior in terms of their intensity. The first are used
for evaluating the resource consumption of an IDS under regular operating conditions,
whereas the latter for evaluating the resource consumption of an IDS that processes
high-rate workloads. The metrics used for quantifying IDS resource consumption are
performance-related metrics that quantify resource utilization (e.g., CPU utilization).

58

3.4 Measurement Methodology

0.5 1 1.5 2 2.5 3

·10−3

0

0.2

0.4

0.6

0.8

1

False positive rate (α)

T
ru
e
p
os
it
iv
e
ra
te

(1
−

β
)

[0.667]
[0.584]

[0.501]

[0.377]

[0.169] [0.044]

(a)

0.5 1 1.5 2 2.5 3

·10−3

0

0.2

0.4

0.6

0.8

1

False positive rate (α)

In
tr
u
si
on

d
et
ec
ti
on

ca
p
ab

il
it
y
(C

I
D
)

[CID = 0.883]

(b)

Figure 3.9: Attack detection accuracy of Snort— compositemetrics: (a) ROC curve and estimated
costs, and (b) CID curve [�marks an optimal operating point].

There are mainly two approaches for evaluating IDS resource consumption: black-
box and white-box testing. Black-box testing assumes the measuring of the resource
consumption of an IDS as resource consumption of the IDS process that is active in
the system where the IDS is deployed. This approach is commonly adopted in IDS
evaluation experiments, however, it does not provide insight into the resource demands
of the individual IDS components. Such insight is normally important for optimizing
the IDS configuration. White-box IDS testing usually assumes the use of an IDS model
that decomposes the IDS into its components and estimates their individual resource
consumption. Dreger et al. [DFPS08] construct an IDS model shown to estimate CPU
and memory consumption of an IDS with a relative error of 3.5%. An alternative to
modeling is code instrumentation. However, this approach is unfeasible in case the
tested IDS is not open-source.
Case study #7: We demonstrate the common black-box IDS resource consumption

testing. We measure the CPU consumption of Snort 2.9.22 in two scenarios where we
configured Snort to use the pattern matcher ac and ac-split, respectively. The use of a
pattern matcher helps to speed up the process of evaluating network packets against
Snort signatures by reducing the number of signatures against which each packet is
evaluated. When a packet is intercepted by Snort, a pattern matcher evaluates the
content of the packet against a set of patterns used to group multiple signatures. If a
match is found, the packet is then evaluated only against the signatures that belong to
the respective group of rules.

Although ac-split is known to consume less memory resources than ac (see [SM]), it
may increase the CPU consumption of Snort. The goal of this study is to determine
whether the use of ac-split over ac is advisable by takingCPU consumption into account.
To this end, we deployed Snort in a host with a dual-core CPU, each core operating

59

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

0 50 100 150 200 250 300
5

10

15

20

25

Time (sec.)

C
P
U

U
ti
li
za
ti
on

(%
)

ac ac-split

(a)

0 100 200 300 400
0

2

4

6

Network traffic speed (Mbps)

P
ac
k
et

d
ro
p
ra
te

(%
)

(b)

Figure 3.10: (a) CPU consumption of Snort, (b) packet drop rate of Snort [� marks the data
point whose x value is the network traffic speed that corresponds to the maximum workload
processing rate of Snort such that there are no discarded workloads].

at 2 GHz, 3 GB of memory, and a Debian OS. To generate pure benign workloads, we
replayed a trace file from the LBNL trace repository (see Table 3.4) at the speed of 6
Mbps.4

In Figure 3.10a, we depict the CPU utilization of Snort, which we measured with
the tool top [tLmp]. This tool enables the measurement of the CPU utilization of any
active system process and thus, it is an example of a typical tool used for black-box IDS
resource consumption testing. We used top to sample the CPU utilization of the Snort
process at every 10 seconds for 5 minutes. We repeated the measurements 30 times
and we averaged the results. In Figure 3.10a, one may observe that in the considered
scenario, the use of the ac-split pattern matcher does not cause significant increase in
the CPU consumption of Snort when compared to the use of ac.

3.4.3 Workload Processing Capacity

The IDS workload processing capacity is evaluated using pure benign workloads
that exhibit extreme behavior in terms of intensity. The goal is to observe the rate
of arrival of workloads to an IDS under test for processing in relation to the amount
of workloads that the IDS discards (see Table 3.7). The identification of a maximum
workload processing rate of an IDS such that there are no discarded workloads may
also be considered. Similar to evaluating resource consumption, an IDS capacity can
be evaluated using a black-box or a white-box testing approach.

4The trace file we replayed is available at ftp://ftp.bro-ids.org/enterprise-traces/hdr-
traces05/lbl-internal.20041004-1313.port003.dump.anon.

60

ftp://ftp.bro-ids.org/enterprise-traces/hdr-traces05/lbl-internal.20041004-1313.port003.dump.anon
ftp://ftp.bro-ids.org/enterprise-traces/hdr-traces05/lbl-internal.20041004-1313.port003.dump.anon

3.4 Measurement Methodology

While black-box capacity testing does not pose significant challenges, white-box
testing is more challenging given that multiple evaluation tests that target specific IDS
components involved in processing workloads need to be defined and performed. This
requires in-depth knowledge on the design of the IDS under test. White-box testing
enables the identification of the particular component of an IDS that is a performance
bottleneck. Hall et al. [HW02] propose an approach for white-box IDS capacity testing.
They define a methodology consisting of individual tests for measuring the capacity
of the components of workload processing mechanisms of network-based IDSs (i.e.,
the packet flow and capture, the state tracking, and the alert reporting component).
Case study #8: We demonstrate the common black-box IDS capacity testing. We

measure the rate of dropped packets by Snort 2.9.22 when it monitors network traffic
at speeds in the range of 50 Mbps to 400 Mbps, in steps of 50 Mbps. We deployed Snort
in a host with a dual-core CPU, each core operating at the speed of 2 GHz, 3 GB of
memory, and a Debian OS. We generated network traffic by replaying a trace file from
the LBNL trace repository.4 We used network workloads in trace form since the use of
traces enables the straightforward generation of network traffic at customized speeds
in a repeatable manner (see Section 3.2).
To measure the packet drop rate of Snort, we first started the Snort process, then

replayed the network trace file, and finally, we stopped the Snort process. When a
Snort process is stopped, it displays a set of statistics measured with Snort’s built-in
performance profiling tools, which includes the packet drop rate averaged over the
lifetime of the process. We repeated the measurements 30 times and we averaged the
results. In Figure 3.10b, we depict the packet drop rate of Snort in relation to the speed
of the monitored network traffic. Starting at network traffic speed of 50 Mbps, the
packet drop rate increases almost linearly as the network traffic speed increases. Note
that the drop rate of Snort is 0 when it monitors network traffic at the speed of, and
less than (not depicted in Figure 3.10b), 50 Mbps; that is, 50 Mbps is the maximum
workload processing rate of Snort such that there are no dropped packets.

3.4.4 Performance Overhead

The IDS performance overhead is evaluated using pure benign workloads in executable
form that do not exhibit extreme behavior in terms of intensity, but are extreme in terms
of the exercised set of hardware resources. Depending on the type of workloads that
the IDS under test monitors (e.g., network packets, file I/O operations), an overhead
evaluation experiment may consist of five independent experiments, each with a work-
load that is CPU-intensive, memory-intensive, file I/O-intensive, network-intensive, or
mixed. We provided an overview of such tasks in Section 3.2.1 and Section 3.2.2.
The execution of the tasks mentioned above is performed twice, once with the IDS

under test being inactive, and once with it being active. The differences between the
measured task execution speeds reveal the performance overhead imposed by the IDS.
Case study #9: We evaluate the performance overhead of the host-based IDS Open

Source Security (OSSEC) 2.8.1. OSSEC performs file integrity monitoring at real-time

61

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

4 16 64 256 1024 4096 16384

4

5

6

7
·104

Record size (KB)

S
p
ee
d
(K

B
/s
ec
.)

Without OSSEC With OSSEC

(a)

4 16 64 256 1024 4096 16384

2

3

4

·106

Record size (KB)
S
p
ee
d
(K

B
/s
ec
.)

Without OSSEC With OSSEC

(b)

Figure 3.11: Performance overhead imposed by OSSEC on file (a) write, and (b) read operations.

by intercepting and analyzing file I/O operations (e.g., writing to a file). We measure
the overhead imposed by OSSEC on file operations reading or writing data of various
record sizes. We deployed OSSEC in a host with an ext3 filesystem. Given that OSSEC
monitors file I/O operations, we generated pure benign workloads that are file I/O-
intensive. We used the workload driver iozone [IFB] (see Section 3.2.1) to generate
workloads consisting of file operations that write and read data of record sizes in the
range of 4KB to 16MB. For the purpose of this study, we use iozone because it enables
the fine-granular customization of file I/O-intensive workloads.

In Figure 3.11a and Figure 3.11b, we depict the execution speeds of the generated file
write and read operations. We measured the execution speeds twice, once with OSSEC
being inactive, and once with it being active. We repeated the measurements 30 times
and we averaged the results. The difference in the speeds shown in Figure 3.11a and
Figure 3.11b reveal the overhead imposed by OSSEC. For instance, the execution speed
of the operation reading data of a record size 4 KB is 2763641 KB/sec. when OSSEC is
not running and 1138420 KB/sec. when OSSEC is running.

3.5 Summary: Open Challenges and IDS Evaluation
Guidelines

In this chapter, we systematized existing knowledge on IDS evaluation by defining
an IDS evaluation design space that puts existing work into a common context. The
IDS evaluation design space that we presented is structured into three parts, that is,
workload, metrics, and measurement methodology. For each part of the design space,

62

3.5 Summary: Open Challenges and IDS Evaluation Guidelines

we compared multiple approaches and methods that IDS evaluation practitioners
can employ. Throughout our discussions on workloads, we identified, and provided
links to, commonly used tools, including, for example, workload drivers and trace
capturing and replay tools, exploit repositories, and trace repositories. Throughout
our discussions on measurement methodologies, we demonstrated how different IDS
evaluation approaches are applied in practice. We covered approaches for evaluating
the IDS properties attack coverage, resistance to evasion techniques, attack detection
accuracy, resource consumption, performance overhead, and workload processing
capacity.

3.5.1 Open Challenges: Evaluating Hypervisor-based IDSs

In this section, we focus on the analysis of challenges that apply to evaluating IDSs
specifically designed for deployment and operation in virtualized environments (i.e.,
hypervisor-based IDSs, see Section 1.1). The latter are becoming increasingly ubiqui-
tous with the growing proliferation of virtualized data centers and cloud environments.
In particular, intrusion detection in cloud environments has been recently receiving
increasing attention, given that security concerns are still one of the greatest show-
stoppers for the wide adoption of cloud computing [GMV+10]. The evaluation of
hypervisor-based IDSs is an emerging research area that is yet to be explored. There-
fore, by providing an overview of the open challenges in this novel research area, we
aim to contribute towards the establishment of a future research agenda.
In a virtualized environment, a hypervisor running on each physical machine is

used to host multiple virtual machines (VMs). Hypervisor-based IDSs are deployed
in the virtualization layer, usually with components inside the hypervisor and in a
designed VM, which has several benefits. For instance, such IDSs can monitor the
network and host activities of all VMs at the same time [JXZ+11], [LDP11], [Kon11].
Further, they are transparent to malicious users of the VMs. Finally, they are isolated
from such users since they do not operate in the guest VMs, but leverage functionalities
of the underlying hypervisor (see Section 1.1).

The hypervisor-based IDSs described above do not deploy monitoring agents inside
the VMs, in order to achieve full transparency and isolation from attackers. How-
ever, the virtualization layer provides access only to low-level hardware information.
Thus, hypervisor-based IDSs are unable to directly access rich OS-level information
about the monitored VMs needed as input to intrusion detection logic (e.g., executed
system calls, data files). This is known as the semantic gap. In order to alleviate this
issue, hypervisor-based IDSs use virtual machine introspection (VMI) that provides
them with access to OS-level information. An alternative approach towards closing
the semantic gap is deployment of monitoring agents inside the VMs at the cost of
decreased isolation and transparency. In this section, we focus on hypervisor-based
IDSs with components inside the hypervisor, the latter being the most representative
for virtualized environments.

We note that most existing evaluation approaches from over the last several decades
can be applied to hypervisor-based IDSs as well. For instance, workload generation

63

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

methods such as benign workload drivers (Section 3.2.1), honeypots to capture mali-
cious activities (Section 3.2.6), the DARPA datasets (Section 3.2.5), or the Metasploit
framework (Section 3.2.3), may still be effectively used in the context of hypervisor-
based IDSs. Further, the IDS properties discussed in Section 3.4, such as performance
overhead, resource consumption, attack detection accuracy, and the associated trade-
offs, are crucial for accurate evaluation of hypervisor-based IDSs. For instance, Lom-
bardi et al. [LDP11] use benign workload drivers to measure the performance overhead
of a hypervisor-based IDS, andHai et al. [JXZ+09] use theDARPAdataset as amalicious
workload to measure the attack detection accuracy.

Leveraging lessons learned from existing work in IDS evaluation, we derive a set of
specific requirements and challenges that must be addressed in order to improve the
current IDS evaluation practices for hypervisor-based IDSs. In the discussions that fol-
low, we focus on the challenges and requirements that stem from the following aspects
of hypervisor-based IDSs: (i) the use of VMI as an intrusion monitoring technique, and
(ii) the virtualization-specific feature of supporting the operation of multiple VMs on
top of a single shared hypervisor. We analyze the respective open research challenges
related to the generation of workload traces that contain VMI information and the
characterization of benign workloads from multiple VMs.

Generation of Workload Traces

Hypervisor-based IDSs use VMI in order to monitor VMs. VMI is a monitoring
approach that was first introduced by Garfinkel et al. [GR03] in 2003. By obtaining
VMI information about various system components (e.g., CPU register values, network
interface memory content), a typical hypervisor-based IDS can monitor VMs from a
trusted designated VM. Two VMI tools and libraries that have been used by hypervisor-
based IDSs are AntFarm [JADAD06] and XenAccess [xend].
In this section, we investigate the challenge of recording and replaying VMI infor-

mation for the purpose of generating IDS evaluation workloads in the form of traces.
Nance et al. [NBH08] in 2008 briefly discussed the challenge of logging and replay-
ing VMI information. They state that a logging VMI may be used to record relevant
system events that enable an in-depth security analysis. They also state that a VM
should record enough information to reconstruct a given relevant event. Finally, they
close the discussion with the conclusion that the nature and the amount of recorded
information varies significantly with respect to the goals of the replay. In this section,
we look at the challenge of recording and replaying VMI information focusing on
replaying security-relevant events for the purpose of evaluating hypervisor-based IDSs
in particular.
Different hypervisor-based IDSs have different monitoring behavior in terms of

which specific activities they monitor, as well as when they monitor such activities.
For instance, some obtain VMI information about CPU registers, for example, the
Extended Accumulator Register (EAX) register, in order to track the execution of

64

3.5 Summary: Open Challenges and IDS Evaluation Guidelines

system calls,5 while others use process structures stored in main memory to monitor
the active processes of VMs. Finally, a hypervisor-based IDS might inspect additional
VMI information than the one it normally inspects if it suspects the existence of an
on-going attack.

As a result of the above observations, it is a significant challenge to capture trace files
that contain the exact VMI information required at each point in time by a hypervisor-
based IDS. The recording rate of VMI information would typically be constrained by
many properties of the recording platform, such as the underlying I/O bandwidth
of its file system. Thus, in case of highly intensive host and/or network activities,
extensive logging of excessive VMI data over a longer period of time might impair the
recording rate and, consequently, the overall quality of the generated trace files.

In addition to the above challenge, existing hypervisor-based IDSs differ significantly
in terms of their architectural designs and the type of monitoring data that they require.
Many VMI techniques leveraged by hypervisor-based IDSs require hardware-level
information as observable by a hypervisor (e.g., CPU register values, main memory
content), as well as high-level domain-specific knowledge about the VMs (e.g., file
system structure, kernel data structures, and similar). As an example, the hypervisor-
based IDS designed and developed byDehnert [Deh12], which uses VMWare’s VProbes
technology [vpr] for VMI, requires knowledge on OS-specific kernel data structures
(e.g., the Linux kernel structure task_struct) and also on specific memory offsets, which
are different for different kernel versions. Hardware-level information and high-level
domain-specific knowledge are often needed by a hypervisor-based IDS in order to
inspect even a single host or network event.
To illustrate the complexity of the challenges discussed above, we analyze trace

recording procedure in the context of Wizard [SSG08], a representative hypervisor-
based IDS. For the sake of simplicity, we assume that the goal is to record a mixed
workload trace which contains a single attack in a given time interval. Wizard detects
anomalies in the execution of VM system calls for the purpose of detecting kernel
attacks that alter the kernel behavior (see Section 2.1.1). Note that during execution,
VM system calls may invoke VM calls which can be intercepted in the hypervisor
(i.e., by the Wizard’s hypervisor component). VM calls are requests issued by a VM
requesting a specific action or information from the underlying hypervisor. In order to
apply intrusion detection logic, Wizard maps sequences of VM calls to the respective
invoking system calls for which it requires OS-specific knowledge on the execution
of system calls (e.g., used registers), which we refer to as OS knowledge. Each time
Wizard intercepts a VM call, it reads the value stored in the Control Register (CR) 3
in order to map the VM call to a specific VM process. The CR3 register on Intel x86
platforms stores the page table base address, which is unique for each process enabling
the identification of the process that executes a given VM call.
As an example, we look at a specific scenario when a kernel-level keylogger (Sec-

tion 2.1.1) intercepts and modifies the regular execution of the read system call in order
to capture and store system input. To record a trace capturing the altered execution of

5The EAX register on Intel i386 platforms stores a number identifying the system call that is being
executed, which enables the identification of the system call.

65

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

CR3 register value	

VM call sequences	

OS knowledge	

Time	

read()	

…	

 …	

<map>	

 <map>	

 <map>	

<record>	

VM call interception	

recorded information	

 not recorded information	

 system call	

Figure 3.12: Trace recording procedure for Wizard [SSG08].

read, a recording mechanism needs to record the following data: (i) the stream of VM
call sequences, (ii) the required OS knowledge, and (iii) the value of the CR3 register
when a VM call is intercepted. Note that in order to timely capture the CR3 register
value, the recording mechanism should be aware of when exactly a VM call is executed.
We depict this trace recording procedure in Figure 3.12. The execution times of the
VM calls that we depict in Figure 3.12 are chosen randomly.

Given the complexity of recording procedures, it is expected that replay procedures
would also be challenging. Thus, a systematic classification structuring the various
types of VMI information used by hypervisor-based IDSs would be an important
contribution. The latter can be used as a basis to design configurable recording and
replay mechanisms serving as adapters that abstract the underlying architectural
details of different hypervisor-based IDSs.

Benign Workload Characterization

A typical hypervisor-based IDS monitors multiple VMs at the same time. Each VM
runs a specific OS that uses a particular natively supported filesystem and stores
specific OS data in the main memory of the VM (e.g., system call codes, process
structures). Many hypervisor-based IDSs monitor both the filesystems and the OS
data of VMs. Further, the applications and/or services deployed in the OSes of VMs
typically generate workloads that are either executed locally (i.e., host workloads), or
use a network interface (i.e., network workloads). Many hypervisor-based IDSs have
the ability to monitor both host and network workloads that originate from a given
VM. Particularly, when monitoring a host workload, a hypervisor-based IDS usually
monitors the execution of system calls. Similar to the filesystem and the OS data, the
system calls are also OS-specific. We refer to the previously mentioned monitored

66

3.5 Summary: Open Challenges and IDS Evaluation Guidelines

entities (i.e., VMs and respective workloads, filesystems, and OS data) as monitoring
landscape of the hypervisor-based IDS.
The workloads induced by the VMs are usually of various types (e.g., streaming,

data processing, and scientific computations). For instance, the previously mentioned
workload types have been identified as among the most representative workload types
in cloud environments [SB10]. Each workload type normally has a specific set of
characteristics relevant for intrusion detection (e.g., burstiness, intensity of execution
of specific system calls, and similar), which we refer to as workload profile.
In modern data centers, the number of VMs co-located on a single hypervisor can

vary frequently due to the possibility to migrate VMs at run-time; that is, a new VM
may arrive or an existing one may be removed from a hypervisor at any time. We refer
to these times as arrival time and departure time of a VM, respectively. VM migration
might be triggered for different purposes. For instance, a VM user might explictly
request VMmigration. Further, the virtualization platformmight employ dynamic VM
placement policies that optimize resource efficiency during operation by automatically
migrating VMs between servers in response to changes in their workload profiles. We
refer to the dynamic deployment behavior of a VM as its deployment profile.

Since VM migration impacts the number of VMs monitored by a hypervisor-based
IDS, it ultimately introduces dynamic changes in the overall monitoring landscape of
a hypervisor-based IDS over time. This includes changes in the amount, types, and
characteristics of the monitored workloads. As an illustration, in Figure 3.13, we depict
an overview of the monitoring landscape of a hypervisor-based IDS.

Given the dynamicity of a typical monitoring landscape, we argue that it is challeng-
ing to define a benign workload that can be considered as representative for “normal"
workload conditions. Among many other uses, as mentioned in Section 2.1.2, the
notion of normal workload is important for training anomaly-based IDSs, which is
required as initial step when evaluating anomaly-based IDSs.
In traditional (i.e., not virtualized) environments, labeling a given workload as

“normal” with respect to a specific usage profile is usually not as a challenging, since
the infrastructure that an IDS monitors is relatively static over time. For instance,
host-based IDSs monitor a single OS normally used for a single specific purpose
(e.g., accounting), and network-based IDSs monitor network traffic of specific network
services whose behavior can be characterized as “normal”. Thus, many IDS evaluation
datasets (e.g., the DARPA datasets) include training workloads that are labeled as
“normal” with respect to a specific usage profile. This is not the case in virtualized
environments where a hypervisor-based IDS monitors multiple VMs that may depart
at any time, and new VMs, each with specific benign workload characteristics, may
arrive. Note that the monitoring mechanisms of a typical hypervisor-based IDS are
deployed inside the hypervisor, and thus, it is not clear what should be considered as
a “normal” workload from the perspective of a hypervisor-based IDS.
An intuitive approach towards overcoming the above issue would be to train an

anomaly-based hypervisor-based IDS with baseline benign activities originating from
a fixed set of VMs, so that a subsequent evaluation of the IDS detection accuracy for

67

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

V
M

M
-based ID

S!
V

M
!

O
S!

A
pplication/!
 Service!

W
orkload!H

ost !
w

orkload!
N

etw
ork!

 w
orkload!

V
M

 A
rrival/D

eparture!
 tim

e!
V

M
 !

m
igration!

V
M

 m
igration !

request!

V
M

 placem
ent!

policy!

D
eploym

ent profile!

<m
onitors>!

<runs in>!

<triggers>!

<generates>!

<applies to>!

W
orkload profile!

W
orkload !
type!

W
orkload!

characteristics!

<specific for>!
<deployed in>!

1..*!

<defines>!

<applies to>!

1..*!

<has>!

File !
system

!

O
S !

data!

Figure
3.13:M

onitoring
landscape

ofa
hypervisor-based

ID
S.

68

3.5 Summary: Open Challenges and IDS Evaluation Guidelines

attacks against these VMs may be carried out. However, the obtained results would
be of limited representativeness and value, since one cannot assume that in a real-
world setting, a hypervisor-based IDS would monitor a fixed set of VMs over long
periods of time. To the contrary, one can expect that the behavior of monitored benign
workload would change significantly over time due to arriving and departing VMs.
This is especially true in modern virtualized data centers where VM migration occurs
frequently as part of load balancing or quality-of-service policies.

A sound approach for training an anomaly-based hypervisor-based IDS would be to
train it with respect to a given baseline monitoring landscape that defines arrival and
departure times for VMswith variousworkload characteristics. However, the definition
of such a monitoring landscape for a given virtualized environment is challenging; that
is, one cannot easily determine realistic VM arrival/departure times and respective
workload characteristics of the VMs. A typical monitoring landscape depends on
many degrees of freedom, such as the configured VMmigration policies, the types and
usage profiles of the VMs that are deployed in the virtualized environment, and so on.
Note that some virtualized environments, such as the Amazon Elastic Compute Cloud
(EC2) [AMIA], support the creation of different types of pre-configured VMs that
provide pre-packaged software stacks for a specific type of environment. For instance,
the Amazon Machine Images (AMIs) enable the creation of VMs with a deployed OS
and a specific set of applications in order to accommodate a particular user activity
(e.g., software development).

The dynamicity of the monitoring landscape also introduces unique technical chal-
lenges. For instance, assuming that one is supposed to create a training dataset for
a hypervisor-based IDS that monitors system calls, such as the IDSs proposed by
Lombardi et al. [LDP11] and Srivastava et al. [SSG08], multiple datasets consisting of
systems calls of all OSes that may be hosted on the respective hypervisor would be
required. Lack of such datasets would significantly reduce the usefulness of the IDS.
This situation would not occur when it comes to host intrusion detection in traditional
non-virtualized environments.
A possible solution to the above mentioned problems would be the development

of a modeling approach in order to gain a deeper understanding of the changes that
occur in the monitoring landscape over time as well as of the workload characteristics
monitored by hypervisor-based IDSs. Such a modeling approach would be highly
benefitial, for example, by allowing to analyze the workload characteristics for different
scenarios and identify baseline normal workload profiles.

3.5.2 IDS Evaluation Guidelines

We now provide guidelines for planning IDS evaluation studies based on what we
observed when analyzing relevant work in the field. We structure our discussion by
focusing on three key and inter-related points in the planning of every evaluation
study - goals of a study, existing approaches to realize the set goals (i.e., approaches for
generatingworkloads, and formeasuring IDSperformance—metrics), and requirements
that need to be met.

69

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

Goals: Under goals of an IDS evaluation study, we understand the IDS properties
that one aims to evaluate. The selection of IDS properties for evaluation is normally
done by considering the design objectives and the target deployment environment
of the IDS under test. In Table 3.12, we present the most commonly considered IDS
properties in evaluation studies for various IDS types. We also provide a summarizing

Table 3.12: Overview of common trends, recommendations, and key best practices.

IDS Property
Attack detection accuracy
Attack coverage These properties are evaluated for IDSs of all types • The dated DARPA

and KDD’99 Cup datasets represent at this time standard workloads
for comparing novel anomaly-based IDSs with their past counterparts
• For the sake of representativeness, evaluate an IDS using not the
DARPA or the KDD’99 Cup dataset, but workloads that contain current
attacks • Attack detection rates of current IDSs vary greatly, that is,
between 8% and 97%, measures which depend on the configurations
of the tested IDSs and the applied evaluation methodologies

Attack detection and reporting
speed

This property is normally evaluated for distributed IDSs — it is best
evaluated by measuring the time needed for the IDS to converge to
a state in which all its nodes, or the designated nodes, are notified
of an on-going attack • Attack detection delays up to 3 seconds are
considered acceptable

Resistance to evasion techniques This property is often not evaluated since it is considered of limited
practical importance • Consider evaluating this property since a single
successful IDS evasion attack poses the danger of a high-impact intru-
sion •Metasploit is deemed the optimal tool for executing IDS evasive
attacks, which is required for evaluating this property •Many current
IDSs are vulnerable to temporally crafted attacks

Resource consumption-related These properties are typically evaluated for IDSs deployed in resource
constrained environments • Network consumption in particular is of-
ten evaluated for distributed IDSs • The resource consumption of a
distributed IDS operating in wireless ad-hoc networks is typically eval-
uated in order to measure the power consumption of its nodes — this
is best performed by using a model that estimates power consumption
based on resource consumption measurements

Performance overhead This property is normally evaluated for host-based IDSs • Performance
overhead is evaluated by executing tasks twice, oncewith the tested IDS
being inactive, and once with it being active • This property is normally
evaluated using workloads in executable form generated by workload
drivers — workload drivers enable the straighforward generation of
live customized workloads in a repeatable manner • Overheads under
10%, relative to the execution time of tasks measured when the tested
IDS is inactive, are generally considered acceptable

Workload processing capacity This property is normally evaluated for network-based IDSs that moni-
tor high-rate workloads • This property is best evaluated using traces
or workload drivers since they allow for the generation of workloads
at user-defined speeds • Evaluate the capacity of an IDS together with
its resource consumption — this enables to observe how resource con-
sumption scales as workload intensity increases

70

3.5 Summary: Open Challenges and IDS Evaluation Guidelines

overview of common trends, recommendations, and key best practices in evaluating
IDS properties for different types of IDSs. Finally, we present observed quantitative
values (e.g., generally acceptable performance overheads) and relevant observations
that may serve as reference points for designing and evaluating future IDSs. For more
details, we refer the reader to Section 3.4. For demonstrations on executing IDS tests
in order to evaluate the commonly considered IDS properties, we refer the reader to
Section 3.4.1, Section 3.4.2, Section 3.4.3, and Section 3.4.4.

Requirements: Before discussing approaches for evaluating IDSs, we identify and
systematize the requirements that have to be met for the different approaches:
— availability of required resources: (i) financial resources (e.g., the costs of building a

testbedmay be significant, see Section 3.2.6); (ii) time resources (e.g., themanual assembly
of an exploit database may be time-consuming, see Section 3.2.3); (iii) manpower (e.g.,
the amount of available human resources is important for labeling traces in a time-
efficient manner, see Section 3.2.5).
— access to confidential data: organizations are often unwilling to share operational

traces because of privacy concerns and legal issues (see Section 3.2.5).
— availability of knowledge about: (i) the architecture and inner working mechanisms

of the IDS under test (see, for example, the discussions on evaluating resistance to
evasion techniques in Section 3.4.1); (ii) the characteristics of the employed workloads (e.g.,
information about the attacks used as workloads must be known in order to calculate
any security-related metric, see Section 3.3); (iii) the implications of different behavior
exhibited by the tested IDS (e.g., the cost of missing an attack must be known in order to
calculate the expected cost metric, see Section 3.3.2).

We observed that the requirements mentioned above often cannot be fully satisfied
given the big investment of resources that typically needs to be made. We observed
that sacrifices are often made in: (i) the scale of the employed workloads: an example is
the typical low number of attack scripts used as workloads (see Section 3.2.3); (ii) the
number of considered IDS properties (i.e., researchers tend to evaluate only a few IDS
properties, see Table 3.8).

We suggest trade-offs made between the quality of evaluations and the invested
resources to be clearly stated when reporting results from IDS evaluation studies so
that the results can be interpreted in a fair and accurate manner.

Approaches: In Table 3.13, we systematize relevant information that facilitates the
process of selecting approaches for generating workloads for evaluating IDSs and for
measuring IDS performance (i.e., metrics). In-depth information on what is presented
in Table 3.13 can be found in Section 3.2 and Section 3.3, whose sub-sections corre-
spond to the approaches listed in Table 3.13. For each approach, where applicable,
we provide: key information (i.e., advantages, disadvantages, and/or relevant facts);
key requirements that need to be satisfied, systematized as above; example common
practices or commonly used tools, datasets, or metrics; and selected references to relevant
publications where studies that use the approach can be found.

71

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

Table 3.13: Guidelines for planning IDS evaluation studies: Workloads and metrics [X: advan-
tage, −: disadvantage, ◦: neutral].

Workloads

Pure benign/mixed/pure malicious→Executable form
Key information:
X Generated workloads closely resemble real workloads
◦Multiple evaluation runs are required to ensure statistical significance of IDS behavior
◦ Generated malicious workloads require specific victim environments
- Replicating experiments when using malicious workloads is challenging
(Pure benign)→Workload drivers (Section 3.2.1)
Key information:
X Generated workloads can be customized in terms of their temporal and intensity characteristics
- Generated workloads do not resemble real-life workloads as closely as those manually generated

Tools: SPEC CPU2000, iozone, Postmark, httpbench, dkftpbench, ApacheBench, UnixBench (see Table 3.1)

References: [ABYSS10], [PKSZ04], [DKC+02], [GR03], [JXZ+11]
(Pure benign)→Manual generation (Section 3.2.2)
Key information:
X Generated workloads are similar to those observed by an IDS during regular system operation
◦ Suitable for generation of workload traces capturing realistic workloads executed in a recording testbed
- Does not support workload customization

Key requirements: time resources,(a) manpower(a)

Practices: file encoding and tracing, file conversion, copying of large files, kernel compilation (see Table 3.1)

References: [DKC+02], [SSG08], [LDP11], [ABYSS10]
(Pure malicious)→Exploit database→Manual assembly (Section 3.2.3)
Key information:
X Generated workloads are realistic and representative
◦ Attack scripts need to be collected and adapted, and a victim environment needs to be setup
- Generated workloads are normally of a limited size due to lack of manpower and/or time resources
- Publicly available attack scripts normally do not have IDS evasive characteristics

Key requirements: time resources, manpower, knowledge about the architecture and inner working mecha-
nisms of the IDS under test(b)

Datasets: 1337day, Exploit database, Packetstorm, SecuriTeam, Securityfocus (see Table 3.2)

References: [PCOM97], [LDP11], [DDWL98], [RRL+12]
(Pure malicious)→Exploit database→Readily available exploit database (Section 3.2.3)
Key information:
X No time spent on collection and adaptation of attack scripts
- Some databases have critical limitations (e.g., contain only remote exploits)

Key requirements: knowledge about the architecture and inner working mechanisms of the IDS under
test(b)
(a)When large scale workloads are generated (e.g., for recording in a testbed).
(b)In case the IDS property “resistance to evasion techniques” is evaluated.

72

3.5 Summary: Open Challenges and IDS Evaluation Guidelines

Continued from previous page
Tools: Metasploit, Nikto, w3af, Nessus

References: [GER08]
(Pure malicious)→Vulnerability and attack injection (Section 3.2.4)
Key information:
X Useful when collection of attack scipts is unfeasible
X Remotely and locally exploitable codes can be injected
- Not an extensively investigated approach

Key requirements: knowledge about the architecture and inner working mechanisms of the IDS under test

Tools: Vulnerability and Attack Injector Tool (VAIT) [FVM14]

References: [FVM14]
Pure benign/mixed/pure malicious→ Trace form
Key information:
X A single evaluation run is required to ensure statistical significance of IDS behavior
X Replicating evaluation experiments is a straightforward task
- Generated workloads closely resemble real workloads only for a short period of time
◦ Generated malicious workloads do not require specific victim environments
→ Trace acquisition→ Real-world production traces (Section 3.2.5)
Key information:
X Highly realistic and possibly large-scale workloads
- Normally very difficult to obtain due to privacy concerns and legal issues
- Normally anonymized with the risk that intrusion detection relevant data is removed
- Normally not labeled, which makes the construction of “ground truth” challenging

Key requirements: time resources, manpower, access to confidential data
→ Trace acquisition→ Publicly available traces (Section 3.2.5)
Key information:
XCan be obtained without any legal constraints
XNormally labeled
- Many contain errors (e.g., unrealistic distributions of attacks)
- May be outdated due to limited shelf-life of attacks
◦ Claims on generalizability of results from IDS tests based on publicly available traces can often be
questioned

Key requirements: knowledge about the characteristics of the employed workloads

Datasets: CAIDA, DEFCON, DARPA/KDD’99, ITA, LBNL, MAWILab (see Table 3.4)

References: [AAA+10], [YD11], [RAR12], [DCW+99]
→Trace generation→ Testbed environment (Section 3.2.6)
Key information:
X Issues related to trace acquisition not present
- The costs of building a testbed that scales to realistic production environments may be high
◦Methods used for trace generation are critical as they may produce faulty or simplistic workloads

Key requirements: financial resources, time resources,(c) manpower(c)
(c) In particular when recorded workloads are generated manually.

73

Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

Continued from previous page
References: [CLF+99], [SSTG12]
→ Trace generation→ Honeypots (Section 3.2.6)
Key information:
X Enable the generation of traces that contain representative and possibly zero-day attacks
- The outcome of a trace generation campaign is uncertain since it cannot be planned in advance and
controlled
◦ The attack labeling feasiblity depends on the level of interaction of used honeypot(s)

Key requirements: time resources,(d) manpower(d)

Tools: honeyd, nepenthes, mwcollectd, honeytrap, HoneyC, Monkey-Spider, honeybrid, HoneySpider,
Sebek, Argos, CaptureHPC, HoneyClient, HoneyMonkey (see Figure 3.4)

References: [DS11]

Metrics

Security-related→ Basic (Section 3.3.1)
Key information:
◦ Quantify individual attack properties
◦ Need to be analyzed together in order to accurately quantify the attack detection accuracy of an IDS
◦ “Ground truth” information is a requirement for calculating the basic security-related metrics

Key requirements: knowledge about the characteristics of the employed workloads

Metrics: true positive rate (1-β), false postive rate (α), false negative rate (β), true negative rate (1-α),
positive predictive value (PPV), negative predictive value (NPV) (see Table 3.5)

References: [MHL+03], [RAR12], [SSG08], [RRL+12], [FJGS+00]
Security-related→ Composite
Key information:
◦ Used for analyzing relationships between the basic security-related metrics
◦ Useful for identifying (an) optimal IDS operating point(s) for evaluating a single or comparing multiple
IDSs
→ ROC curve (Section 3.3.2)
Key information:
◦ The first metric of choice for identifying optimal IDS operating points
◦ An open issue is how to determine a proper unit and measurement granularity
- ROC curve analysis may be misleading when used for comparing multiple IDSs

Key requirements: knowledge about the architecture and inner working mechanisms of the IDS under
test,(e) knowledge about the characteristics of the employed workloads

References: [RAR12], [DCW+99]
→ Cost-based/Information-theoretic (Section 3.3.2)
Key information:
X Enable the accurate and straightforward comparison of multiple IDSs
X Express the impact of the rate of occurence of intrusion events (i.e., base rate)
◦ (Depend/Do not depend) on subjective measures (e.g., cost) and are (unsuitable/suitable) for objective
comparisons of IDSs
(d) Depends on the attack labeling feasibility of generated traces.
(e) In particular, knowledge about employed workload processing mechanisms (e.g., units of analysis) in
order to avoid misleading results when comparing IDSs.

74

3.5 Summary: Open Challenges and IDS Evaluation Guidelines

Continued from previous page
Key requirements: knowledge about the characteristics of the employed workloads, knowledge about the
implications of different behavior exhibited by the IDS under test (applies for cost-based metrics only)

Metrics: cost-based — expected cost (see Table 3.5), relative expected cost [Men12]; information-theoretic
— intrusion detection capability (see Table 3.5), false alarm reduction capability [YMLFK13]

References: cost-basedmetrics— [GU01], [Men12]; information-theoretic metrics— [GFD+06], [YMLFK13]

75

Chapter 4

An Analysis of Hypercall Handler
Vulnerabilities

The aim of this chapter is to shed more light on the hypercall attack surface. Currently,
to the best of our knowledge, there is no related work analysing this surface. Among
other reasons, we analyse the hypercall attack surface for the purpose of constructing
hypercall attack models, which are required for injecting hypercall attacks in a rep-
resentative manner. The latter enables the accurate evaluation of intrusion detection
systems (IDSs) designed to detect hypercall attacks, which is one of the goals of this
thesis (see Section 1.3).

In this chapter, we present an in-depth analysis of 35 hypercall vulnerabilities, which
we found by searching major vulnerability report databases (e.g., cvedetails [CVEj])
based on relevant keywords. We discuss issues, challenges, and gaps that apply
specifically to securing hypercall interfaces and how they differ from security concerns
related to system calls. Note that a hypercall is conceptually similar to a system call;
that is, hypercalls are analogous to system calls in the OS world (see Section 1.3).
Our analysis is based on information obtained by reverse engineering released

patches fixing the considered vulnerabilities due to the lack of publicly available
scripts that demonstrate hypercall attacks (see Section 1.3). In summary, in this chapter
we present:

• systematization and analysis of the origins of the considered hypercall vulnera-
bilities;

• demonstration of hypercall attacks and analysis of their effects;
• hypercall attack models based on systematization of activities for executing

hypercall attacks; and
• discussion on future research directions focusing on both proactive and reactive

approaches for securing hypercall interfaces.

This chapter is organized as follows: in Section 4.1, we present the set of hypercall
vulnerabilities that we analyze and the applied analysis method; in Section 4.2, we
systematize and discuss the origins of the analyzed vulnerabilities and attackers’
activities for executing hypercall attacks; in Section 4.3, we identify open issues and
we propose future research directions; in Section 4.4, we summarize this chapter.

77

Chapter 4: An Analysis of Hypercall Handler Vulnerabilities

In Chapter A, we provide relevant technical information about the hypercall attacks
we demonstrate in this chapter for better understanding these attacks.

The work presented in this chapter has been published in [MPA+13] and [MPA+14].

4.1 Sample Set of Hypercall Vulnerabilities

Table 4.1 lists the hypercall vulnerabilities analyzed for this study. We analyzed 35
hypercall vulnerabilities, which we found by searching major Common Vulnerabilities
and Exposures (CVE) report databases (e.g., cvedetails [CVEj]) based on relevant key-
words, such as names of operations of hypercalls. In order to ensure representativeness
of the considered set of vulnerabilities, we analyzed all publicly disclosed hypercall
vulnerabilities that we found as previously described, expecting that the number of
those that we did not find is negligibly small.
The majority of the vulnerabilities listed in Table 4.1 are from the Xen hypervi-

sor [BDF+03]. This is because Xen has the most extensive hypercall interface, which
enables full paravirtualization of virtual machines (VMs), as opposed to other hypervi-
sors, such as Kernel-based Virtual Machine (KVM) [Kiv07], which enables only partial
paravirtualization of VMs. The input/output control (ioctl) calls that the KVM hyper-
visor supports are functionally and conceptionally very similar to hypercalls of the Xen
hypervisor. For the purpose of this study, in addition to its standard hypercall interface,
we consider the ioctl interface of the KVM hypervisor, and therefore vulnerabilities in
handlers of ioctl calls, as hypercall interface and hypercall vulnerabilities, respectively.

At the time of writing, the total number of publicly disclosed hypercall vulnerabili-
ties is small. Based on what we observed when analyzing the vulnerabilities, we argue
that this is mainly because the assessment of hypercall handlers for vulnerabilities
is a challenging task due to the complexity of the operations that hypercall handlers
perform. In addition, the lack of instructive documentation of the program code of
hypercall handlers makes the assessment for vulnerabilities by an analyst, who has
not been involved in the design and/or development of the handlers, an especially
challenging task. As a result, as one can conclude from the range of releases of hy-
pervisors affected by hypercall vulnerabilities (Table 4.1, column ‘release’ of ‘affected
hypervisor’), it took a significant amount of time for some hypercall vulnerabilities to
be discovered (e.g., CVE-2012-5514, CVE-2013-4494).

Our approach for analyzing a hypercall vulnerability consisted of the following steps:

(i) analysis of the CVE report describing the vulnerability and of other relevant infor-
mation sources, for example, security advisories;

(ii) reverse-engineering of the released patch fixing the vulnerability; and

(iii) developing proof-of-concept code for triggering the vulnerability in a testbed
environment.

78

4.1 Sample Set of Hypercall Vulnerabilities

Table 4.1: Analyzed hypercall vulnerabilities.

CVE ID Hypercall Affected hypervisor

Name Release

CVE-2008-3687 flask_op Xen 3.3
CVE-2009-2287 KVM_SET_SREGS KVM Linux kernel 2.6.x(<2.6.30)
CVE-2009-3290 kvm_emulate_hypercall KVM Linux kernel 2.6.25-rc1–2.6.31
CVE-2009-3638 KVM_GET_SUPPORTED_CPUID KVM Linux kernel 2.6.25-rc1–2.6.32-rc4
CVE-2009-4004 KVM_X86_SETUP_MCE KVM Linux kernel <2.6.32-rc7
CVE-2010-3698 KVM_RUN KVM Linux kernel <2.6.36
CVE-2011-4347 KVM_ASSIGN_PCI_DEVICE KVM Linux kernel 3.1.7–3.1.9
CVE-2012-1601 KVM_CREATE_IRQCHIP KVM Linux kernel <3.3.6
CVE-2012-3494 set_debugreg Xen 4.0.x–4.1.x(<4.1.4)
CVE-2012-3495 physdev_op Xen 4.1.x(<4.1.4)
CVE-2012-3496 memory_op Xen 3.9.x–4.1.x(<4.1.4)
CVE-2012-3497 tmem_op Xen >4.0.x
CVE-2012-3516 grant_table_op Xen 4.2.0
CVE-2012-4461 KVM_SET_SREGS KVM Linux kernel <3.6.9
CVE-2012-4538 hvm_op Xen 4.0.x–4.1.x(<4.1.4), 4.2.x(<4.2.1)
CVE-2012-4539 grant_table_op Xen 4.0.x–4.1.x(<4.1.4)
CVE-2012-5510 grant_table_op Xen 4.x(<4.1.4)
CVE-2012-5513 memory_op Xen <4.1.4
CVE-2012-5514 memory_op Xen 3.4.x–4.1.x(<4.1.4)
CVE-2012-5515 memory_op Xen 3.4.x–4.1.x(<4.1.4)
CVE-2012-5525 mmuext_op Xen 4.2.0
CVE-2013-0151 hvm_op Xen 4.2.x(<4.2.2)
CVE-2013-0154 mmuext_op Xen 4.2.x(<4.2.2)
CVE-2013-1964 grant_table_op Xen 4.0.x–4.1.x(<4.1.5)
CVE-2013-3898 unknown Hyper-V Windows 8 and Server 2012
CVE-2013-4494 grant_table_op Xen >3.2.x
CVE-2013-4553 domctl Xen >3.4.x
CVE-2013-4554 hvm_do_hypercall Xen 3.0.x–4.3.2
CVE-2013-5634 KVM_GET_REG_LIST KVM Linux kernel 3.9.x
CVE-2014-1891 flask_op Xen 3.x.x–4.2.x(<4.2.4), 4.3.x(<4.3.2)
CVE-2014-1892 flask_op Xen 3.3.x–4.1.x
CVE-2014-1893 flask_op Xen 3.2.x–4.1.x
CVE-2014-1894 flask_op Xen 3.2.x
CVE-2014-1895 flask_op Xen 4.2.x(<4.2.4), 4.3.x(<4.3.2)
CVE-2014-3124 hvm_op Xen >4.1.x

The execution of proof-of-concept code enabled us to closely observe all stages of
an attack life cycle — pre-attack activities, followed by execution of a hypercall, or a

79

Chapter 4: An Analysis of Hypercall Handler Vulnerabilities

series of hypercalls, triggering a given vulnerability, and finally, the post-attack state
of the targeted hypervisor.

We analyzed vulnerabilities of closed-source hypervisors (i.e., CVE-2013-3898) and
vulnerabilities that are not likely to be triggered in practice to a lesser extent than
what is described above (i.e., we did not develop proof-of-concept code). This analysis,
although not as extensive as the one described above, still provided us with enough
information for making relevant observations. We classified a few vulnerabilities as
not likely to be triggered in practice:

• vulnerabilities of hypervisors not likely to be deployed in production environ-
ments, for example, an open-source hypervisor compiled with its debugging
feature enabled — CVE-2012-3516 and CVE-2013-0154;

• vulnerabilities that can be triggered only from VMs that are not likely to be seen
in production environments, for example, a VM with a large number of virtual
CPUs (vCPUs) — CVE-2013-0151 and CVE-2013-4554;

• vulnerabilities in handlers of deprecated or experimental hypercalls — CVE-
2012-3497 and CVE-2013-4553.

4.2 Analysis of the Hypercall Attack Surface

We analyze the hypercall attack surface from two perspectives: (i) a targeted hypervi-
sor; and (ii) an attacker triggering a hypercall vulnerability. Assuming the perspective
of a targeted hypervisor, we provide in-depth technical information about hypercall
vulnerabilities, and systematize and discuss the errors causing the hypercall vulnera-
bilities analyzed for this study (Section 4.2.1). We also demonstrate attacks triggering
hypercall vulnerabilities, performed by executing the proof-of-concept code that we
developed (Section 4.2.1), and discuss their effects (Section 4.2.2).
Assuming the perspective of an attacker, we construct attack models based on

systematizing activities for executing hypercall attacks (Section 4.2.3).
Our two-perspective approach enables the comprehensive analysis of the hypercall

attack surface, which, in turn, enables the development of an action plan for improving
the security of hypercall interfaces.

4.2.1 Hypervisor’s Perspective: Origins of Hypercall Vulnerabilities

In Table 4.2, for each hypercall vulnerability, we present the type of error that caused it
and the effects of a hypercall attack triggering it. We stress that the error categories pre-
sented in Table 4.2 are not intended for general use and are defined for the convenience
of discussion. We defined error categories as opposed to using existing taxonomies for
classifying software errors (e.g., [TCM05]), since none of them fit well to our purpose;
that is, we could not classify in the same category errors that share characteristics on
which we focus in this chapter.

80

4.2 Analysis of the Hypercall Attack Surface

Table 4.2: Origins of the considered hypercall vulnerabilities and effects of attacks triggering the
vulnerabilities [Error types: N (non-implementation); M (Implementation — value validation —
missing value validation); I (Implementation — value validation — incorrect value validation);
Inv (Implementation — incorrect implementation of inverse procedures)].

CVE ID Error Effect

CVE-2008-3687 M Corrupted state
CVE-2009-2287 N Hang/crash
CVE-2009-3290 N Corrupted state
CVE-2009-3638 I Crash/corrupted state
CVE-2009-4004 I Crash/corrupted state
CVE-2010-3698 N Crash
CVE-2011-4347 N Crash
CVE-2012-1601 N Corrupted state
CVE-2012-3494 I Crash
CVE-2012-3495 M Crash/corrupted state
CVE-2012-3496 N Crash
CVE-2012-3497 M Crash/corrupted state
CVE-2012-3516 M Crash/corrupted state
CVE-2012-4461 N Crash
CVE-2012-4538 N Crash
CVE-2012-4539 M Hang/crash
CVE-2012-5510 Inv Crash/corrupted state
CVE-2012-5513 M Crash/corrupted state
CVE-2012-5514 N Hang
CVE-2012-5515 M Hang
CVE-2012-5525 M Crash
CVE-2013-0151 N Crash
CVE-2013-0154 N Crash
CVE-2013-1964 N Crash/corrupted state/information leakage
CVE-2013-3898 M Crash/corrupted state
CVE-2013-4494 N Hang
CVE-2013-4553 N Hang
CVE-2013-4554 N Corrupted state
CVE-2013-5634 N Crash
CVE-2014-1891 M Crash/corrupted state
CVE-2014-1892 N Crash
CVE-2014-1893 I Crash/corrupted state
CVE-2014-1894 I Crash/corrupted state
CVE-2014-1895 I Crash/information leakage
CVE-2014-3124 N Crash/corrupted state

81

Chapter 4: An Analysis of Hypercall Handler Vulnerabilities

We primarily distinguish between implementation errors (i.e., errors that are obvi-
ously due to programmer error) and non-implementation errors (i.e., errors in design,
configuration, and so on).

Implementation Errors

We found several forms of implementation errors: value validation errors (i.e., missing
value validation and incorrect value validation) and incorrect implementation of inverse
procedures. It is obvious that the previously mentioned implementation errors are not
exclusive to hypercall interfaces. However, in this section, we discuss issues related to
these errors that are exclusive to hypercall interfaces.

Value validation errors: We observed that most of the implementation errors causing
hypercall vulnerabilities are missing value validations, followed by incorrect value
validations, either of input parameters or of internal variables. Under internal variables,
we understand variables that are created, and to which values are assigned, within a
hypercall handler (e.g., return values of functions invoked within a hypercall handler).

An example vulnerability due to missing value validation of an input parameter is
CVE-2012-5525 [CVEg] of the Xen hypervisor, which we discuss next.

Hypercall attack 1. The get_page_from_gfn function, which is invoked within multiple
hypercall handlers, provides information about a memory page specified with its
Machine Frame Number (MFN), whose value can be fully manipulated by a VM user
as a hypercall input parameter. In case a malicious VM user provides an invalid
MFN, get_page_from_gfn will return an invalid page information, which may cause the
hypervisor to crash. An invalid MFN is a MFN that is larger than the largest MFN
mapped to the VM invoking get_page_from_gfn. This is because get_page_from_gfn uses
the user-provided MFN as an offset for reading from an array where each element
contains information about a single page. We triggered CVE-2012-5525 by invoking
the hypercall HYPERVISOR_mmuext_op (operation MMUEXT_CLEAR_PAGE) and
providing a MFN of 0x0EEEEE, which caused the hypervisor to crash.1

An example vulnerability due to missing value validation of an internal variable is
CVE-2012-3495 [CVEb] of the Xen hypervisor, which we discuss next.

Hypercall attack 2. PHYSDEVOP_get_free_pirq, an operation of the physdev_op hyper-
call, is used for allocating a Peripheral Component Interconnect Interrupt Request
(PIRQ) to the VM fromwhere it is invoked. In the handler of PHYSDEVOP_get_free_pirq,
the return value of the function get_free_pirq, which corresponds to a free PIRQ if there
is one, is used as an index for accessing an element of the array pirq_irq in order to
mark a free PIRQ as allocated by writing -1. However, the return value of get_free_pirq

1We executed a proof-of-concept code triggering CVE-2012-5525 in the following environment: VM —
OS: Ubuntu Precise Pangolin (32 bit), kernel: 3.8.0-29-generic; host VM — OS: Ubuntu Precise Pangolin (32
bit), kernel 3.8.0-29-generic; hypervisor — Xen 4.2.0 (32 bit).

82

4.2 Analysis of the Hypercall Attack Surface

is not validated to be a valid PIRQ and not an error code (i.e., -28), which get_free_pirq
returns if there is no free PIRQ. In case get_free_pirq returns an error code, the error
code is used as an index for accessing pirq_irq and as a result, -1 is written at the
memory address *(pirq_irq - 28), which is mapped to the hypervisor. In order to trigger
CVE-2012-3495, a request for allocating a PIRQ should be made when there are no free
PIRQs. It can be concluded that a repetitive execution of PHYSDEVOP_get_free_pirq
will eventually result in triggering of CVE-2012-3495. Depending on the exact memory
layout of the hypervisor, it may crash. In case the hypervisor does not crash, it may
be possible to carefully craft an exploit to achieve privilege escalation. We triggered
CVE-2012-3495 by executing PHYSDEVOP_get_free_pirq 17 times, which caused the
hypervisor to crash.2

Missing and incorrect value validation errors are obviously due to programmer error.
Missing value validation errors can be addressed by adding program code verifying
values of variables. However, when analyzing the hypercall vulnerabilities of the Xen
hypervisor, we observed that performing frequent value validations may reduce the
execution speed of hypercalls and increase the performance overhead inccured by
them in a way which we discuss next.

Given that hypercalls to hypervisors are complex instructions that take many CPU
cycles to execute, hypercalls have only a limited amount of time for execution. For
instance, the hypercalls of the Microsoft hypervisor have only 50 microseconds to
execute [Hyp]. Although some hypercalls are sufficiently simple so a given time limit
is enough for completing their tasks, many hypercalls are complex and cannot complete
their tasks in a set time limit. Therefore, hypervisors employ a hypercall continuation
mechanism. This mechanism saves the execution state of a hypercall and returns
control to the VM from where the hypercall had been invoked so that the hypercall
can be resumed at a later time. Given that this context switching takes time, it can be
concluded that hypercall continuations increase the performance overhead incurred by
hypercalls. We observed that performing frequent value validations (e.g., of both input
parameters and internal variables) may cause the frequency of hypercall continuations
to increase, which incurs performance overhead and reduces the execution speed of
hypercalls. Note that partially and fully paravirtualized VMs rely heavily on hypercalls,
and therefore the execution speed of hypercalls is crucial for their performance.
We observed that the previously discussed impact of variable value validations on

the execution speed of the hypercalls of the Xen hypervisor has been a key factor for
the use of specific hypercall programming practices for boosting the latter, which,
however, led to introducing vulnerabilities. An evidence supporting this statement is
the vulnerability CVE-2012-5513 [CVEf], which we discuss next.

Hypercall attack 3. CVE-2012-5513 is a vulnerability of XENMEM_exchange, an op-
eration of the memory_op hypercall of the Xen hypervisor. In the handler of XEN-

2We executed a proof-of-concept code triggering CVE-2012-3495, CVE-2012-5510, CVE-2013-4494, and
CVE-2013-1964 in the following environment: VM — OS: Ubuntu Precise Pangolin (32 bit), kernel: 3.8.0-29-
generic; host VM — OS: Ubuntu Precise Pangolin (32 bit), kernel: 3.8.0-29-generic; hypervisor — Xen 4.1.2
(32 bit).

83

Chapter 4: An Analysis of Hypercall Handler Vulnerabilities

MEM_exchange, the function __copy_to_guest_offset is used for fast data copy, from
virtual memory addresses mapped to a VM to virtual memory addresses mapped to
the hypervisor. __copy_to_guest_offset is fast since it does not verify memory addresses
for validity. The memory addresses used by __copy_to_guest_offset should be validated
before __copy_to_guest_offset is invoked, which increases the risk of an implementation
error. A VMuser can fully manipulate the values of the virtual memory addresses used
by __copy_to_guest_offset since they are input parameters of XENMEM_exchange. The
latter enables a malicious VM user to overwrite hypervisor’s memory by setting the
memory addresses, to which data will be copied by __copy_to_guest_offset, to addresses
mapped to the hypervisor. We triggered CVE-2012-5513 by providing a copy desti-
nation address of 0xFFFF808000000000, which caused the hypervisor to crash. Since
an area of the hypervisor’s memory is overwritten with memory addresses accessible
by the VM from where CVE-2012-5513 is triggered, malicious code execution with
hypervisor privileges may be possible for certain memory layouts of the hypervisor
(e.g., by trampolining).3

Our observations presented above indicate that the trade-off between the two crucial
properties of hypercall interfaces (i.e., performance and security) is currently an issue
that should be addressed with great care. We discuss more on this issue in Section 4.3.

Incorrect implementation of inverse procedures: We observed that some of the hy-
percall vulnerabilities that we analyzed are associated with inverse procedures, out of
which one vulnerability is due to incorrect implementation of such procedures. Under
inverse procedures, we understand two procedures, one undoing the effects of the
other, which have to be executed in a given order, such as locking and unlocking, and
memory allocating and deallocating procedures. An example vulnerability due to
incorrect implementation of inverse procedures is CVE-2012-5510 [CVEe], which we
discuss next.

Hypercall attack 4. CVE-2012-5510 is a vulnerability of GNTTABOP_set_version, an
operation of the grant_table_op hypercall of the Xen hypervisor. GNTTABOP_set_version
is used for downgrading, from version 2 to version 1, and upgrading, from version
1 to version 2, the grant table of a VM. When a grant table is downgraded, the func-
tion gnttab_unpopulate_status_frames, inverse to gnttab_populate_status_frames, is used
to deallocate page frames used only by a grant table of version 2. However, gnt-
tab_unpopulate_status_frames does not properly perform the standard procedure for
deallocating page frames — it does not remove the nodes that are associated with
the frames being deallocated from the linked list xenpage_list, where the hypervisor
stores frame information for memory management purposes. As a result, subsequent
attempts to allocate the same frames by upgrading a grant table may lead to adding
a node to xenpage_list that is a duplicate of the node that has not been removed by
gnttab_unpopulate_status_frames. This causes corruption of xenpage_list and leads to

3We executed a proof-of-concept code triggering CVE-2012-5513 and CVE-2012-3496 in the following
environment: VM — OS: Debian Squeeze (64 bit), kernel: 2.6.32-5-amd64; host VM — OS: Debian Squeeze
(64 bit), kernel: 2.6.32-5-amd64; hypervisor — Xen 4.1.0 (64 bit).

84

4.2 Analysis of the Hypercall Attack Surface

undefined behavior of the hypervisor. We triggered CVE-2012-5510 by downgrading
and upgrading the grant table of a VM 58 times in a row, which caused the hypervisor
to crash due to memory corruption.2

An obvious reason for the incorrect implementation of inverse procedures is their
complexity, which increases the risk of implementation errors. Most of the vulnerabili-
ties associated with inverse procedures that we analyzed are due to non-implementation
errors; that is, we observed that often vulnerabilities are introduced by not executing
inverse procedures properly (e.g., not executing one of them or executing them in
an irregular order) in certain scenarios that a vulnerable hypervisor cannot properly
handle. An example is the vulnerability CVE-2013-4494 [CVEi] of the Xen hypervisor,
which we discuss next.

Hypercall attack 5. Two pairs of inverse procedures (i.e., page_alloc_lock and page_alloc_
unlock, which are used for locking and unlocking the page allocation structure of a VM,
and grant_table_lock and grant_table_unlock, which are used for locking and unlocking
the grant table structure of a VM) are executed as part of the operations of several
hypercalls, however, not always in the same order (e.g., in a reverse order). The latter is
not an issue in scenarios where hypercalls executing page_alloc_lock, page_alloc_unlock,
grant_table_lock, and grant_table_unlock in a reverse order are executed at different times,
for example, sequentially. However, in the specific scenario where such hypercalls
are executed from a VM at the same time at separate vCPUs, a deadlock is created.
We triggered CVE-2013-4494 by executing the hypercalls grant_table_op, operation
GNTTABOP_SETUP, and grant_table_op, operation GNTTABOP_TRANSFER, at the
same time at two separate vCPUs, which caused the hypervisor to hang.2

The discussion above introduces a major issue that is one of the central topics of this
chapter and that we focus on next.

Non-implementation Errors

We demonstrate the complexity that vulnerabilities due to non-implementation er-
rors may have through an example where we trigger the vulnerability CVE-2013-
1964 [CVEh] of the Xen hypervisor.

Hypercall attack 6. GNTTABOP_copy, an operation of the grant_table_op hypercall, is
used for copying memory pages from a source VM (SVM) to a destination VM (DVM)
with respect to data access permissions set by the SVM and the DVM using grant table
entries (i.e., grants). Grant tables of version 2 support transitive grants, which are used
for transitive assignment of permissions such that a transitive grant points to another
grant. In order for the SVM to copy a page to the DVM, it must first acquire a grant from
the hypervisor and, after the page is copied, it requests a release of the grant. However,
vulnerable releases of the Xen hypervisor cannot properly handle the scenario where
non-transitive grants of a version 2 grant table are used (i.e., a vulnerable hypervisor
releases a non-transitive grant of a version 2 grant table as if it is a transitive grant).

85

Chapter 4: An Analysis of Hypercall Handler Vulnerabilities

The culprit of this error is that the hypervisor has been designed to support the specific
scenario where transitive grants that point to a grant of the VM acquiring a grant are
used and as a result, the hypervisor wrongly treats non-transitive grants as transitive
grants. The triggering of CVE-2013-1964 results in an unrequested release of the first
grant of the grant table of the VM that has executed GNTTABOP_copy. This may cause
the hypervisor to crash, or corrupt its state, which enables further malicious activities.
We triggered CVE-2013-1964 by executing GNTTABOP_copy such that a release of a
version 2 non-transitive grant was requested, which caused the hypervisor to crash.2

As Hypercall attack 6 demonstrates, we argue that a typical hypercall interface can
properly handle only a certain amount of hypercall execution scenarios. As a result, a
malicious VM user can trigger a hypercall vulnerability by creating an “unexpected”
hypercall execution scenario, which the targeted hypervisor cannot properly handle.

As opposed to the majority of hypercall vulnerabilities due to implementation errors,
all hypercall vulnerabilities due to non-implementation errors can be triggered by
executing a regular hypercall, or a series of regular hypercalls, in a way such that
the hypervisor cannot properly handle. By regular hypercalls, we mean hypercalls
that are not specifically crafted for triggering vulnerabilities (i.e., with specifically
crafted parameter values), which may be invoked as part of regular system opera-
tion. For example, we were able to crash the Xen hypervisor by simply executing
XENMEM_populate_physmap (an operation of the memory_op hypercall) with valid
parameter values from an auto-translated paravirtualized VM, only because XEN-
MEM_populate_physmap is not intended for use by such a VM (we triggered the vulner-
ability CVE-2012-3496 [CVEc]).3

The fact that non-implementation errors causing hypercall vulnerabilities (many
of which can be triggered unintentionally as part of regular system operation) are
common, raises the question — are hypercall interfaces reliable? The primary task of
hypervisors is to manage the operation of multiple VMs, where each VM is of a given
architecture (e.g., 32 or 64 bit), runs a given operating system, is virtualized in a specific
way (e.g., fully paravirtualized, partially paravirtualized, hardware virtualized), may
be in a given state at any point in time (e.g., running, rebooting, halted), has a certain
amount of resources allocated to it (e.g., vCPUs), and so on. Given the complexity of
the previously mentioned task, we argue that designing and developing the hypercall
interfaces of hypervisors in away such that they are able to reliably handle any hypercall
execution scenario without exposing attack vectors is challenging.
An overlapping objective of the areas of hypervisor security and system reliability

is the prevention of system failures, which is critical in mission- and business-critical
virtualized environments. The system security and reliability communities advocate
the need for advances that enable the computer system reliability community to better
prevent failures to be adapted and shared with the former for possible implementa-
tion [ASS11], [YL13]. Given the observations from our study, we recognize such a need
when it comes to securing hypercall interfaces of hypervisors.

Our observation reveals that for the triggering of many of the current hypercall
vulnerabilities (i.e., those due to non-implementation errors, see Table 4.2), the way in

86

4.2 Analysis of the Hypercall Attack Surface

which a hypercall, or a series of hypercalls, is executed plays a key role. This raises
several issues related to the efficiency of existing mechanisms for securing hypercall
interfaces, for example, intrusion detection and prevention systems. We discuss these
issues in detail in Section 4.3.

4.2.2 Hypervisor’s Perspective: Effects of Hypercall Attacks

We present in Table 4.2 the effects of the attacks triggering the considered vulnera-
bilities on the states of the targeted hypervisors (see column ’effect’). We observed
that hypercall attacks are very efficient in obstructing the operation of a hypervisor,
either by causing it to crash (effect crash in Table 4.2, see for example Hypercall attack
6, Section 4.2.1) or to hang (effect hang in Table 4.2, see for example Hypercall attack
5, Section 4.2.1). This is expected given that hypercalls perform system-critical oper-
ations. As a result, we argue that hypercall attacks can be very effective hypervisor
denial-of-service (DoS) attacks, which are considered as very severe in mission- and
business- critical virtualized environments where availability of hypervisors is of high
importance.
Some hypercall attacks corrupt the state of the hypervisors they target without

causing them to crash (effect corrupted state in Table 4.2), part of which only if a given
condition is satisfied (effect crash/corrupted state in Table 4.2), for example, if thememory
of the targeted hypervisor is laid out in a specific way (see for example Hypercall attack
2, Section 4.2.1). Our analysis of the post-attack states of hypervisors targeted by
attacks corrupting their states revealed that severe intrusions leading to, for example,
malicious code execution with hypervisor privilege, are probable (see for example
Hypercall attack 3, Section 4.2.1). However, it does not seem likely that the execution of
a single hypercall attack will lead to such an intrusion. On the contrary, our analysis
showed that a hypercall attack is an effective mechanism for intruding hypervisors
when executed as part of an elaborate multi-step attack, in which the task of the
hypercall attack is to corrupt the state of the hypervisor and pave the way for further
malicious activities. We found that this also holds for hypercall attacks resulting in
an unauthorized retrieval of information (effect information leakage in Table 4.2), read
from memory allocated to the hypervisor or a VM collocated with the VM from where
a hypercall attack is executed.
We note that, although not common, intrusions achieved by executing a single hy-

percall attack can happen and they are normally of the highest severity (i.e., they result
in malicious code execution with hypervisor privilege). An example is the hypercall
attack triggering the vulnerability CVE-2008-3687 demonstrated by Rutkowska and
Wojtczuk [RW] at the Black Hat 2008 conference.

4.2.3 Attacker’s Perspective: Attack Models

Based on analyzing the attacks triggering the vulnerabilities listed in Table 4.1, we
identified patterns of activities comprising a successful attack campaign. We then cate-

87

Chapter 4: An Analysis of Hypercall Handler Vulnerabilities

gorized the identified patterns into attackmodels. Models of hypercall attacks facilitate
the development of approaches for improving the security of hypercall interfaceswhere
mimicking attackers targeting hypercall interfaces is needed, for example, discovery
of vulnerabilities by fuzzing. We discuss such approaches in detail in Section 4.3.

We distinguish two phases of a hypercall attack: setup and attack execution phase. A
setup phase consists of execution of one or multiple regular hypercalls setting up the
virtualized environment as necessary for triggering a given hypercall vulnerability
and does not always take place. An attack execution phase consists of

• execution of a single hypercall with
– regular parameter value(s) (i.e., regular hypercall), or
– parameter value(s) specifically crafted for triggering a given vulnerability, or

• execution of a series of regular hypercalls in a given order, including
– repetitive execution of a single hypercall, or
– repetitive execution of multiple hypercalls.

The attack models involving execution of a single or multiple regular hypercalls
assume that the hypercalls are executed in a way such that

• the targeted hypervisor cannot properly handle the hypercalls, which is typical
for triggering vulnerabilities due to non-implementation errors, or

• an erroneous program code is executed, which is typical for triggering some
vulnerabilities due to implementation errors.

As one can observe from the hypercall attack models presented above, the majority
of the models involve execution only of regular hypercalls, as opposed to the intuitive
assumption thatmost of thesemodelswould involve execution of hypercalls specifically
crafted for triggering vulnerabilities. This raises a number of issues that we discuss in
detail in Section 4.3.

In Figure 4.1(a)–(f), we depict the hypercall attacks described in Section 4.2.1; that is,
we provide examples of attacks that conform to the attack models that we define. In
Figure 4.1(a)–(f), we depict only the hypercalls executed as part of a hypercall attack
and relevant hypercall parameters (i.e., parameters identifying the executed hypercall,
and, where applicable, parameters with values specifically crafted for triggering a
vulnerability, which are marked in bold).

4.3 Extending the Frontiers

Based on our observations, we now discuss how the state-of-the-art in securing hyper-
call interfaces can be advanced. We focus on issues related to (i) proactive approaches
for securing hypercall interfaces (i.e., preventing hypercall attacks from occuring) —
vulnerability discovery and secure programming practices; and (ii) reactive approaches
for securing hypercall interfaces (i.e., detecting and preventing hypercall attacks as
they occur) — security mechanisms.

88

4.3 Extending the Frontiers

Guest VM! Hypervisor!

HYPERVISOR_mmuext_op!
(&op, …)!

Crash!

op.cmd = 16; //MMUEXT_CLEAR_PAGE!
.arg1.mfn=0x0EEEEE;!

(a)

Guest VM! Hypervisor!

HYPERVISOR_physdev_op!
(PHYSDEVOP_get_free_pirq, …)!

Crash!

HYPERVISOR_physdev_op!
(PHYSDEVOP_get_free_pirq, …)!

0

x16!

(b)

Guest VM! Hypervisor!

HYPERVISOR_update_va_mapping!
(…)!

Crash!
.out.extent_start = 0xFFFF808000000000;!

HYPERVISOR_memory_op!
(XENMEM_exchange, &exchange);!

0

x32!

(c)

Guest VM! Hypervisor!

HYPERVISOR_grant_table_op!
(GNTTABOP_set_version, &gsv , …)!

Crash!

HYPERVISOR_grant_table_op!
(GNTTABOP_set_version, &gsv , …)!

.!

.!0x57!

.version=1;!

.version=2;!

0

HYPERVISOR_grant_table_op!
(GNTTABOP_set_version, &gsv , …)!

.version=1;!

(d)

Guest VM! Hypervisor!

HYPERVISOR_grant_table_op!
(GNTTABOP_setup, ….)!

Hang!HYPERVISOR_grant_table_op!
(GNTTABOP_transfer, ….)!

(at vCPU #1)!

(at vCPU #2)!

(e)

SVM! Hypervisor!

HYPERVISOR_grant_table_op!
(GNTTABOP_copy, …)!

Corrupted state!

DVM!

HYPERVISOR_grant_table_op!
(GNTTABOP_setup_table, …)!

0

0

(f)

Figure 4.1: (a) Hypercall attack 1 — execution of a single hypercall with a specifically crafted
parameter value, (b) Hypercall attack 2— repetitive execution of a single regular hypercall, (c)
Hypercall attack 3— setup phase and execution of a single hypercall with a specifically crafted
parameter value, (d) Hypercall attack 4 — repetitive execution of multiple regular hypercalls,
(e) Hypercall attack 5 — execution of a series of regular hypercalls, (f) Hypercall attack 6— setup
phase and execution of a single regular hypercall.

89

Chapter 4: An Analysis of Hypercall Handler Vulnerabilities

4.3.1 Vulnerability Discovery and Secure Programming Practices

Vulnerability Discovery

We note that publicly available techniques and tools for fuzzing hypercalls are lacking.
Such tools can be very effective for discovering hypercall vulnerabilities, especially
those due to implementation errors that can be triggered by executing specifically
crafted hypercalls. Hypercall fuzzing tools may contribute towards discovering hy-
percall vulnerabilities in a time-efficient manner by enabling vulnerability analysts,
especially those who had not been involved in the design and/or development of the
hypercalls that they analyze, to conveniently discover vulnerabilities. The hypercall
attack models that we presented in Section 4.2.3 can serve as a basis for designing and
developing generation-based fuzzers for hypercalls.
Hypercall fuzzing is challenging since unlike, for example, system calls, many

hypercalls perform operations that alter the state not only of the system executing
them (i.e., a VM), but also of the underlying hypervisor. One challenge originating
from this characteristic of hypercalls is that one must ensure that during a fuzzing
campaign, hypercalls are executed in a way (e.g., in a given order) such that they do
not cause an undesired state of the VM and/or the hypervisor. This requires careful
planning and an in-depth knowledge on the tasks that the hypercalls to be executed
perform. An undesired state of a VM or a hypervisor in a fuzzing campaign is a state
that hinders the efficiency of the fuzzing process (e.g., a state that makes the execution
of a code segment of a given hypercall handler impossible due to unfulfilled conditions
for executing the code, which are related to the state of the hypervisor or the VM).

Given the severity of hypercall attacks (see Section 4.2.2), we argue that tools for time-
efficient discovery of hypercall vulnerabilities, such as fuzzers, should be designed
and developed. We observed that the time period between the introduction and the
discovery of many of the hypercall vulnerabilities considered in this study is long.
For example, the vulnerability CVE-2012-3494 [CVEa] was present in versions of the
Xen hypervisor released over the course of 2 years and 8 months.4 Our analysis of the
hypercall vulnerabilities due to implementation errors revealed that the discovery of
some of them is trivial in case fuzzing techniques are used (e.g., CVE-2012-3494).
While fuzzers are effective for discovering some vulnerabilities due to implemen-

tation errors, they are not that effective for discovering vulnerabilities due to non-
implementation errors. Note that the latter are triggered by executing regular hy-
percalls in a way such that the hypervisor cannot properly handle. We argue that
such vulnerabilities can be discovered using formal verification methods that aim at
discovering the non-implementation errors causing hypercall vulnerabilities (see Sec-
tion 4.2.1), which are currently lacking. We refer the reader to [LS09] for an overview
of the challenges that apply to formally verifying hypervisors.

The Microsoft Hyper-V verification project [LS09] has made important achievements
towards the functional verification of the Hyper-V hypervisor. Many researchers, such

4This vulnerability has been introduced in Xen 4.0.0 (released 7 April 2010), a patch has been released
on 5 September 2012, and it has been fixed in Xen 4.1.4 (released 18 December 2012).

90

4.3 Extending the Frontiers

as Alkassar et al. [AHPP10] and Barthe et al. [BBCL11], develop formal models of
various hypervisor components used for verifying functional properties of hypervisors,
for example, isolation between VMs. Freitas andMcDermott [FM11] formallymodelled
the hypercall interface of the Xen hypervisor to re-engineer it into interface enforcing
information-flow security (i.e., one VM should not flow/leak information into another
VM). We argue that the development of models for formally verifying the functional
correctness of hypercall interfaces, with a focus on hypervisor security, would be a
major achievement towards reducing the number of hypercall vulnerabilities due to
non-implementation errors.

Secure Programming Practices

In Section 4.2.1, we mentioned that the trade-off between performance and security of
hypercall interfaces is currently an important issue. We observed that missing value
validations errors comprise slightly less than 60 percent of all implemenation errors
that we reviewed. Missing value validation errors can be addressed by adding program
code verifying values of variables. However, when analyzing the hypercall vulnerabili-
ties of the Xen hypervisor, we observed that performing frequent value validations (e.g.,
of both input parameters and internal variables) may cause an increased frequency
of hypercall continuations, therefore reducing the execution speed of hypercalls and
increasing the performance overhead incurred by them (see Section 4.2.1).

We argue that secure hypercall programming practices enforcing, for example, value
validations of all variables used within a given hypercall handler, should be developed.
Given our observations presented in Section 4.2.1, one may conclude that the applica-
tion of such practices would lead to the development of secure hypercall handlers free
of missing value validation errors, however, executing slowly (e.g., hypercalls of the
Xen hypervisor may exhibit an increased frequency of overhead incurring hypercall
continuations). Therefore, a major challenge is the development and application of
programming practices for developing hypercall handlers such that rigorous value
validations are performed at a reasonable performance cost.

Security enhanced operating modes of hypervisors already exist, such as the Xen
Security Modules - Flux Advanced Security Kernel (XSM-FLASK) security module of
the Xen hypervisor, which enables access control of hypercalls, however, at the cost of
performance [XSM]. We argue that secure operatingmodes of hypercalls, characterized
by rigorous value validations of both input parameters and internal variables at the cost
of performance, may contribute towards improving the security of hypercall interfaces.
The use of secure operating modes of hypercalls is a matter of prioritization — such
modes are crucial, for example, for mission-critical deployments of hypervisors where
security, and not performance, is of the highest importance.

4.3.2 Security Mechanisms

The research and industrial communities have designed and developed security mech-
anisms for detecting and/or preventing hypercall attacks targeting hypervisors, for

91

Chapter 4: An Analysis of Hypercall Handler Vulnerabilities

example, intrusion detection and prevention systems (IDPSs). Such security mecha-
nisms are

• Collabra— Bharadwaja et al. [BSNS11b] designed a distributed anomaly-based
IDPS that labels hypercall invocations as malicious or benign based on hypercall
parameter values;

• Message Authentication Code/Hypercall Access Table (MAC/HAT)— Le [HL09] de-
signed an IDPS that uses policies, which include hypercall parameter values
and hypercall call sites, for labeling a given hypercall invocation as benign or
malicious;

• RandHyp — Wang et al. [WCMX12] designed an IDPS that randomizes hypercall
parameter values in order to detect and block the execution ofmalicious hypercall
invocations that originate from untrusted locations (e.g., attacker’s loadable
kernel module);

• XSM-FLASK — the XSM-FLASK security module of the Xen hypervisor en-
ables mandatory access control based on policies, which include hypercalls and
hypercall parameter values [XSM].

Given that existing security mechanisms take into account hypercall parameter
values and hypercall call sites to detect and/or prevent hypercall attacks, we argue that
they are not that effective for detecting hypercall attacks that trigger vulnerabilities
by executing regular hypercalls in a specific way. This especially holds for hypercall
attacks that involve invoking hypercalls from usual call sites (e.g., a routine of the
kernel of a VM) or frequently used hypercalls that are typically not subject to access
control.
As we mentioned in Section 4.2.3, all vulnerabilities due to non-implementation

errors and some due to implementation errors can be triggered by executing hypercalls
with regular parameter values in a specific way (see for example Figure 4.1(b), (d)–
(f), Section 4.2.3). Note that the vulnerabilities due to non-implementation errors
make approximately 50 percent of all vulnerabilities that we analyzed (see Table 4.2).
Therefore, one may infer that current security mechanisms do not cover a significant
portion of the hypercall attack space. In Figure 4.2, we depict the coverage of current
security mechanisms with respect to the attack models (attack phase only) defined in
Section 4.2.3.

Mechanisms for securing hypercall interfaces that consider the way in which hyper-
calls are executed in addition to hypercall parameter values and call sites, are lacking.
Being able to detect and/or prevent not only some attacks triggering vulnerabilities
due to implementation errors, we argue that such security mechanisms would be effec-
tive against most of the hypercall attacks that can be seen in practice. For example, the
attack depicted in Figure 4.1(e) can be detected if the allocation of hypercalls to vCPUs
for execution is taken into account as a factor for detecting attacks. The execution of the
GNTTABOP_SETUP and GNTTABOP_TRANSFER hypercalls at the same time, each
at different vCPU, may be considered as an abnormal activity by an anomaly-based
IDPS.
Besides the issue discussed above, we raise the issue that currently there are no

92

4.4 Summary: Lessons Learned

Attack models (attack phase)!

!
Execution of a single hypercall with !

specifically crafted parameter value(s)!

!
Execution of a single !
regular hypercall *!

!
Execution of a series of regular hypercall in !

a given order *!

!
Repetitive execution of !

a single hypercall *!

!
Repetitive execution of !
multiple hypercalls *!

Current security mechanisms!

*) Hypercall(s) executed in a way such that:!
•  the targeted hypervisor cannot properly handle, or!
•  an erroneous program code is executed!

Figure 4.2: Coverage of current security mechanisms with respect to hypercall attack models.

approaches for generating workloads that contain representative hypercall attacks. The
latter are crucial for the accurate and rigorous evaluation of IDPSs designed for detect-
ing and preventing hypercall attacks. An inaccurate evaluation of IDPSs may lead to
the deployment of misconfigured or ill-performing IDPSs in production environments,
increasing the risk of security breaches. Approaches for generating workloads that
contain hypercall attacks may be used for purposes beyond evaluation of IDPSs (i.e.,
for any cyber security experiment where controlled generation of malicious workloads
is needed, such as verification of XSM-FLASK policies).
The main reason for the issue mentioned above is the lack of publicly available

information on hypercall vulnerabilities and attacks, a problem that this chapter is
focussing on. Such information is a basis for the development of approaches for
generating artificial hypercall attacks that closely resemble real ones. Bharadwaja et
al. [BSNS11b], Wang et al. [WCMX12], and Le [HL09] acknowledge the above issue and
explicitly stress that it is a major problem stating, for example, “We have some difficulties
to fully evaluate the efficiency of our hypercall protection measures ... known attack codes on
Xen virtualization are not available.” (Le [HL09], Section 5.1.2 — "Attack Experimental
Issues", pg. 47). The models that we presented in Section 4.2.3 may serve as a basis for
designing tools for generating activities representative of those of an attacker executing
hypercall attacks. Preliminary work in this area is described in [MPA+13].

4.4 Summary: Lessons Learned

With the goal of increasing the amount of publicly available information on vulnera-
bilities of hypervisors’ hypercall handlers (i.e., hypercall vulnerabilities) and attacks
triggering them (i.e., hypercall attacks), in this chapter, we analyzed a set of 35 hy-
percall vulnerabilities. Our vulnerability analysis approach consisted of analyzing

93

Chapter 4: An Analysis of Hypercall Handler Vulnerabilities

publicly available reports describing the considered vulnerabilities (e.g., CVE reports,
security advisories), reverse-engineering the patches fixing the vulnerabilities, and
developing proof-of-concept code, which allowed us to trigger the vulnerabilities and
closely observe all stages of the life cycle of a typical hypercall attack. We made the
following observations:

(i) A big portion of the implementation errors causing hypercall vulnerabilities are
missing value validations, both of input parameters and internal variables (i.e., vari-
ables that are created, and to which values are assigned, within a hypercall handler).
Eliminating missing value validation errors by adding program code verifying values
of input parameters and internal variables may reduce the execution speed of hyper-
calls (e.g., hypercalls of the Xen hypervisor may exhibit an increased frequency of
overhead incurring hypercall continuations). The impact of variable value validations
on the execution speed of the hypercalls of the Xen hypervisor has been a key factor for
the use of programming practices for boosting the latter, which has led to introducing
vulnerabilities.

(ii)Non-implementation errors causing hypercall vulnerabilities, many of which can be
triggered unintentionally as part of regular system operation, are common. As a result,
given that hypervisors are often mission- and business-critical systems, we recognize
the need for advances that enable the system reliability community to reduce failures
to be adapted and shared with the hypervisor community for implementation.

(iii) Hypercall attacks can be effective hypervisor DoS attacks. Many hypercall attacks
corrupt the state of the targeted hypervisor, and some lead to information leakage,
which makes them an effecitive mechanism for intruding hypervisors when executed
as part of a multi-step attack. Although possible (see [RW]), it is less likely that the ex-
ecution of only a single hypercall attack will lead to an intrusion resulting in malicious
code execution with hypervisor privilege.

(iv) Attackers’ activities for executing hypercall attacks can be categorized into the
following attack models:

• execution of a single hypercall with regular parameter value(s) (i.e., regular
hypercall), or parameter value(s) specifically crafted for triggering a given vulner-
ability (which is typical for triggering some vulnerabilities due to implementation
errors), or

• execution of a series of regular hypercalls in a given order, including repetitive
execution of a single or multiple hypercalls,

where the attack models involving execution of regular hypercalls assume that the
hypercalls are executed in a way such that:

(a) the targeted hypervisor cannot properly handle (which is typical for triggering
vulnerabilities due to non-implementation errors); or

94

4.4 Summary: Lessons Learned

(b) an erroneous program code is executed (which is typical for triggering some vul-
nerabilities due to implementation errors).

We stress that hypercall interfaces of hypervisors are critical attack surfaces, which pose
challenges that may serve as a motivation for innovative advances towards improving
the security of virtualized environments.

95

Chapter 5

Evaluation of Intrusion Detection
Systems Using Attack Injection

As we stated in Section 1.1, the rigorous evaluation of intrusion detection systems
(IDSs) in virtualized environments is crucial for preventing breaches in virtualized
environments. For instance, one may compare multiple IDSs in terms of their attack
detection accuracy in order to identify the optimal IDS.
We focus in this chapter on evaluating IDSs designed to detect hypercall attacks,

which is one of the goals of this thesis (see Section 1.3). Workloads that contain
virtualization-specific attacks (i.e., attacks targeting hypervisors — hypercall attacks)
are a key requirement for evaluating the attack detection accuracy of IDSs designed to
detect hypercall attacks (see Section 1.2.1 and Section 1.3). However, the generation
of such workloads is challenging since publicly available scripts that demonstrate hy-
percall attacks are very rare [MPA+14], [HL09]. An approach towards addressing this
issue is attack injection, which enables the generation of representative IDS evaluation
workloads. Attack injection is controlled execution of attacks during regular operation
of the environment where an IDS under test is deployed. The injection of attacks is
performed with respect to attack models constructed by analysing realistic attacks.
Attack models are systematized activities of attackers targeting a given attack surface.

In this chapter, we propose an approach for evaluating IDSs using attack injection.
As part of the proposed approach, we present hInjector, a tool for injecting hypercall
attacks. We designed hInjector to achieve the challenging goal of satisfying the key
criteria for the rigorous, representative, and practically feasible evaluation of an IDS
using attack injection: injection of realistic attacks, injection during regular system
operation, and non-disruptive attack injection (e.g., prevention of potential crashes due
to injected attacks). The approach we propose may be conceptually applied not only
for evaluating IDSs designed to detect hypercall attacks, but also attacks involving the
execution of operations that are functionally similar to hypercalls. Such operations
are, for example, the input/output control (ioctl) calls that the Kernel-based Virtual
Machine (KVM) hypervisor supports.

Our approach uses live IDS testing, since existing IDSs designed to detect hypercall
attacks perform on-line monitoring. Further, it enables the evaluation of IDSs that do
and do not require training (i.e., it involves IDS training, which is needed for evalu-
ating IDSs that require training, see Section 2.1.2). We demonstrate the application

97

Chapter 5: Evaluation of Intrusion Detection Systems Using Attack Injection

and practical usefulness of the approach by evaluating Xenini [MM11], a represen-
tative IDS designed to detect hypercall attacks. We inject realistic attacks triggering
publicly disclosed hypercall vulnerabilities and specifically crafted evasive attacks.
We extensively evaluate Xenini considering multiple configurations of the IDS. Such
an extensive evaluation would not have been possible before due to the previously
mentioned issues.

The work presented in this chapter has been published in [MPA+15].
This chapter is organized as follows: in Section 5.1, we provide the essential back-

ground and discuss related work; in Section 5.2, we present an approach for evaluating
IDSs; in Section 5.3, we introduce the hInjector tool; in Section 5.4, we demonstrate the
application of the proposed approach; in Section 5.5, we conclude this chapter.

5.1 Background and Related Work

Paravirtualization and hypercalls Paravirtualization, an alternative to full virtual-
ization, is a virtualization mode that enables the performance-efficient virtualization
of various virtual machine (VM) components based on collaboration between VMs
and the underlying hypervisor. VM components that may be paravirtualized include
disk and network devices, interrupts and timers, emulated platform components (e.g.,
motherboards, device buses, and booting procedures), privileged instructions, and
pagetables.

With recent advances in hardware design, paravirtualizing privileged instructions
and pagetables often does not provide performance benefits over full (native) virtu-
alization. However, paravirtualizing the other VM components mentioned above is
beneficial. As a result, different modes of virtualization have emerged, many of which
involve paravirtualizing VM components of fully virtualized VMs. In Figure 5.1, we
depict the spectrum of virtualization modes as conceptualized by Dunlap [Dun].

F F F F
P F F F
P P F F
P P P F
P P P P

Full
virtualization

Full
paravirtualization

Disk and network
devices

Interrupts
and timers

Platform
components

Instructions
and pagetables

Figure 5.1: Spectrum of virtualization modes [P: paravirtualized, F: fully virtualized].

Hypercalls are operations that VMs use for working with their paravirtualized com-
ponents. They are software traps from a kernel of a VM to the underlying hypervisor
(see Section 1.3). At this time hypercalls are widely used in practice since the majority
of the current virtualization modes involve paravirtualization (see Figure 5.1). For

98

5.1 Background and Related Work

instance, Amazon offers partially and fully paravirtualized VMs as part of their Elastic
Computing Cloud (EC2) service [ama].

The hypercall attack surface The hypercall interface is an attack surface that can be
used for executing attacks targeting the hypervisor or breaking the boundaries set
by it. This may result in unauthorized information flow between VMs or executing
malicious code with hypervisor privilege (see [RW] and [WLR]).
In Chapter 4 of this thesis (see also [MPA+14]), we analyzed 35 publicly disclosed

hypercall vulnerabilities and identified patterns of activities for triggering the consid-
ered vulnerabilities. We categorized the identified patterns into the following attack
models:

• setup phase (optional) — execution of one or multiple regular hypercalls (i.e.,
hypercalls with regular parameter value(s) that may be executed during regu-
lar system operation) setting up the virtualized environment as necessary for
triggering a given hypercall vulnerability; and

• attack phase — execution of a single regular hypercall, or a hypercall with specifi-
cally crafted parameter value(s); or, execution of a series of regular hypercalls in
a given order.

In this chapter, we use these models for injecting hypercall attacks.

Intrusion detection Given the high severity of hypercall attacks, the research and
industrial communities have developed IDSs that can detect such attacks. Examples are
Collabra [BSNS11b], Xenini [MM11], Covert Channel (C2) Detector [WDW+14], Wiz-
ard [SSG08], Mandatory Access Control/Hypercall Access Table (MAC/HAT) [HL09],
RandHyp [WCMX12], and Open Source Security (OSSEC) [oss]. Most of these IDSs
have the following characteristics in common:

• monitoring method and attack detection technique — they perform on-line (i.e., real-
time) monitoring of VMs’ hypercall activities and use a variety of anomaly-based
attack detection techniques, which require training using benign (i.e., regular)
hypercall activities;

• architecture — they have a module integrated into the hypervisor, intercepting
invoked hypercalls and sending information relevant for intrusion detection to
an analysis module deployed in a designated VM.

Current IDSs designed to detect hypercall attacks analyze the following properties of
VMs’ hypercall activities, which we refer to as detection-relevant properties: (i) hypercall
identification numbers (IDs) and values of parameters of individual, or sequences of,
hypercalls, and (ii) hypercall call sites (i.e., memory addresses from where hypercalls
have been executed).

IDS evaluation and attack injection The accurate and rigorous evaluation of IDSs is
crucial for preventing security breaches. IDS evaluationworkloads that contain realistic

99

Chapter 5: Evaluation of Intrusion Detection Systems Using Attack Injection

attacks are a key requirement for such an evaluation. In Section 1.3, we stated that
IDSs designed to detect hypercall attacks currently cannot be evaluated in a rigorous
manner due to the lack of publicly available attack scripts that demonstrate hypercall
attacks. Attack injection is a method addressing this issue, which is in the focus of this
chapter.

To the best of our knowledge, we are the first to focus on evaluating IDSs designed to
operate in virtualized environments, such as IDSs designed to detect hypercall attacks.
Further, we are the first to consider the injection of hypercall attacks and of attacks
targeting hypervisors in general. Pham et al. [PCKI11] and Le et al. [LGT08] focus
on injecting generic software faults directly into hypervisors. This is not suitable for
evaluating IDSs— IDSs do not monitor states of hypervisors since they are not relevant
for detecting attacks in a proactive manner.
Fonseca et al. [FVM14] present an approach for evaluating network-based IDSs,

which involves injection of attacks. They built Vulnerability Injector, a mechanism that
injects vulnerabilities in the source code of web applications, and an Attack Injector, a
mechanism that generates attacks triggering injected vulnerabilities. There are funda-
mental differences between our work and the work of Fonseca et al. [FVM14], which is
focussing on attack injection at application level. This includes the characteristics of
the IDSs in focus, the required attack models, and the criteria for designing procedures
and tools for injecting attacks.

5.2 Approach

Figure 5.2a shows our approach, which has two phases: planning and testing. The
planning phase consists of: (i) specification of an IDS monitoring landscape (i.e.,
specifying a virtualized environment where the IDS under test is to be deployed),
(ii) characterization of benign hypercall activities (i.e., making relevant observations
about the benign hypercall activities), and (iii) specification of attack injection scenarios
(Section 5.2.1). The testing phase consists of: (i) IDS training, (ii) attack injection, and
(iii) calculation of metric values (Section 5.2.2). The activities of the testing phase are
performed based on observations made in the planning phase. IDS training needs to be
performed only when evaluating an IDS that requires training (i.e., an anomaly-based
IDS).

5.2.1 Planning

Specification of an IDS monitoring landscape A typical IDS designed to detect
hypercall attacks monitors the hypercall activity of one or multiple VMs at the same
time. VM characteristics influence the hypercall activity:

• virtualization mode influences which hypercalls can be executed,
• workloads influence which system calls can be executed, many of which map to

hypercalls, and

100

5.2 Approach

Specification of an IDS
monitoring landscape

Characterization of benign
hypercall activities

Specification of
attack injection scenarios

Planning Initialization of the IDS
monitoring landscape

IDS training
Testing

Initialization of the IDS
monitoring landscape

Attack injection
Calculation of metric

values

(a)

IDS monitoring component

Hypervisor

Fully/para-virtualized
hardware

VM 1

User

Kernel

Tasks

Fully/para-virtualized
hardware

VM 2

User

Kernel

Tasks

Fully/para-virtualized
hardware

VM n

User

Kernel

Tasks

Hypercalls

System calls System calls System calls

(b)

Figure 5.2: (a) Approach for evaluating IDSs, (b) IDS monitoring landscape.

• system architecture and hardware influence the VM’s interface, and the type and
frequency of hypercalls needed (e.g., page table update operations, which take
place when page swapping occurs due to insufficient memory).

The aggregate of these characteristics across all VMs on a hypervisor is themonitoring
landscape of an IDS designed to detect hypercall attacks. Figure 5.2b depicts an IDS
monitoring landscape. The first activity of the planning phase of our approach is to
specify an IDS monitoring landscape by defining the characteristics above for the test
system. By defining workloads, we mean specifying drivers generating workloads
in an automated and repeatable manner. By defining hardware, we mean allocating
an amount of hardware resources to VMs that is fixed over time (i.e., disabling CPU
or memory ballooning). We discuss more on the importance of specifying an IDS
monitoring landscape in Section 5.2.2.

Characterization of benign hypercall activities Characterization of a VM’s benign
hypercall activity is crucial for answering two major questions: How long should the IDS
under test be trained? and What injected attacks should be used for the purpose of rigorous

101

Chapter 5: Evaluation of Intrusion Detection Systems Using Attack Injection

IDS testing? It consists of two parts: (i) estimation of benign hypercall activity steady-
state and (ii) calculating relevant statistics. These activities are best performed when
hypercall activities are captured in traces for processing off-line.

Estimation of benign hypercall activity steady-state: Steady-state of the benign hypercall
activity of a VM can be understood with respect to the sum of first-time occurring
variations of a detection-relevant property at a given point in time. We define St at
time t where St is an increasing function such that limt→∞ St = const. The estimation
of steady-state is crucial for determining an optimal length of the period during which
an IDS under test should be trained in the testing phase (i.e., for avoiding IDS under-
training).
In order to estimate steady-state, an IDS evaluator should first initialize the IDS

monitoring landscape; that is, bring the VMs in the landscape to the state after their
creation and start workloads in the VMs. Then the steady-state of the benign hypercall
activities of a VM may be estimated by setting a target for the slope of a growth curve
depicting St until a given time tmax. The slope of such a curve, when observed over
a given period, indicates the rate of first-time occurring variations of the detection-
relevant property in the period. Letting σ be a target for the slope of a growth curve
over a period ts = ts2 − ts1, we have 0 <=

Sts2
−Sts1

ts
<= σ. This process may be

repeated multiple times for different values of tmax to experimentally determine σ for
each VM.1 Attacks should be injected from a VM until time tmax, but only after the
VM’s hypercall activity has reached steady-state.

The IDS under test should operate in learning mode when steady-state is estimated.
This helps to create operating conditions of the overall virtualized environment, which
are (almost) equivalent to those when the IDS will be trained in the testing phase. Note
that an IDS may have an impact on the time needed for hypercall activities to reach
steady-state due to incurred monitoring overhead.

Calculating relevant statistics: Two key statistics need to be calculated: (i) the average
rate of occurrence of the detection-relevant property — this statistic should be calcu-
lated using data collected between ts1 and tmax, and (ii) the number of occurrences of
each variation of the detection-relevant property — this statistic should be calculated
using data collected while the system is progressing towards a steady state. These
statistics help calculate metric values in the testing phase and create realistic attack
injection scenarios as discussed next.

Specification of attack injection scenarios Two characteristics distinguish each at-
tack injection scenario: attack content and attack injection time.
Attack content is the detection-relevant property of a hypercall attack in the context

of a given IDS evaluation study (e.g., a specific sequence of hypercalls). Specification
of attack content enables the injection of attacks that conform to representative attack
models (see Section 5.1). In addition, it enables the injection of evasive attacks, for
example, attacks that closely resemble common regular activities; that is, these attacks

1This raises the questionwhether hypercall activities are repeatable. We discuss this topic in Section 5.2.2.

102

5.2 Approach

may be highly effective “mimicry” attacks. Crafting “mimicry” attacks is done based
on knowledge onwhat, and how frequently, detection-relevant properties occur during
regular operation of the IDS monitoring landscape (i.e., during IDS training); this is the
statistic ‘number of occurrences of each variation of the detection-relevant property’.

Attack injection time is the point(s) in time when a hypercall attack consisting of one
or more hypercalls is injected. This allows for the specification of arbitrary temporal
distributions of attack injection actions. It also allows for the specification of the
following relevant temporal properties of malicious activities:

• Base rate: Base rate is the prior probability of an intrusion (attack). The error
occurring when the attack detection accuracy of an IDS is assessed without
taking the base rate into account is known as the base rate fallacy [Axe00] (see
Section 3.3.2). The specification of attack injection times provides a close estima-
tion of the actual base rate in the testing phase. As we demonstrate in Section 5.4,
base rate can be estimated by considering the number of injected attacks and
the number of variations of the detection-relevant property that have occurred
during attack injection. The latter is estimated based on the statistic ‘average rate
of occurrence of the detection-relevant property’.

• IDS evasive properties: Specification of the attack injection time enables the in-
jection of “smoke screen” evasive attacks. In the context of this chapter, the
“smoke screen” technique consists of delaying the invocation of the hypercalls
comprising an attack such that a given amount of benign hypercall activity occurs
between each hypercall invocation. This is an important test since some IDSs
have been shown to be vulnerable to such attacks (e.g., Xenini; see [WS02]).

5.2.2 Testing

IDS training IDS training is the first activity of the testing phase. We require reini-
tialization of the IDS monitoring landscape between the planning and testing phases
(see Figure 5.2a). The rationale behind this is practical: many parameters of the ex-
isting IDSs designed to detect hypercall attacks (e.g., length of IDS training period,
attack detection threshold) require a priori configuration. These parameters are tuned
based on observations made in the planning phase (see Section 5.2.1). This raises
concerns related to the non-determinism of hypercall activities, a topic that we discuss
in paragraph ‘on repeatability concerns’.

Attack injection For this critical step, we developed a new tool called hInjector. Sec-
tion 5.3 introduces this tool and describes how it is used.

Calculation of metric values After attack injection is performed, values of relevant
metrics can be calculated (e.g., true and false positive rate). This also raises concerns
related to the non-determinism of hypercall activities, which we discuss next.

103

Chapter 5: Evaluation of Intrusion Detection Systems Using Attack Injection

On repeatability concerns Observations and decisions made in the planning phase
might be irrelevant if hypercall activities are highly non-deterministic and therefore
not repeatable. For example, the benign hypercall activities occurring in the testing
phase may not reach steady-state at a point in time close to the estimated one in the
planning phase.

In addition, metric values reported as end-results of an evaluation study, where
workloads that are not fully deterministic are used, have to be statistically accurate. This
is crucial for credible evaluation. Principles of statistical theory impose metric values
to be repeatedly calculated and their means to be reported as end-results. Therefore,
we require repeated execution of the testing phase (see Figure 5.2a). However, this
may be time-consuming if the number of needed repetitions is high due to high non-
determinism of hypercall activities.

Specifying an IDS monitoring landscape as we define it (see Section 5.2.1) alleviates
the above concerns; that is, it helps to reduce the non-determinism of hypercall activi-
ties by removing major sources of non-determinism, such as non-repeatable workloads.
This is in line with Burtsev [Bur13], who observes that, given repeatability of execution
of VMs’ user tasks is preserved, VMs always invoke the same hypercalls. We acknowl-
edge that achieving complete repeatability of hypercall activities by specifying VM
characteristics is infeasible. This is mainly due to the complexity of the architectures
and operating principles of kernels.
In Section 5.4, we empirically show that, provided an IDS monitoring landscape

is specified, a VM’s hypercall activities exhibit repeatability to an extent sufficient to
conclude that: (i) the decisions and observations made in the planning phase are of
practical relevance when it comes to IDS testing, and (ii) the number of measurement
repetitions needed to calculate statistically accurate metric values is small. This is in
favor of the practical feasibility of our approach, which involves repeated initialization
of an IDS monitoring landscape.

5.3 hInjector

hInjector is a tool for injecting hypercall attacks. It realizes the attack injection scenarios
specified in the planning phase (see Section 5.2.1). The current implementation of
hInjector is for the Xen hypervisor, but the techniques are not Xen-specific and can be
ported to other hypervisors.

hInjector supports the injection of attacks crafted with respect to the attack models
that we presented in Chapter 4 of this thesis. We extend these attack models with
a model involving different hypercall call sites. Hypercall call sites are one of the
detection-relevant properties that existing IDSs designed to detect hypercall attacks
analyze. We consider that hypercalls can be executed from regular or irregular call
sites. The latter is typically a hacker’s loadable kernel module (LKM) used to mount
hypercall attacks.

Our design criteria for hInjector are injection of realistic attacks, injection during regular

104

5.3 hInjector

system operation, and non-disruptive attack injection. These criteria are crucial for the
representative, rigorous, and practically feasible IDS evaluation. We discuss more in
Section 5.3.2.

Availability hInjector is publicly available at https://github.com/hinj/hInj.

5.3.1 hInjector Architecture

Figure 5.3 depicts the architecture of hInjector. It shows the primary components:
Injector, LKM, Filter, Configuration, and Logs. We refer to the VM from where hypercall
attacks are injected as the malicious VM (MVM). We also depict a typical IDS designed
to detect hypercall attacks, with components in the hypervisor and a designated
VM (DesVM), co-located with MVM (see Section 5.1). The IDS monitors the MVM’s
hypercall activity bymonitoring virtual CPU registers and the virtual memory ofMVM
using its hypervisor component.

MVM Hypervisor

User

Kernel

Hardware

Injector

LKM

Configuration Logs

Filter

Memory

Hypercall
handler

6

 2
 4

vCPU

 3
 5

 3
 5

 1

shared_info

IDS
(in DesVM)

monitors

Figure 5.3: The architecture of hInjector.

The Injector component, deployed in the MVM’s kernel, intercepts at a given rate
hypercalls invoked by the kernel and modifies hypercall parameter values on-the-fly
(i)making them specifically crafted for triggering a vulnerability, or (ii) replacing them
with random, irregular values that an IDS may label as anomalous. The Injector injects
hypercalls invoked from a regular call site (i.e., from the kernel address space). We
discuss more on Injector in Section 5.3.3.

The LKM component, a module in MVM’s kernel, invokes hypercalls with regular or
specifically crafted parameter value(s), including a series of hypercalls in a given order.
The LKM injects hypercalls invoked from an irregular call site (i.e., from a loadable
kernel module).
The Filter component, deployed in the hypervisor’s hypercall handlers, identifies

hypercalls injected by the Injector or the LKM, blocks the execution of the respective

105

https://github.com/hinj/hInj

Chapter 5: Evaluation of Intrusion Detection Systems Using Attack Injection

hypercall handlers, and returns valid error codes. The Filter identifies injected hyper-
calls based on information stored by the Injector/LKM in the shared_info structure, a
memory region shared between a VM and the hypervisor. To this end, we extended
shared_info with a string field named hypercall identification (hid), which contains identi-
fication information on injected hypercalls. We discuss more about the Filter when we
discuss the design criterion ‘non-disruptive attack injection’ in Section 5.3.2.
The Configuration component is a set of user files in Extensible Markup Language

(XML) containing configuration parameters for managing the operation of the Injector
and the LKM. It allows specifying, for example, parameter values for a given hypercall
(relevant to the Injector and the LKM), ordering of a series of hypercalls (relevant to
the LKM), and temporal distribution of injection actions.

The Logs are user files containing records about invoked hypercalls that are part of
attacks; that is, hypercall IDs and parameter values, as well as timestamps. The logged
data serves as reference data (i.e., as “ground truth”) used for distinguishing false
positives from injected attacks and calculating IDS attack detection accuracy metrics,
such as true and false positive rate. We discussed the importance of “ground truth”
information in Section 3.2.5, Chapter 3 of this thesis.

We now present an example of the implemented hypercall attack injection procedure.
Figure 5.3 depicts the steps to inject a hypercall attack by the LKM:

(1) the LKM crafts a parameter value of a given hypercall as specified in the con-
figuration

(2) the LKM stores the ID of the hypercall, the number of the crafted parameter, and
the parameter value in hid;

(3) the LKM passes the hypercall to MVM’s virtual CPU (vCPU), which then passes
control to hypervisor;

(4) the Filter, using the data stored in hid, identifies the injected hypercall when the
respective hypercall handler is executed;

(5) the Filter updates hid indicating that it has intercepted the injected hypercall, then
returns a valid error code to block execution of the handler;

(6) after the error code arrives at MVM’s kernel, the LKM first verifies whether hid has
been updated by the Filter and then logs the ID and parameter values of the injected
hypercall.

5.3.2 hInjector Design Criteria

Injection of realistic attacks The injection of realistic attacks is crucial for the rep-
resentative IDS evaluation. In order to inject realistic hypercall attacks, hInjector
requires representative hypercall attack models. hInjector supports the injection of

106

5.3 hInjector

attacks crafted with respect to arbitrary attack models, for example, the models that
we presented in Chapter 4 of this thesis.

We developed proof-of-concept code for triggering the hypercall vulnerabilities
that we analyzed (see Chapter 4 and [MPA+14]). We developed this code based on
reverse-engineering the released patches fixing the considered vulnerabilities. The
proof-of-concept code enables granularization of the attack models. For example, we
can specify specific parameter values or the order of a series of hypercalls that trigger a
hypercall vulnerability. This enables the injection of realistic hypercall attacks, crafted
to trigger publicly disclosed hypercall vulnerabilities. In Figure 5.4a, we show how we
triggered the vulnerability CVE-2012-3495 [CVEb] of the Xen hypervisor in a testbed
environment. In Figure 5.4b, we present the configuration of hInjector for injecting an
attack triggering CVE-2012-3495. Configuration files for injecting attacks that trigger
publicly disclosed hypercall vulnerabilities are distributed with hInjector.

Guest VM	

 Hypervisor	

HYPERVISOR_physdev_op	

(PHYSDEVOP_get_free_pirq, &p)	

HYPERVISOR_physdev_op	

(PHYSDEVOP_get_free_pirq, &p)	

x17	

.type = 1;	

.type = 1;	

(a)

<s c e n a r i o r a t e =” 1 ” r e p e a t =” 1 ”>
<h c a l l name=” physdev op ” r e p e a t =” 18 ”>
<p a r a m e t e r number=” 1 ”>
<v a l u e t y p e =” i n t ”>23< / v a l u e>

< / p a r a m e t e r>
<p a r a m e t e r number=” 2 ”>
< s t r u c t name=” p h y s d e v g e t f r e e p i r q ”>
<member name=” t y p e ”>
<v a l u e t y p e =” i n t ”>1< / v a l u e>

< / member>
< / s t r u c t>

< / p a r a m e t e r>
< / h c a l l>

< / s c e n a r i o>

(b)

Figure 5.4: (a) Triggering CVE-2012-3495 [the hypercall physdev_op is executed 18 times: the
value of its first parameter is 23 (PHYSDEVOP_get_free_pirq); the value of the field type of its
second parameter (struct physdev_get_free_pirq) is 1], (b) Configuration of hInjector for injecting
an attack triggering CVE-2012-3495.

Injection during regular system operation Benign activities, mixed with attacks,
are needed to subject an IDS under test to realistic attack scenarios (see Section 3.2).
hInjector is designed to inject hypercall attacks during regular operation of guest VMs.
Thus, provided that during an IDS evaluation experiment representative user tasks
run in the VMs in the IDS monitoring landscape, the presence of representative benign
hypercall activities is guaranteed.

Non-disruptive attack injection The state of the hypervisor or the VM(s) fromwhere
attacks are injected may be altered by the attacks injected by hInjector. This may
cause crashes obstructing the execution of the IDS evaluation process. Filter prevents
crashes by blocking the execution of the hypervisor’s handlers that handle the injected

107

Chapter 5: Evaluation of Intrusion Detection Systems Using Attack Injection

hypercalls. This preserves the states of the hypervisor and of the VM(s) from where
attacks are injected, and, in addition, it ensures that injected attacks do not impact the
operation of the IDS under test, which normally has components in the hypervisor
and in a VM (see Section 5.1). After blocking the execution of hypervisor’s handlers,
Filter returns valid error codes. This allows the control flow of the kernel of the VM
from where hypercall attacks are injected to properly handle failed hypercalls that
have been executed by it and have been modified by the Injector on-the-fly.

5.3.3 Injector: Performance Overhead

The rate at which the kernel invokes hypercalls is high (i.e., in some cases more than
30000 hypercalls per second, see Section 5.4). Therefore, Injector, which manipulates
hypercalls on-the-fly, can easily incur intolerable system performance overhead. We
made the following observation when developing Injector: manipulating orders of
series of hypercalls is very performance-expensive; therefore, Injector can manipulate
only hypercall parameter values. Further, we measured the overhead incurred by
Injector on the execution rate of hypercalls, relative to this rate when Injector is inactive,
when replacing regular hypercall parameter values with random, irregular values.
In Figure 5.5, we depict this overhead, which we measured as follows. We deployed
Injector in the kernel of a Debian 8.0 operating system running on top of Xen 4.4.5.
We invoked the mmuext_op hypercall 40000 times using a loadable kernel module.
We measured the time, in microseconds (µs), needed for the invoked hypercalls to
complete their operation (‘Execution time’ in Figure 5.5) in scenarios where:

(i) Injector is inactive (‘Base’ in Figure 5.5), and

(ii) Injector manipulates the value of the second parameter of mmuext_op at the rate of
1:50 (i.e., Injector manipulates parameter value once in 50 invocations of mmuext_op),
1:100, 1:500, 1:1000, and 1:10000.

We repeated the measurements 30 times and averaged the results.

E
x
ec
u
ti
on

ti
m
e
(µ
s)

800

1600

2400

Base

[10%]

1:50

[4.953%]

1:100

[1.606%]

1:500

[0.395%]

1:1000

[0.257%]

1:10000

Figure 5.5: Overhead incurred by Injector [measurements of the incurred overhead are depicted
in square brackets].

108

5.4 Case Study

Based on the results from the above experiment, we conclude that a user should
constrain the rate at which Injector manipulates hypercall parameter values to a value
such that the incurred overhead is not higher than 2%. This is important since we
observed that overheads higher than 2% often cause noticeable system slowdowns or
crashes. We showed that Injector normally incurs overheads higher than 2% when it
manipulates hypercall parameter values approximately once in less than 500 hypercall
invocations (see Figure 5.5). Note that overheads incurred by Injector for hypercalls
other thanmmuext_op do not significantly differ from those depicted in Figure 5.5 since
the implementation of Injector is the same for all hypercalls.

5.4 Case Study

We now demonstrate the application of our approach by evaluating Xenini [MM11]
following the steps presented in Section 5.2. Xenini is a representative anomaly-based
IDS. It uses the popular Stide [FHSL96] method. Xenini slides a window of size k
over a sequence of n hypercalls and identifies mismatches (anomalies) by comparing
each k-length sequence with regular patterns learned during IDS training. Xenini
records the number of mismatches as a percentage of the total possible number of
pairwise mismatches for a sequence of n hypercalls (i.e., (k− 1)(n− k/2)). We call this
percentage anomaly score. When the anomaly score exceeds a given threshold th ∈ [0; 1],
Xenini fires an alert. For the purpose of this study, we configured Xenini such that
its detection-relevant property is sequences of hypercall IDs of length 4 (i.e., k = 4;
n = 10).

It is important to emphasize that we focus on demonstrating the feasibility of attack
injection in virtualized environments for IDS testing purposes and not on discussing
the behavior of Xenini in detail or comparing it with other IDSs. We specify arbitrary
attack injection scenarios and evaluate Xenini with the sole purpose of demonstrating
all steps and functionalities of the proposed approach. We refer the reader to Section 7.2
for an overview of further application scenarios.

5.4.1 Case Study: Planning

Specification of an IDS monitoring landscape We use the SPECvirt_sc2013 bench-
mark [spea] to specify an IDS monitoring landscape. SPECvirt_sc2013 is an industry-
standard virtualization benchmark developed by Standard Performance Evaluation
Corporation (SPEC). Its complex architecture matches a typical server consolidation
scenario in a datacenter — it consists of 6 co-located front- and back-end server VMs
(i.e., web, network file, mail, batch, application, and database server VM) and 4 work-
load drivers that act as clients generating workloads for the front-end servers. The
workload drivers are heavily modified versions of the drivers of the SPECweb 2005,
SPECimap, SPECjAppServer2004, and SPECbatch (i.e., SPEC CPU 2006) benchmarks.
They generate workloads representative of workloads seen in production virtualized
environments.

109

Chapter 5: Evaluation of Intrusion Detection Systems Using Attack Injection

In Figure 5.6, we depict the deployment of SPECvirt_sc2013 as an IDS monitoring
landscape. The workload drivers generate workloads that map to hypercalls. We used
Xen 4.4.1 as hypervisor and we virtualized the VMs using full paravirtualization. We
did not use any other virtualization mode because of a technical limitation; that is, the
xentrace tool [xena], which we use to capture benign hypercall activities in files for
processing off-line, currently supports only full paravirtualization. However, support
for other virtualization modes is currently being implemented.

SPECweb 2005
workload driver!

SPECimap !
workload driver!

SPECjAppServer2004!
workload driver!

SPECbatch!
workload driver!

Application server VM!
[front-end]!

J2EE Application
server!

GlassFish 4.0!
OS!

Linux 3.17.2 x86_64!

Network file server VM!
[back-end]!

Network file server!
sshfs 2.5!

OS!
Linux 3.17.2 x86_64!

Web server VM!
[front-end]!

Web server!
Apache 2.4.7!

OS!
Linux 3.17.2 x86_64!

Mail server VM!
[front-end]!

IMAP mail server!
Dovecot 2.2.9!

OS!
Linux 3.17.2 x86_64!

Batch server VM!
[front-end]!

OS!
Linux 3.17.2 x86_64!

Database server VM!
[back-end]!

Database server!
PostgreSQL 9.3.5!

OS!
Linux 3.17.2 x86_64!

Batch server!
SPECbatch server!

Hypervisor !
Xen 4.4.1!

Clients!

Servers!

Figure 5.6: SPECvirt_sc2013 as an IDS monitoring landscape [Internet Message Access Protocol
(IMAP); Java 2 Enterprise Edition (J2EE)].

To each server VM, we allocated 8 virtual CPUs pinned to separate physical CPU
cores of 2 GHz, 3 GB of main memory, and 100 GB of hard disk memory. In Figure 5.6,
we depict the operating systems and architectures of the server VMs, and the server
software we deployed in the VMs.2

Characterization of benign hypercall activities We now estimate steady-states of
the benign hypercall activities of the server VMs and calculate the relevant statistics
(see Section 5.2.1). We initialized the IDS monitoring landscape and deployed Xenini
before the characterization. We used xentrace [xena], the tracing facility of the Xen
hypervisor, to capture hypercall activities in trace files.
Figure 5.7a–5.7f show growth curves depicting St until time tmax = 5500 seconds

for each server VM (see the curves entitled ‘Run 1’). We set the target σ to 15 over a
time period of 100 seconds for the slope of each growth curve. In Table 5.1, column
‘Run 1’, we present ts (in seconds – sec.), which is the time at which the VMs’ hypercall
activities reach steady-state. We also present r (in number of occurrences per second –
occ./sec.), which is the average rate of occurrence of the detection-relevant property.
We also calculated the statistic ‘number of occurrences of each variation of the detection-
relevant property’ (not presented in Table 5.1), which we use to craft “mimicry” attacks
(see Section 5.4.2).

2An overview of the software and hardware requirements for deploying and running SPECvirt_sc2013
is available at https://www.spec.org/virt_sc2013/docs/SPECvirt_UserGuide.html.

110

https://www.spec.org/virt_sc2013/docs/SPECvirt_UserGuide.html

5.4 Case Study

0!
10

00
!

20
00
!

0! 1000! 2000! 3000! 4000! 5000!

St!

Time (sec.)!

Run 1! Run 2!

(a)

0!
50

0!
10

00
!

15
00
!

0! 1000! 2000! 3000! 4000! 5000!

St!

Time (sec.)!

Run 1! Run 2!

(b)

0!
10

00
!

20
00
!

0! 1000! 2000! 3000! 4000! 5000!

St!

Time (sec.)!

Run 1! Run 2!

(c)

0!
20

0!
40

0!
60

0!

0! 1000! 2000! 3000! 4000! 5000!

St!

Time (sec.)!

Run 1! Run 2!

(d)

0!

500!

1000!

1500!

2000!

2500!

0! 1000! 2000! 3000! 4000! 5000!

St!

Time (sec.)!

Run 1! Run 2!

(e)

0!
10

00
!

20
00
!

0! 1000! 2000! 3000! 4000! 5000!

St!

Time (sec.)!

Run 1! Run 2!

(f)

Figure 5.7: Growth curves: (a) web, (b) network file, (c) mail, (d) batch, (e) application, (f)
database server VM.

111

Chapter 5: Evaluation of Intrusion Detection Systems Using Attack Injection

Table 5.1: Benign workload characterization.

Run 1 Run 2
Server VM ts (sec.) r (occ./sec.) ts (sec.) r (occ./sec.)
Web 5350 19644.5 5357 19627.3
Network file 5343 10204.9 5360 10231.3
Mail 5391 3141.5 5382 3148.7
Batch 5315 633.4 5330 623.8
Application 5367 31415.9 5377 31437.5
Database 5285 27294.9 5273 27292.3

We now empirically show that, provided an IDS monitoring landscape is specified,
VMs’ hypercall activities exhibit repeatability in terms of the characteristics of interest
to an extent sufficient for accurate IDS testing (see Section 5.2.2). We performed the
above characterization campaign twice and compared the results. In Figure 5.7a–5.7f,
we depict the obtained growth curves (see the curves entitled ‘Run 1’ and ‘Run 2’).
These curves are very similar, which indicates that the characteristics of the VMs’
hypercall activities of interest are also similar. In Table 5.1, we present ts and r for
each server VM (see column ‘Run 1’ and ‘Run 2’). We observe a maximum difference
of only 17 sec. for ts and 26.4 occ./sec. for r. We repeated this process over 30 times
and calculated maximum standard deviation of only 8.036 for ts and 15.95 for r. These
small deviations indicate that benign hypercall activities exhibit non-repeatability
to such a small extent that it has no significant impact on metric values, which we
repeatedly calculate for statistical accuracy (see Section 5.2.2).

Specification of attack injection scenarios We now specify attack injection scenarios
that we will realize in separate testing phases. We focus on injecting attacks triggering
publicly disclosed hypercall vulnerabilities. However, the injection of any malicious
hypercall activity using hInjector is possible (e.g., covert channel operations as de-
scribed in [WDW+14]), in which case an IDS evaluation study would be performed
following the same process we demonstrate here.

Scenario #1

We will first evaluate the attack coverage of Xenini when configured such that th = 0.3.
We will evaluate Xenini’s ability to detect attacks triggering the vulnerabilities CVE-
2012-5525, CVE-2012-3495, CVE-2012-5513, CVE-2012-5510, CVE-2013-4494, and CVE-
2013-1964. We thus demonstrate injecting realistic attacks that conform to the attack
models that we presented in Chapter 4 of this thesis. We will inject attacks from the
web and mail server VM using the LKM component of hInjector.

Attack contents: In Figure 5.8(a)–(e), we depict the contents of the considered at-

112

5.4 Case Study

Web server VM	

 Hypervisor	

HYPERVISOR_mmuext_op	

(&op, …)	

op.cmd = MMUEXT_CLEAR_PAGE; 	

.arg1.mfn=0x0EEEEE;	

(a)

Web server VM	

 Hypervisor	

HYPERVISOR_update_va_mapping	

(…)	

.out.extent_start = 0xFFFF808000000000;	

HYPERVISOR_memory_op	

(XENMEM_exchange, &exchange);	

x32	

(b)

Mail server VM	

 Hypervisor	

HYPERVISOR_grant_table_op	

(GNTTABOP_set_version, &gsv , …)	

.	

.	

x57	

.version=1 / .version=2;	

HYPERVISOR_grant_table_op	

(GNTTABOP_set_version, &gsv , …)	

.version=1;	

(c)

Mail server VM	

 Hypervisor	

HYPERVISOR_grant_table_op	

(GNTTABOP_setup, ….)	

HYPERVISOR_grant_table_op	

(GNTTABOP_transfer, ….)	

(at vCPU #1)	

(at vCPU #2)	

(d)

Mail server VM	

 Hypervisor	

HYPERVISOR_grant_table_op	

(GNTTABOP_copy, …)	

Web server VM	

HYPERVISOR_grant_table_op	

(GNTTABOP_setup_table, …)	

(e)

Figure 5.8: Injecting attacks that trigger: (a) CVE-2012-5525, (b) CVE-2012-5513, (c) CVE-2012-
5510, (d) CVE-2013-4494 [invoking hypercalls from two vCPUs], (e) CVE-2013-1964 [this vulner-
ability can also be triggered by invoking hypercalls from one VM].

tacks (the content of the attack triggering CVE-2012-3495 is depicted in Figure 5.4a; we
will inject this attack from the web server VM). The semantics of these figures is the
same as that of Figure 5.4a—we depict the hypercalls executed as part of an attack and
relevant hypercall parameters; that is, integer parameters defining the semantics of
the executed hypercalls (e.g., XENMEM_exchange), and, where applicable, parameters

113

Chapter 5: Evaluation of Intrusion Detection Systems Using Attack Injection

with values specifically crafted for triggering a vulnerability, which are marked in bold.

Attack injection times: After the hypercall activities of both the web and mail server
VM have reached a steady state, we will inject the considered attacks, with 10 seconds
of separation between each attack, and, where applicable, with no delays between the
invocation of the hypercalls comprising an attack.

Scenario #2

Wewill investigate the accuracy of Xenini at detecting the attacks considered in Scenario
#1, however, modified such that they have IDS evasive characteristics (i.e., they are
“mimicry” and “smoke-screen” attacks). We will inject from the database server VM,
using the LKM component of hInjector, both the unmodified attacks that consist of
multiple hypercalls (i.e., we exclude the attack triggering CVE-2012-5525) and their
modified counterparts as part of three separate testing phases. Therefore, we will
observe how successful the modified attacks are at evading Xenini.

Attack contents: The contents of the unmodified attacks and the “smoke-screen” at-
tacks we will inject are depicted in Figure 5.4a and Figure 5.8(b)–(e). To craft “mimicry”
attacks, we place each individual hypercall that is part of an attack in the middle
of a sequence of 20 injected hypercalls (i.e., at position 10). We built this sequence
by starting with the most common detection-relevant property we observed in the
planning phase — iret, iret, iret, iret. We then added 16 hypercalls such that sliding a
window of size 4 over the sequence provides common detection-relevant properties
seen during IDS training (i.e., while the hypercall activity of the database server VM
has been progressing towards a steady state); we were able to perform this because
we calculated the statistic ‘number of occurrences of each variation of the detection-
relevant property’ (see Section 5.2.1). Therefore, we obscure attack patterns making
them similar to regular patterns. For example, in Figure 5.9a, we depict the content of
the “mimicry” attack triggering CVE-2013-1964.

Attack injection times: We craft “smoke screen” attacks by specifying attack injection
times (see Section 5.2.1). We will inject a “smoke screen” attack by delaying for 0.5
seconds the invocation of the hypercalls comprising the attack. Since the average rate
of occurrence of the detection-relevant property for the database server VM is 27294.9
occ./sec. (see Table 5.1, column ‘Run 1’), we obscure attack patterns by making Xenini
analyze approximately 13647 benign occurences of the detection-relevant property
before encountering a hypercall that is part of an attack. For example, in Figure 5.9b,
we depict the “smoke screen” attack triggering CVE-2013-1964.

After the hypercall activities of the database server VM have reached a steady state,
we begin three separate attack injection campaigns: unmodified attacks, “mimicry”
attacks, and “smoke screen” attacks. Each campaign injects 6 attacks, with 10 seconds
of separation between each attack.

114

5.4 Case Study

i r e t i r e t i r e t i r e t e v e n t c h a n n e l o p s t a c k s w i t c h

g e t d e b u g r e g e v e n t c h a n n e l o p vcpu op g r a n t t a b l e o p

i r e t i r e t i r e t i r e t e v e n t c h a n n e l o p s t a c k s w i t c h

g e t d e b u g r e g e v e n t c h a n n e l o p vcpu op g r a n t t a b l e o p

(a)

0.5 seconds
[~13647 hypercall sequences]

.

benign hypercall activity

grant_table_op grant_table_op

(b)

Figure 5.9: Injecting IDS evasive attacks triggering CVE-2013-1964: (a) “mimicry” attack, (b)
“smoke screen” attack [the hypercalls triggering CVE-2013-1964 are marked in bold].

5.4.2 Case Study: Testing

We now test Xenini with respect to the scenarios presented in Section 5.4.1.

Scenario #1

IDS Training We deployed and configured Xenini and hInjector. We initalized the
IDS monitoring landscape and we trained Xenini until time ts=5391 seconds. This is
the time period needed for the hypercall activities of both the web and mail server VM
to reach steady-state (see Table 5.1, column ‘Run 1’).

Attack injection and calculation ofmetric values We injected the considered attacks
over a period of tmax − ts = 109 seconds and then calculated metric values, that is,
true and false positive rate. These are calculated as ratios between the number of
true, or of false, alerts issued by Xenini, and the total number of injected attacks, or of
benign variations of the detection-relevant property occuring during attack injection,
respectively. We estimate the latter based on the statistic ‘average rate of occurrence of
the detection-relevant property’. We repeated the testing phase only 3 times in order
to calculate statistically accurate metric values with a relative precision of 2% and 95%
confidence level. In addition, we repeated the testing phase over 30 times observing
that the obtained metric values negligibly differ from those we present here. This is
primarily because of the high repeatability of hypercall activities and it indicates that
only a small number of repetitions is needed to calculate statistically accurate metric
values.

115

Chapter 5: Evaluation of Intrusion Detection Systems Using Attack Injection

Performing repeated measurements is important for calculating a statistically accu-
rate value of the false positive rate. This is because the number of issued false alerts
and the total number of benign variations of the detection-relevant property occuring
during attack injection vary between measurements due to the non-determinism of
benign hypercall activities. We observed that the true positive rate normally does not
vary, since the number and properties of injected attacks (i.e., the attacks’ contents and
attack injection times) are fixed.
In Table 5.2, we present Xenini’s attack detection score. It can be concluded that

Xenini exhibited a true positive rate of 0.5 when configured such that th = 0.3. We
now consider multiple IDS operating points (i.e., IDS configurations which yield given
values of the false and true positive rate). In Figure 5.10, we depict a Receiver Operating
Characteristic (ROC) curve, which plots operating points for different values of th. We
executed separate testing phases to quantify the false and true positive rate exhibited
by Xenini for each value of th. We quantified these rates by comparing the output of
Xenini with the “ground truth” information recorded by hInjector. We considered the
total number of true and false alerts issued by Xenini (i.e, 6 and 6), injected attacks,
and occurences of the detection-relevant property during attack injection, originating
from both the web and mail server VM. The results depicted in Figure 5.10 match
the expected behavior of Xenini (i.e., the lesser the value of th, the more sensitive the
IDS, which results in higher true and false positive rates; see [MM11]). This shows the
practical usefulness of our approach.

Table 5.2: Detection score of Xenini [X: detected / x: not detected; th = 0.3].

Targeted vulnerability (CVE ID) Detected
CVE-2012-3495 X

CVE-2012-5525 x
CVE-2012-5513 X

CVE-2012-5510 X

CVE-2013-4494 x
CVE-2013-1964 x

We now calculate values of the ‘expected cost’ metric (Cexp) developed by Gaffney
and Ulvila [GU01], which expresses the impact of the base rate (see Section 3.3.2). This
metric combines ROC curve analysis with cost estimation by associating an estimated
cost with each IDS operating point. The measure of cost is relevant in scenarios where
a response that may be costly is taken when an IDS issues an alert. Gaffney and Ulvila
introduce a cost ratio C = Cβ/Cα, where Cα is the cost of an alert when an intrusion
has not occured, and Cβ is the cost of not detecting an intrusion when it has occurred.
To calculate values of Cexp, we set C to 10 (i.e., the cost of not responding to an attack
is 10 times higher than the cost of responding to a false alert; see [GU01]).
We estimate the base rate as follows. We have injected 6 attacks consisting of 115

hypercalls over 109 seconds. Further, the average rate of occurence of the detection
relevant property originating from the web and mail server VM during attack injection

116

5.4 Case Study

0 1 2 3 4

·10−6

0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru
e
p
os
it
iv
e
ra
te

[0.3× 10−2]

[0.23× 10−2]

[0.078× 10−2]

[0.079× 10−2]

Figure 5.10: Attack detection accuracy of Xenini [th=0.1: (2.42×10−6; 0.83) • th=0.2: (1.61×10−6;
0.83) • th=0.3/th=0.4: (0.4×10−6; 0.5) • th=0.5: (0; 0.33) •�marks the optimal operating point].

is estimated at 19644.5 + 3141.5 = 22786 occ./sec. (see Table 5.1, column ‘Run 1’).
Therefore, the base rate is 115

(22786×109+3)=0.5× 10−4.
We calculated the actual base rate by calculating the actual average rate of occurence

of the detection relevant property during attack injection. We observed that the dif-
ference between the actual and estimated base rate is negligible and has no impact
on values of Cexp. This is primarily because the difference between the actual and
estimated value of the average rate of occurence of the detection relevant property
is small. Further, the ratio between the number of injected attacks and the number
of occurences of the detection-relevant property during attack injection is very low
due to the typical high value of the latter. This indicates the practical relevance of the
planning phase.

In Figure 5.10, we depict in square brackets values of Cexp associated with each IDS
operating point. The ‘expected cost’ metric enables the identification of an optimal IDS
operating point. An IDS operating point is considered optimal if it has the lowest Cexp
associated with it compared to the other operating points. We mark in Figure 5.10 the
optimal operating point of Xenini.

Scenario #2

IDS Training We deployed and configured Xenini and hInjector. We initalized the
IDS monitoring landscape and, since we will inject attacks from the database server
VM, we trained Xenini over a period of 5285 seconds.

117

Chapter 5: Evaluation of Intrusion Detection Systems Using Attack Injection

Attack injection and calculation of metric values We injected the unmodified, the
“mimicry”, and the “smoke screen” attacks as part of three separate testing phases. In
Table 5.3, we present the anomaly scores reported by Xenini for the injected attacks.
We thus quantify the success of the “mimicry” and “smoke screen” attacks at evading
Xenini. Their evasive capabilities are especially evident in the case of the attacks
triggering CVE-2012-3495 andCVE-2012-5510. That is, these attacks, when unmodified,
can be very easily detected by Xenini (see the high anomaly scores of 1.0 in Table 5.3).
However, when transformed into “mimicry” attacks, the detection of these attacks is
significantly challenging (see the low anomaly scores of 0.17 and 0.14 in Table 5.3).

Table 5.3: Anomaly scores for the injected non-evasive and evasive attacks.

Targeted vulnerability (CVE ID) Anomaly scores
Unmodified “Mimicry” “Smoke screen”

CVE-2012-3495 1.0 0.17 0.25
CVE-2012-5513 0.32 0.107 0.28
CVE-2012-5510 1.0 0.14 0.31
CVE-2013-4494 0.21 0.14 0.14
CVE-2013-1964 0.25 0.14 0.14

The results presented in Table 5.3 match the expected behavior of Xenini when
subjected to evasive attacks (i.e., Xenini reports lower anomaly scores for the evasive
attacks than for the unmodified attacks; see [WS02]). This shows the practical use-
fulness of our approach and the relevance of the observations made in the planning
phase, which we used to craft evasive attacks.

5.5 Summary

In this chapter, we presented an approach for the live evaluation of IDSs in virtualized
environments using attack injection. We presented hInjector, a tool for generating
IDS evaluation workloads that contain virtualization-specific attacks; that is, attacks
leveraging or targeting the hypervisor via its hypercall interface — hypercall attacks,
which are in the focus of this thesis (see Section 1.1 and Section 1.3). Such workloads
are currently not available, which significantly hinders IDS evaluation efforts (see
Section 1.2.1). We designed hInjector with respect to three main criteria: injection of
realistic attacks, injection during regular system operation, and non-disruptive attack
injection. These criteria are crucial for the representative, rigorous, and practically
feasible evaluation of IDSs. We demonstrated the application of our approach and
showed its practical usefulness by evaluating a representative IDS designed to detect
hypercall attacks. We used hInjector to inject attacks that trigger real vulnerabilities as
well as IDS evasive attacks.

118

Chapter 6

Quantifying Attack Detection Accuracy

Any intrusion detection system (IDS) evaluation experiment requires careful planning,
which includes selection of metrics and measurement methodologies for quantifying
IDS properties (e.g., attack detection accuracy, see Chapter 3). As we mentioned in
Section 1.2.2, a common aspect of all existing, conventional metrics for quantifying
IDS attack detection accuracy (which we refer to as IDS evaluation metrics) is that they
are defined with respect to a fixed set of hardware resources available to the IDS under
test [MHL+03]. However, a virtualized environment may have elastic properties. Under
elasticity, we understand on-demand provisioning (i.e., allocation or deallocation) of
virtualized hardware resources to virtual machines (VMs). This is also known as
vertical VM scaling [SHK+15]. For example, the hypervisor may be configured to
hotplug virtualized resources on a VM where the intrusion detection engine of an
IDS in virtualized environment, that is, a hypervisor-based IDS or an IDS deployed
as virtual network function (VNF), typically operates (see Section 1.1). This may have
a significant impact on many properties of the IDS, including its attack detection
accuracy. Thus, we argue that using existing IDS evaluation metrics for evaluating
IDSs in virtualized environments may lead to inaccurate measurements. We argue that
novel metrics and measurement methodologies, which take into account the behavior
of an IDS as its operational environment changes, are needed.
This chapter makes the following contributions:
• it reviews conventional IDS evaluation metrics, and demonstrates how elasticity

of virtualized environments may impact IDS attack detection accuracy;
• it empirically demonstrates that using conventional IDS evaluation metrics may

lead to practically challenging and inaccurate measurements when it comes to
evaluating IDSs in virtualized environments featuring elasticity;

• it proposes, and demonstrates the practical use of, a novel metric and measure-
ment methodology that allow for quantifying the impact of elasticity on IDS
attack detection accuracy. We designed the metric with respect to a set of criteria
for the accurate and practically feasible IDS evaluation. Our metric is meant to
complement conventional metrics — it is specifically designed for evaluating
IDSs that perform run-time monitoring and are deployed in virtualized envi-
ronments featuring elasticity. Our metric allows for the accurate assessment of
the attack detection accuracy of such IDSs. This enables the identification and
deployment of optimally performing IDSs, which significantly reduces the risk

119

Chapter 6: Quantifying Attack Detection Accuracy

of security breaches in virtualized environments.

The work discussed in this chapter is presented in [MJA+16] and [MJK17].
This chapter is organized as follows: In Section 6.1, we provide an overview of

conventional IDS evaluation metrics; in Section 6.2, we discuss and demonstrate the
impact of elasticity on IDS attack detection accuracy; in Section 6.3, we present a
novel metric and measurement methodology, which take elasticity into account; in
Section 6.4, we demonstrate the practical use of the proposed metric and measurement
methodology; in Section 6.5, we conclude this chapter.

6.1 Related Work

In this section, for the sake of completeness, we discuss and systematize in a compact
manner metrics for quantifying the attack detection accuracy of a given IDS under test
(i.e., IDS evaluation metrics). In Chapter 3, Section 3.3, we provided in-depth analysis
of the metrics we discuss in this section.

We distinguish between basic and composite IDS evaluation metrics:

Basic metrics The basic metrics quantify various individual attack detection proper-
ties. For instance, the false negative rate β = P (¬A|I) quantifies the probability that an
IDS does not generate an alert when an intrusion occurs;1 therefore, the true positive
rate 1− β = 1− P (¬A|I) = P (A|I) quantifies the probability that an alert generated
by an IDS is really an intrusion. The false positive rate α = P (A|¬I) quantifies the
probability that an alert generated by an IDS is not an intrusion, but a regular benign
activity; therefore, the true negative rate 1− α = 1− P (A|¬I) = P (¬A|¬I) quantifies
the probability that an IDS does not generate an alert when an intrusion does not occur.

Compositemetrics IDS evaluators often combine the basicmetrics in order to analyze
relationships between them, for example, to identify an optimal IDS operating point —
an IDS configuration which yields optimal values of both the true and false positive
detection rate — or to compare multiple IDSs.

It is a commonpractice to use aReceiverOperatingCharacteristic (ROC) to investigate
the relationship between the true and false positive detection rate exhibited an IDS. A
ROC curve plots true positive rate against the corresponding false positive rate; that
is, a ROC curve depicts multiple IDS operating points of an IDS under test and, as
such, it is useful for identifying an optimal operating point or for comparing IDSs.
However, ROC curves do not express the impact of the rate of occurence of intrusion
events (B = P (I); prior probability that an intrusion event occurs), known as base rate,
on α and 1− β. The attack detection performance of an IDS should be assessed with
respect to a base rate measure in order for such an assessment to be accurate [Axe00].

1P denotes a probability; A denotes an alert event (i.e., an IDS generates an attack alert); I denotes an
intrusion event (i.e., an attack is performed).

120

6.1 Related Work

The error occurring when α and 1− β are assessed without taking the base rate into
account is known as the base rate fallacy.
Security researchers have proposed metrics that are more expressive than ROC

curves. One of themost prominent metrics that belong to this category are the expected
cost metric (Cexp) proposed by Gaffney and Ulvila [GU01] and the intrusion detection
capability metric (CID) proposed by Gu et al. [GFD+06].

Gaffney and Ulvila [GU01] propose the measure of cost as an IDS evaluation parame-
ter. They combine ROC curve analysis with cost estimation by associating an estimated
cost with each IDS operating point. The measure of cost is relevant in scenarios where
a response that may be costly is taken (e.g., stopping a network service) when an IDS
generates an attack alert. Gaffney and Ulvila introduce a cost ratio C = Cβ/Cα, where
Cα is the cost of an IDS alert when an intrusion has not occured, and Cβ is the cost of
not detecting an intrusion when it has occurred. To calculate the cost ratio, one would
need a cost-analysis model that can estimate Cα and Cβ .
Cexp for a given IDS operating point can be calculated as Cexp = Min(CβB, (1 −

α)(1− β)) +Min(C(1− β)B,α(1−B)). This formula can be obtained by analyzing
(i.e., “rolling back”) a decision tree whose leaves are costs that may be incurred by an
IDS (i.e., Cα and Cβ). For more details on the analytical formula of the expected cost
metric, we refer the reader to [GU01] and Section 3.3 of this thesis.
Using Cexp, one can identify an optimal IDS operating point in a straightforward

manner — a given operating point of an IDS is considered optimal if it has the lowest
Cexp associated with it compared to the other operating points. Further, one can
compare IDSs by comparing the estimated costs when each IDS operates at its optimal
operating point. The IDS that has lower Cexp associated with its optimal operating
point is considered as better.

Gu et al. [GFD+06] propose a metric called intrusion detection capability (CID =
I(X,Y)/H(X)). They model the input to an IDS as a stream of a random variable
X (X = 1 denotes an intrusion, X = 0 denotes benign activity), and the IDS output
respectively as a stream of a randomvariable Y (Y = 1 denotes IDS alert, Y = 0 denotes
no alert). It is assumed that both the input stream and the output stream have a certain
degree of uncertainty reflected by the entropies H(X) and H(Y), respectively. Thus,
Gu et al. [GFD+06] model the number of correct guesses of an IDS (i.e., I(X;Y)) as
mutual shared information between the randomvariablesX and Y (I(X;Y) = H(X)−
H(X|Y)). The intrusion detection capability metric CID is obtained by normalizing
the shared information I(X;Y) with the entropy of the input variable H(X).
CID incorporates the uncertainty of the input stream H(X) (i.e., the distribution of

intrusions in the IDS input) and the accuracy of an IDS under test I(X;Y). Thus, one
may conclude that CID incorporates the base rate B and many basic metrics, such as
the true positive rate (1− β), the false positive rate (α), and similar. For the definition
of the relationship between CID, on the one hand, and B, 1− β, and α, on the other
hand, we refer the reader to [GFD+06]. Given this relationship, a value of CID may
be assigned to any operating point of an IDS on the ROC curve. This allows for a
straightforward identification of the optimal operating point of an IDS — the point

121

Chapter 6: Quantifying Attack Detection Accuracy

that marks the highest CID. One can compare IDSs by analyzing the maximum CID
of each IDS and considering as better performing the IDS whose optimal operating
point has higher CID associated with it.

Summary A common aspect of all conventional IDS evaluation metrics is that they
are defined with respect to a fixed set of hardware resources available to the IDS
under test. Mell et al. [MHL+03] and Hall et al. [HW02] confirm that the values of
existing IDS evaluation metrics express the attack detection accuracy of an IDS only
for a specific hardware environment in which the IDS is expected to reside during
its lifetime. However, many virtualized infrastructures have elastic properties; that
is, resources can be provisioned and used by the IDS on-demand during operation,
which may have a significant impact on the attack detection accuracy exhibited by the
tested IDS. In Section 6.2, we demonstrate through a case study this impact and we
show that existing IDS evaluation metrics express the attack detection accuracy of an
IDS only for the specific hardware environment in which the IDS resides.
Based on the above, we argue that the use of conventional IDS evaluation metrics

may lead to inaccurate measurements when it comes to evaluating IDSs in virtual-
ized environments. This, in turn, may result in the deployment of misconfigured
or ill-performing IDSs, increasing the risk of security breaches. We argue that novel
metrics andmeasurement methodologies are needed. Suchmetrics andmethodologies
should take into account the behavior of an IDS under test, deployed in a virtualized
environment, as its operational environment changes. As a result, they would allow to
quantify the ability of the IDS to scale its attack detection efficiency as resources are
allocated to it, or deallocated from it, during operation.

6.2 Elasticity and Accuracy

The elastic behavior of a virtualized environment, that is, the hypervisor applying
a resource provisioning policy, may have significant impact on the attack detection
accuracy exhibited by the IDS deployed in the environment and performing real-time
monitoring. This impact is caused by the hypervisor impacting relevant transient
behaviors of the IDS. Under relevant transient IDS behaviors, we understand IDS be-
haviors that are influenced by the amount of resources available to an IDS over time
and may impact the IDS’s attack detection accuracy. For example, the attack detection
accuracy exhibited by a network-based IDS may be correlated to the number of packets
dropped by the IDS in the time intervals when attacks are performed. Large amounts
of dropped packets in such intervals due to lack of resources may manifest themselves
as low IDS attack detection accuracy.

In this section, we demonstrate the impact of the hypervisor, and therefore, of tran-
sient IDS behaviors influenced by it (i.e., amount of dropped packets over time), on
IDS attack detection accuracy. We demonstrate through this case study the impact of
CPU hotplugging considering the case of a network-based IDS deployed as a VNF. We
deployed Suricata 2.0.9 in a paravirtualized VM running on top of the Xen 4.4.1 hyper-

122

6.2 Elasticity and Accuracy

visor, and allocated 12 GB of main memory and a network interface card (NIC) with a
maximal data transfer rate of 1 Gbit/second to this VM. We replayed over 240 seconds,
at the speed of 150 Mbps, a trace file from the Defense Advanced Research Projects
Agency (DARPA) datasets.2 All configuration options of Suricata were set to their
default values. For each considered experimental scenario, we repeated measurements
30 times and we averaged the results.
We first considered three separate experimental scenarios, where we hotplug two,

three, and four virtual CPUs of 2.6 GHz on the VM where Suricata is deployed. In
Table 6.1, we present the true positive rate (1− β) measured for each scenario (2/3/4
CPUs in Table 6.1), in relation to the total amount of dropped packets.
We then allocated two virtual CPUs of 2.6 GHz to the VM where Suricata was

deployed so that the VM is under CPU pressure when workloads are run. This enabled
us to observe the impact of CPU hotplugging on IDS attack detection accuracy in
scenarios where such a hotplugging is normally performed. We considered two
separate experimental scenarios, where we hotplug one and two additional virtual
CPUs on the VM where Suricata is deployed, at the 120th second of each experiment.

In Figure 6.1, we depict the number of packets dropped by Suricata over 240 seconds
for each consideredCPUhotplugging scenario (2→3/4CPUs in Figure 6.1). In Table 6.1,
section ‘CPU hotplugging’, we present the true positive rate (1− β) measured for each
scenario, in relation to the total amount of dropped packets. As expected, 1 − β
increases as more CPUs are hotplugged on the VM where Suricata is deployed. This is
due to the decrease of the number of packets dropped by Suricata after CPUs have
been hotplugged (see the trend lines in Figure 6.1).

Table 6.1: Attack detection accuracy of Suricata.

Scenario 1− β No. of true alerts Dropped packets (%)
2 CPUs 0,393 80184 49,32%

3 CPUs 0,507 103444 33,60%

4 CPUs 0,562 114659 22,77%

CPU hotplugging

2→ 3 CPUs 0,465 94906 37,57%

2→ 4 CPUs 0,484 98771 34,46%

In Table 6.1, column ‘no. of true alerts’, we present the actual number of true alerts
issued by Suricata. One can observe that Suricata issued 14722 (i.e., 18.36%) true
alerts more when one additional CPU (2→3 CPUs in Table 6.1) was provisioned in
comparison to when only two CPUs (2 CPUs in Table 6.1) were made available to the
IDS over 240 seconds. Further, Suricata issued 3865 true alerts more when two (2→4

2The trace file we replayed is available at https://www.ll.mit.edu/ideval/data/1998/testing/
week1/monday/tcpdump.gz. The base rate B is 0.025.

123

https://www.ll.mit.edu/ideval/data/1998/testing/week1/monday/tcpdump.gz
https://www.ll.mit.edu/ideval/data/1998/testing/week1/monday/tcpdump.gz

Chapter 6: Quantifying Attack Detection Accuracy

0 20 40 60 80 100 120 140 160 180 200 220 240
Time (sec)

 0

100000

200000

300000

400000

500000

600000

N
um

be
r

of
 d

ro
pp

ed
 p

ac
ke

ts

2->3 CPUs
2->4 CPUs
2->3 CPUs - trend line
2->4 CPUs - trend line

Figure 6.1: Number of packets dropped over time.

CPUs in Table 6.1), instead of one (2→3 CPUs in Table 6.1), additional CPUs were
provisioned. This effectively demonstrates the impact of the hypervisor on Suricata’s
attack detection accuracy.
In a scenario such as the above, where an IDS evaluator aims to understand the

relation between a given transient behavior of an IDS and the attack detection accu-
racy the IDS exhibits, the use of conventional IDS evaluation metrics (see Section 6.1)
introduces the following inter-related issues:

◦ Challenging metric value correlation: The IDS evaluator would have to correlate
values of metrics belonging to two categories: (i)metrics that quantify attack detection
accuracy (e.g., true positive rate), and (ii)metrics that quantify the considered transient
IDS behavior (e.g., amount of dropped packets over time). However, given the lack of
metrics and measurement methodologies designed for this purpose, such a correlation
would be approximative, which may lead to inaccurate assessments;

◦ Inaccurate comparisons of IDSs: The approximative nature of the correlation men-
tioned above rules out accurate comparisons of the attack detection accuracy ofmultiple
IDSs. Note that comparing IDSs is a common goal of IDS evaluation studies [MVK+15],
where precise measurements of considered metric values are crucial so that the com-
parisons are accurate and fair.

The metric and measurement methodology we propose in this chapter aim to ad-
dress the above issues.

124

6.3 Metric and Measurement Methodology

6.3 Metric and Measurement Methodology

In this section, we propose a novelmetric andmeasurementmethodology, which enable
the accurate measurement of the attack detection accuracy of an IDS that performs
run-time monitoring and is deployed in a virtualized environment featuring elasticity;
that is, they enable the evaluation of the attack detection accuracy exhibited by such
an IDS with respect to the impact that on-demand resource provisioning performed
by the underlying hypervisor has on the accuracy.

We name the metric we propose hypervisor factor (HF), since it quantifies the impact
of the hypervisor as a factor impacting IDS attack detection accuracy. Quantifying this
impact calls for a novel definition of the boundaries of a system under test (SUT) in the
area of IDS evaluation. The precise definition of the boundaries of an SUT is critical
for the accurate measurement of system performance and interpretation of evaluation
results. In contrast to the conventional understanding in the area of IDS evaluation
about what comprises an SUT (i.e., the IDS under test), we advocate a novel SUT with
extended boundaries including the hypervisor as well. In Figure 6.2, we depict the
boundaries of the conventional SUT in the area of IDS evaluation and of the novel SUT
we propose considering a network-based IDS deployed as a VNF.

Hypervisor	

VM #1	

 VM #n	

. . .	

IDS VM	

NIC	

 <monitors>	

IDS	

incoming
traffic	

outgoing	

traffic	

SUT	

(a)

Hypervisor	

VM #1	

 VM #n	

. . .	

IDS VM	

NIC	

 <monitors>	

IDS	

incoming
traffic	

outgoing	

traffic	

SUT	

Boundary line	

(b)

Figure 6.2: Boundaries of: (a) the conventional SUT, and (b) novel SUT in the area of IDS
evaluation.

6.3.1 Metric Design

We distinguish three states in which a given IDS, part of an SUT as we define it, may be
over the duration of an IDS evaluation experiment: baseline, underprovisioned, and
overprovisioned state. By baseline IDS state, we mean a state of the IDS in which it is
provisioned by the hypervisor with the minimum amount of resources such that pro-
visioning more resources does not have an impact on the attack detection accuracy of
the IDS (e.g., it does not improve the positive rate exhibited by the IDS, see Section 6.2).
Therefore, by overprovisioned, or underprovisioned, IDS state, we mean a state of the

125

Chapter 6: Quantifying Attack Detection Accuracy

IDS in which it is provisioned by the hypervisor with more, or less, resources than the
amount needed for the IDS to be considered in baseline state. Given these definitions
of IDS states, we design the HF metric with respect to the following criteria, which are
crucial for the accurate and practically useful IDS evaluation:

Criterion C1: If configured accordingly, the HF metric penalizes resource overprovi-
sioning with respect to the

(a) time the IDS has spent in overprovisioned state over the duration of an IDS evalua-
tion experiment, and

(b) the false positive and false negative rate exhibited by the IDS under test when
in overprovisioned state, since provisioning excess amount of resources has not con-
tributed towards improving the accuracy of the IDS. We design the HF metric to
penalize equally various extents of overprovisioning since we consider any extent of
overprovisioning an equally negative phenomenon;

Criterion C2: If configured accordingly, the HF metric penalizes resource underprovi-
sioning with respect to the

(a) time the IDS has spent in underprovisioned state over the duration of an IDS
evaluation experiment, and

(b) the extent of the impact that the underprovisioning has had on the true positive rate
exhibited by the IDS. We consider this impact a negative phenomenon since it causes
the reduction of the number of true alerts issued by the IDS (see Section 6.2). The HF
metric does not penalize resource underprovisioning that has had no impact on the
true positive rate since we consider resource saving, which does not cause reduction
of this rate, a positive phenomenon.

Criterion C3: If configured accordingly, the HF metric rewards resource underprovi-
sioning with respect to the

(a) time the IDS has spent in underprovisioned state over the duration of an IDS
evaluation experiment, and

(b) the extent of the impact that the underprovisioning has had on the false posi-
tive rate exhibited by the IDS. We consider this impact a positive phenomenon since
it brings practical benefits —- reduced number of issued false alerts and increased
amount of saved resources. Underprovisioning may cause the reduction of the false
positive rate exhibited by an IDS if a given amount of workload units (e.g., packets),
which would have been falsely labeled as malicious by the IDS if processed by it, are
not processed by the IDS due to lack of resources.

In summary, the HF metric favors the most an SUT configured in a way such that the

126

6.3 Metric and Measurement Methodology

hypervisor saves the most resources while impacting the true positive rate exhibited
by the IDS to the least extent and the false positive rate exhibited by the IDS to the
biggest extent.

Criterion C4: The HF metric expresses the base rate. The attack detection perfor-
mance of an IDS should be assessed with respect to a base rate measure in order for
such an assessment to be accurate (see Section 6.1). Therefore, it is important that the
HF metric expresses this rate.

Criterion C5: The HF metric enables the straightforward identification of optimal
operating points. In the context of IDS evaluation, an optimal operating point is an IDS
configuration which yields values of both the true and false positive rates considered
optimal with respect to a givenmeasure (e.g., cost, see Section 6.1). In the context of this
chapter, under optimal operating point, we understand a configuration of both the IDS
under test and the underlying hypervisor, which yield values of metrics quantifying the
performance of the hypervisor at provisioning resources and of metrics quantifying
IDS attack detection accuracy (e.g., true and false positive rate) considered optimal
with respect to the impact of the former on the latter (see criterion C1, C2, and C3).
This is because we consider a novel SUT with boundaries that include an IDS and a
hypervisor provisioning the IDS with resources (see Figure 6.2b).

We design the HF metric to enable a straightforward identification of optimal oper-
ating points; that is, for a given set of operating points, the optimal operating point
yields an extreme value of HF. In Section 6.3.3, we discuss more on operating points
and on identifying optimal operating points.

Criterion C6: The HF metric enables the accurate comparison of multiple SUTs. This
is feasible only if criterion C5 is fulfilled, a topic that we discuss more in Section 6.3.3.

6.3.2 Metric Construction

We present here the main principles of construction for the HF metric. Similar to
Gaffney et al. [GU01], we construct the HF metric using a construct from decision
theory — a decision tree — as a basis. In Figure 6.3, we depict the decision tree that we
use for constructing the HF metric. The tree shows the sequence of uncertain events
(circles) that describe:

◦ the workload, sayW [B], to which the IDS is subjected over the duration of a given IDS
evaluation experiment, say Tmax. We characterizeW by the base rate (i.e., probability
of an intrusion B = P (I), see Section 6.1);

◦ the operation of the IDS processing workload W [B]. The operation of the IDS is
characterized by the probabilities of the IDS issuing or not issuing an alert when an
intrusion has or has not occurred (i.e., the probabilities P (A|I), P (¬A|I), and so on,
see Section 6.1);

127

Chapter 6: Quantifying Attack Detection Accuracy

◦ the state of the IDS (i.e., baseline, overprovisioned, or underprovisioned IDS state,
see Section 6.3.1) when it issues or does not issue an alert. The IDS being in one of the
considered states during operation primarily depends on the resource provisioning
policy applied by the underlying hypervisor, sayH[To, Tb, Tu]; that is, on its precision
at meeting the demand for resources by the IDS over time Tmax. We characterizeH by
the amount of time the IDS has spent in overprovisioned (To), baseline (Tb), and un-
derprovisioned (Tu) state over time Tmax (i.e., To/b/u ∈ [0;Tmax], To+Tb+Tu = Tmax).

Associated with each uncertain event is the probability of occurrence. There are
six probabilities specified in the tree: p1 = P (I) = B: the probability that an intru-
sion occurs; p2 = P (A|I) = 1 − β: the probability that the IDS issues an alert when
an intrusion occurs (i.e., the true positive rate); p3 = P (A|¬I) = α: the probability
that the IDS issues an alert when an intrusion does not occur (i.e., the false positive
rate); and p4/5/6 =

To/b/u

Tmax
: the probability that the IDS under test is in overprovi-

sioned/baseline/underprovisioned state when it issues or does not issue an alert (i.e.,
at any moment in the time interval [0;Tmax]).

No intrusion

1-p1

p3

1-p3

Intrusion

p1

p2

1-p2

Alert

Overprovisioning

Underprovisioning

p4

Baseline
p5

p6

0

0

0

No alert

Overprovisioning

Underprovisioning

p4

Baseline
p5

p6

so

0

su|Δβ|

Alert

Overprovisioning

Underprovisioning

p4

Baseline
p5

p6

so

0

0

No alert

Overprovisioning

Underprovisioning

p4

Baseline
p5

p6

0

0

-su|Δ(1-α)|

Workload IDS operation IDS state Consequence

Figure 6.3: The decision tree used for constructing the HF metric.

The attractiveness of each combination of events represented in the tree depicted
in Figure 6.3 is characterized by the consequence (i.e., the penalty or the reward score)
associated with it. With respect to the metric design criteria C1, C2, and C3 (see Sec-

128

6.3 Metric and Measurement Methodology

tion 6.3.1), the HF metric:

◦ penalizes the SUT for the IDS issuing false positive or false negative alerts when the
IDS is in overprovisioned state. A user of the HF metric may disable or enable this
penalization by setting the value of so, so ∈ {0, 1} to 0 or 1, respectively;

◦ penalizes the SUT for the IDS (in underprovisioned state) not issuing an alert when
an intrusion has occurred with the score su|∆β|, where |∆β| = |β − βb|. A user of the
HFmetric may disable or enable this penalization by setting the value of su, su ∈ {0, 1}
to 0 or 1, respectively. βb is the false negative rate exhibited by the IDS in a scenario
where it has operated in baseline state over time Tmax and subjected to workload
W [B]. Therefore, the HF metric quantifies the impact of underprovisioning on the
true positive rate (1− β) exhibited by the IDS – it penalizes the SUT for the IDS not
issuing a true alert because of discarded workloads due to lack of resources;

◦ rewards the SUT for the IDS (in underprovisioned state) not issuing an alert when an
intrusion has not occurred with the score su|∆(1−α)|, |∆(1−α)| = |(1−α)− (1−α)b|.
A user of the HF metric may disable or enable this rewarding by setting the value of
su, su ∈ {0, 1} to 0 or 1, respectively. (1− α)b is the true negative rate exhibited by the
IDS in a scenario where it has operated in baseline state over time Tmax and subjected to
workloadW [B]. Therefore, the HF metric quantifies the impact of underprovisioning
on the false positive rate (α) exhibited by the IDS – it rewards the SUT for the IDS not
issuing a false alert.

The formula of the HF metric can be obtained by “rolling back” the decision tree
depicted in Figure 6.3; that is, from right to left, the penalty, or the reward, score at an
event node is the sum of products of probabilities and scores for each branch:

HF = B[β(
To
Tmax

so +
Tu
Tmax

su|∆β|)]

+ (1−B)[α
To
Tmax

so − (1− α)
Tu
Tmax

su|∆(1− α)|)]

=
To
Tmax

so[Bβ + (1−B)α] +
Tu
Tmax

su[Bβ|∆β| − (1−B)(1− α)|∆(1− α)|]

(6.1)

If the values of so and su are set to 1, Equation 6.1 can be alternatively represented
as the sum of the two components of the HF metric, that is, HFo and HFu, where
HFo = To

Tmax
[Bβ + (1 − B)α] is the penalty associated with overprovisioning and

HFu = Tu

Tmax
[Bβ|∆β| − (1−B)(1− α)|∆(1− α)|] is the penalty, or reward, associated

with underprovisioning. Distinguishing these components of the HF metric allows
for separately observing the quantified consequences of the hypervisor over- and/or
underprovisioning the IDS in relation to the IDS’s attack detection accuracy.

129

Chapter 6: Quantifying Attack Detection Accuracy

On Baseline IDS State

Calculating values of the HFmetric requires calculating To, Tu, and Tb, and, in addition,
βb and (1−α)b (see Equation 6.1). This, in turn, may require extensive experimentation
in order to: (i) identify the baseline state of the IDS that is part of the SUT; that is, to
determine the minimum amount of resources, say Rb, such that provisioning more
resources does not have an impact on the attack detection accuracy exhibited by the
IDS (see Section 6.3.1); and (ii) compare this amount with the amount of resources pro-
visioned by the hypervisor applying a given resource provisioning policyH[To, Tb, Tu],
say Rp.

The above activities may be practically challenging because they require the use of
measurement approaches considering various resource unit and measurement granu-
larities, and determining how Rb changes over time Tmax with respect to the intensity
of the workload to which the IDS is subjected. Therefore, we assume the following
simplifications:

◦ Rb is constant over time Tmax — we consider Rb the minimum amount of resources
allocated to the VM where the IDS operates, such that the IDS does not discard work-
load when the workload is most intensive. This reflects a realistic scenario where
resources are provisioned to an IDS considering the peak intensity of the workload
that the IDS may process during operation;

◦ Rb and Rp differ with regard to a single measurement unit (e.g., MB of memory) —
that is, we assume that the hypervisor allocates and/or deallocates a single type of re-
source over the duration of an IDS evaluation experiment. This allows for determining
the difference between Rb and Rp over time Tmax in a straightforward and accurate
manner.

We plan to address the above simplifications as part of our future work.

6.3.3 Properties of the HF Metric

In this section, we show how the HF metric satisfies each of the design criteria we
presented in Section 6.3.1:

Criterion C1: For a given Tmax, the value of the HFo component of the HF metric
(see Section 6.3.2) is positively correlated with To (i.e., the time the IDS has spent in
overprovisioned state over time Tmax), the false positive rate (α), and the false negative
rate (β);

Criterion C2 and C3: For a given Tmax, the value of the HFu component of the HF
metric (see Section 6.3.2):

◦ is positively correlated with Tu (i.e., the time the IDS has spent in underprovisioned

130

6.4 Case Studies

state over time Tmax) and |∆β|, which quantifies the extent of the impact that under-
provisioning has had on the false negative rate, and therefore on the complementary
true positive rate;

◦ is negatively correlated with Tu and |∆(1− α)|, which quantifies the extent of the
impact that underprovisioning has had on the true negative rate, and therefore on the
complementary false positive rate;

Criterion C4: The HF metric expresses the base rate B (see Equation 6.1);

CriterionC5: In Definition 6.1, we define an operating point of an SUT (see Figure 6.2b):

Definition 6.1. An operating point of an SUT consisting of an IDS and a hypervisor,
say O(I → (αb, 1 − βb);H[To, Tb, Tu]) → (α, 1 − β), is a configuration I of the IDS,
which yields distinct values of αb and (1− β)b, and a configuration of the hypervisor,
that is, a configured resource provisioning policyH[To, Tb, Tu]. These configurations
yield values of 1− β and α (i.e., the true and false positive rate exhibited by the IDS
with configuration I in a scenario where the hypervisor applies resource provisioning
policy H[To, Tb, Tu]).

A single value of the HF metric may be associated with a specific configuration of
the IDS and of the hypervisor comprising a given SUT (i.e., with each operating point
of the SUT considered in a given evaluation study, see Equation 6.1 and Definition 6.1).
Given that the HF metric may penalize an SUT, a given operating point of the SUT
is considered optimal if it has the lowest value of the HF metric associated with it.
Theoretically, there may be more than one operating point having the same lowest
value of the HF metric associated with them. In such a scenario, a given operating
point may be considered optimal based on subjective criteria. For example, an IDS
evaluator may consider optimal the operating point with the highest value of Tb (i.e.,
the operating point such that the IDS spends at most time in baseline state).

Measuring values of the HF metric and identifying the optimal operating point of an
SUT, out of multiple operating points, is performed in practice by executing multiple
experiments using a given workload, and varying the configuration of the IDS and/or
of the hypervisor between experiments.

Criterion C6: Multiple SUTs can be compared by comparing their optimal operat-
ing points—the SUT with the lowest value of the HF metric associated with its optimal
operating point is considered best.

6.4 Case Studies

We demonstrate here the practical use of the HF metric and the measurement method-
ology we propose. We conducted multiple experiments considering various SUTs and
operating points, that is, configurations of the hypervisor (Section 6.4.1) and of the

131

Chapter 6: Quantifying Attack Detection Accuracy

IDS (Section 6.4.2) comprising an SUT. For each considered experimental scenario,
we repeated measurements 30 times and we averaged the results. The transient IDS
behavior of interest is amount of packets dropped over time (see Section 6.2).

It is important to emphasize that we focus on demonstrating the practical use of the
HF metric and of the proposed measurement methodology, and not on discussing in
depth the behavior of the considered SUTs. We specify arbitrary evaluation scenarios
with the sole purpose of demonstrating how the proposed metric and measurement
methodologymay be used in practice for any evaluation and SUT deployment scenario.

6.4.1 Hypervisor Configurations

We structure this section with respect to the different hypervisor configurations we
consider; we investigate the impact of two relevant characteristics of CPU and memory
on-demand provisioning (i.e., hotplugging): (i) hotplugging intensity (i.e., amount
of hotplugged resources), and (ii) hotplugging speed (i.e., the hypervisor’s speed at
provisioning resources with respect to resource demands).

CPU hotplugging intensity and speed We first quantify the impact of CPU hot-
plugging intensity on IDS attack detecting accuracy. We deployed Suricata 2.0.9 in a
paravirtualized VM running on top of the Xen 4.4.1 hypervisor. We allocated 12 GB of
main memory and a NIC with a maximal data transfer rate of 1 Gbit/second to the VM
where Suricata was deployed. We also allocated two virtual CPUs of 2.6 GHz to this
VM so that the VM is under CPU pressure when workloads are run. This enabled us to
observe the impact of CPU hotplugging on IDS attack detection accuracy in scenarios
where such a hotplugging is normally performed. We replayed over 240 seconds, at
the speed of 150 Mbps, a trace file from the DARPA datasets.2 All configuration options
of Suricata were set to their default values.

We considered two separate experimental scenarios, where we hotplug one and two
additional virtual CPUs on the VM where Suricata is deployed, at the 120th second
of the experiment; that is, we consider two operating points of the SUT, O1 and O2,
respectively.

We first identified the baseline state of Suricata at 3 CPUs allocated to the VMwhere
the IDSwas deployed. This results in To = 0, Tb = 120, Tu = 120 for operating pointO1,
and To = 120, Tb = 0, Tu = 120 for operating pointO2. Wemeasured αb of 0.182×10−4

and (1− β)b of 1.0 (see Section 6.3.2). We then calculated values of the HF metric such
that we enabled penalization of overprovisioning and penalization, or rewarding, of
underprovisioning (i.e., so, su = 1). In Table 6.2, section ‘CPU hotplugging intensity’,
we present the operating points O1 and O2, the impact that underprovisioning has
had on Suricata’s attack detection accuracy, and values of the HF metric associated
with each operating point, including values of its HFo and HFu components.

Since the value of the HF metric for O1 (0.195 × 10−3) is lower than that for O2

(0.184× 10−2), one can conclude that the SUT performs better when configured at the
O1 operating point (see Section 6.3.3). This is because when the SUT was configured

132

6.4 Case Studies

Ta
bl
e
6.
2:

H
yp

er
vi
so
rc

on
fig

ur
at
io
ns

:O
pe

ra
tin

g
po

in
ts

an
d
as
so
ci
at
ed

va
lu
es

of
th
e
H
F
m
et
ric

[B
=

0
.0
2
5
;o

pe
ra
tin

g
po

in
ts

ar
e
pr
es
en

te
d

in
th
e
fo
rm

O
(I
→

(α
b
,1
−
β
b
);
H
[T
o
,T
b
,T
u
])
→

(α
,1
−
β
);
α
b
an

d
1
−
β
b
ar
e
th
e
fa
ls
e
an

d
tr
ue

po
si
tiv

e
ra
te

ex
hi
bi
te
d
by

th
e
ID

S
w
he

n
it

op
er
at
es

in
ba

se
lin

e
st
at
e
gi
ve

n
a
co
nfi

gu
ra
tio

n
of

th
e
ID

S
I
;T

o
,T

b
,T

u
ar
e
th
e
tim

es
th
e
ID

S
ha

ss
pe

nt
in

ov
er
pr
ov

is
io
ne

d,
ba

se
lin

e,
an

d
un

de
rp

ro
vi
si
on

ed
st
at
e
gi
ve

n
a
co
nfi

gu
re
d
re
so
ur
ce

pr
ov

is
io
ni
ng

po
lic

y
H
;α

an
d
1
−
β
ar
e
th
e
fa
ls
e
an

d
tr
ue

po
si
tiv

e
ra
te

ex
hi
bi
te
d
by

th
e

ID
S
fo
ra

co
nfi

gu
ra
tio

n
of

th
e
ID

S
I
an

d
co
nfi

gu
re
d
re
so
ur
ce

pr
ov

is
io
ni
ng

po
lic

y
H

(s
ee

D
efi

ni
tio

n
6.
1)
].

O
pe

ra
tin

g
po

in
t

Im
pa

ct
M

et
ri
c
va

lu
es

|∆
(1
−
α

)|
|∆
β
|

H
F
o

H
F
u

H
F

C
PU

ho
tp
lu
gg

in
g
in
te
ns

ity

O
1
(I
→

(0
.1

8
2
×

1
0
−
4
,1
.0

);
H

[0
,1

2
0
,1

2
0
])
→

(0
.6

6
9
×

1
0
−
6
,0
.8

7
3
)

0
.1

7
5
×

1
0
−
4

0
.1

2
6

0
0
.1

9
5
×

1
0
−
3

0
.1

9
5
×

1
0
−
3

O
2
(I
→

(0
.1

8
2
×

1
0
−
4
,1
.0

);
H

[1
2
0
,0
,1

2
0
])
→

(0
.6

6
9
×

1
0
−
6
,0
.8

7
3
)

0
.1

7
5
×

1
0
−
4

0
.1

2
6

0
.1

7
×

1
0
−
2

0
.1

9
5
×

1
0
−
3

0
.1

8
4
×

1
0
−
2

C
PU

ho
tp
lu
gg

in
g
sp

ee
d

O
3
(I
→

(0
.1

8
2
×

1
0
−
4
,1
.0

);
H

[0
,1

6
0
,8

0
])
→

(0
.7

0
7
×

1
0
−
5
,0
.9

3
4
)

0
.1

1
1
×

1
0
−
4

0
.0

6
5

0
0
.3

2
8
×

1
0
−
4

0
.3

2
8
×

1
0
−
4

O
4
(I
→

(0
.1

8
2
×

1
0
−
4
,1
.0

);
H

[0
,1

2
0
,1

2
0
])
→

(0
.6

6
9
×

1
0
−
6
,0
.8

7
3
)

0
.1

7
5
×

1
0
−
4

0
.1

2
6

0
0
.1

9
5
×

1
0
−
3

0
.1

9
5
×

1
0
−
3

O
5
(I
→

(0
.1

8
2
×

1
0
−
4
,1
.0

);
H

[0
,8

0
,1

6
0
])
→

(0
.5

7
3
×

1
0
−
6
,0
.8

4
1
)

0
.1

7
6
×

1
0
−
4

0
.1

5
8

0
0
.4

1
6
×

1
0
−
3

0
.4

1
6
×

1
0
−
3

M
em

or
y
ho

tp
lu
gg

in
g
in
te
ns

ity

O
6
(I
→

(0
.1

8
9
×

1
0
−
4
,1
.0

);
H

[0
,1

2
0
,1

2
0
])
→

(0
.1

1
9
×

1
0
−
4
,0
.9

7
3
)

0
.6

9
7
×

1
0
−
5

0
.0

2
6

0
0
.5

7
4
×

1
0
−
5

0
.5

7
4
×

1
0
−
5

O
7
(I
→

(0
.1

8
9
×

1
0
−
4
,1
.0

);
H

[1
2
0
,0
,1

2
0
])
→

(0
.1

1
9
×

1
0
−
4
,0
.9

7
3
)

0
.6

9
7
×

1
0
−
5

0
.0

2
6

0
.3

4
6
×

1
0
−
3

0
.5

7
4
×

1
0
−
5

0
.3

6
9
×

1
0
−
3

M
em

or
y
ho

tp
lu
gg

in
g
sp

ee
d

O
8
(I
→

(0
.1

8
9
×

1
0
−
4
,1
.0

);
H

[1
2
0
,0
,1

2
0
])
→

(0
.1

1
9
×

1
0
−
4
,0
.9

7
3
)

0
.6

9
7
×

1
0
−
5

0
.0

2
6

0
.3

4
6
×

1
0
−
3

0
.5

7
4
×

1
0
−
5

0
.3

6
9
×

1
0
−
3

O
9
(I
→

(0
.1

8
9
×

1
0
−
4
,1
.0

);
H

[8
0
,0
,1

6
0
])
→

(0
,0
.7

8
5
)

0
.1

8
9
×

1
0
−
4

0
.2

1
4

0
.1

8
×

1
0
−
2

0
.7

6
8
×

1
0
−
3

0
.2

6
×

1
0
−
2

133

Chapter 6: Quantifying Attack Detection Accuracy

at the O1 operating point, Suricata spent 120 seconds in baseline state; to the contrary,
at the O2 operating point, Suricata spent 120 seconds in overprovisioned state issuing
false positive and false negative alerts and no time in baseline state. This results in
lower value ofHFo forO1 (0) than that forO2 (0.17×10−2). The values of the HFmetric
match the expected behavior of the metric (see criterion C1, Section 6.3.1). This shows
the practical usefulness of the metric and measurement methodology we propose.
We now quantify the impact of CPU hotplugging speed on IDS attack detection

accuracy. We allocated two virtual CPUs of 2.6 GHz to the VM where Suricata was
deployed. We replayed over 240 seconds, at the speed of 150 Mbps, a trace file from
the DARPA datasets.2 We considered three separate experimental scenarios, where
we hotplug one additional virtual CPU at the 80th, 120th, and 160th second of the
experiment; that is, we consider three operating points of the SUT, O3, O4, and O5,
respectively.
The baseline state of Suricata is at 3 CPUs allocated to the VM where the IDS was

deployed (αb = 0.182× 10−4, (1− β)b = 1.0). This results in To = 0, Tb = 160, Tu = 80
for operating point O1, To = 0, Tb = 120, Tu = 120 for operating point O2, and
To = 0, Tb = 80, Tu = 160 for operating point O3. We calculated values of the HF
metric such that we enabled penalization of overprovisioning and penalization, or
rewarding, of underprovisioning (i.e., so, su = 1).
In Table 6.2, section ‘CPU hotplugging speed’, where we present the operating

points O3, O4, and O5, one can observe that the value of the HF metric (i.e., of its
HFu component) increases as the time at which a CPU was provisioned to the VM
where Suricata was deployed increases. The later a CPU was provisioned, the more
time the IDS has spent in underprovisioned state, and the bigger is the impact of
underprovisioning on the true positive rate exhibited by Suricata (see column ‘|∆β|’).
Therefore, the HF metric penalizes the SUT the most when it is configured at the O5

operating point. This matches the expected behavior of the metric (see criterion C2,
Section 6.3.1).

Memory hotplugging intensity and speed We first quantify the impact of memory
hotplugging intensity on IDS attack detecting accuracy. We deployed Snort 2.9.8.0 in
a paravirtualized VM running on top of the Xen 4.4.1 hypervisor. We allocated four
virtual CPUs of 2.6 GHz and a NIC with a maximal data transfer rate of 1 Gbit/second
to the VM where Snort was deployed. We also allocated 1240 MB of main memory
to this VM so that the VM is under memory pressure when workloads are run. This
enabled us to observe the impact of memory hotplugging on IDS attack detection
accuracy in scenarios where such a hotplugging is normally performed. We replayed
over 240 seconds, at the speed of 150 Mbps, a trace file from the DARPA datasets.2 All
configuration options of Snort were set to their default values.
We considered two separate experimental scenarios, where we hotplug additional

260 and 560 MB of main memory on the VM where Snort was deployed, at the 120th
second of each experiment; that is, we consider two operating points of the SUT, O6

and O7, respectively.

134

6.4 Case Studies

We first identified the baseline state of Snort at 1500 MB of memory allocated to
the VM where the IDS was deployed. This results in To = 0, Tb = 120, Tu = 120
for operating point O6, and To = 120, Tb = 0, Tu = 120 for operating point O7. We
measured αb of 0.189× 10−4 and (1− β)b of 1.0. We then calculated values of the HF
metric such that we enabled penalization of overprovisioning and penalization, or
rewarding, of underprovisioning (i.e., so, su = 1).

In Table 6.2, section ‘Memory hotplugging intensity’, we present the operating points
O6 andO7, the impact that underprovisioning has had on the attack detection accuracy
exhibited by Snort, and values of the HF metric associated with each operating point,
including values of its HFo and HFu components. As expected, the SUT performs
better when configured at O6 since at this point, in contrast to when the SUT was con-
figured at the O7 operating point, the IDS did not spent time in overprovisioned state
issuing false positive and negative alerts (i.e.,HFo = 0, see criterion C1, Section 6.3.1).

We now quantify the impact of memory hotplugging speed on IDS attack detection
accuracy. We allocated 1240 MB of memory to the VM where Snort was deployed.
We replayed over 240 seconds, at the speed of 150 Mbps, a trace file from the DARPA
datasets.2 We considered two separate experimental scenarios, where we hotplug
additional 560 MB of memory on the VM where Snort was deployed, at the 120th and
160th second of the experiment; that is, we consider two operating points of the SUT,
O8 and O9, respectively.
The baseline state of Snort is at 1500 MB of memory allocated to the VM where

the IDS was deployed (αb = 0.189 × 10−4, (1 − β)b = 1.0). This results in To =
120, Tb = 0, Tu = 120 for operating point O8, and To = 80, Tb = 0, Tu = 160 for
operating point O9. We calculated values of the HF metric such that we enabled
penalization of overprovisioning and penalization, or rewarding, of underprovisioning
(i.e., so, su = 1).

In Table 6.2, section ‘Memory hotplugging speed’, where we present the operating
points O8 and O9, one can observe that the SUT performs better when configured at
the O8 operating point — the value of the HF metric is lower than that for the O9 oper-
ating point. This is primarily because, at the O9 operating point, underprovisioning
of memory has caused a much more significant reduction of the true positive rate
exhibited by Snort (|∆β| = 0.214, HFu = 0.768 × 10−3) in contrast to when the SUT
was configured at the O8 operating point (|∆β| = 0.026, HFu = 0.574 × 10−5, see
criterion C2, Section 6.3.1). Note that at the O9 operating point, underprovisioning
has also caused a reduction of issued false positives to 0 (see column ‘|∆(1 − α)|’,
|∆(1−α)| = αb), which, although considered a positive phenomenon rewarded by the
HFmetric (see criterionC3, Section 6.3.1), does not outweigh the previously mentioned
penalization of the reduction of the true positive rate.

6.4.2 IDS Configurations

We now consider various IDS configurations for a given hypervisor configuration.
Varying configurations of an IDS under test in order to identify the optimal operating

135

Chapter 6: Quantifying Attack Detection Accuracy

point of the IDS is a common practice (see Section 6.1). We demonstrate here the use
of the HF metric for identifying an optimal operating point of an IDS that is part of
an SUT as we define it (see Figure 6.2b). In addition, we show how the HF metric
complements conventional IDS evaluation metrics, that is, an ROC curve, which is the
most commonly used conventional metric.
We deployed Snort 2.9.8.0 in a paravirtualized VM running on top of the Xen 4.4.1

hypervisor. We allocated two virtual CPUs of 2.6 GHz, 12 GB of main memory, and a
NIC with a maximal data transfer rate of 1 Gbit/second to the VM where Snort was
deployed. We replayed over 240 seconds, at the speed of 150 Mbps, a trace file from
the DARPA datasets.2

We considered six separate experimental scenarios, where we vary the configuration
of Snort; that is, we consider six operating pointsO1,2,..6. We observed that Snort’s rule
with ID 1417 led to mislabeling many benign Simple Network Management Protocol
(SNMP) packets as malicious (see Section 3.4.1). Therefore, we examined the influence
of the configuration parameter threshold on the attack detection accuracy of Snort. The
parameter threshold is used for reducing the number of false alerts by suppressing rules
that often mislabel benign activities as malicious. A rule may be suppressed such that
it is configured to not generate an alert for a specific number of times (specified with
the keyword count) during a given time interval (specified with the keyword seconds).
We considered five configurations of Snort where the rule with ID 1417 was sup-

pressed by setting the value of count to 2, 3, 4, 5, and 6, whereas seconds was set to
120. We also considered the default configuration of Snort, according to which the
signature with ID 1417 is not suppressed. We configured a resource provisioning
policy such that the hypervisor provisions 2 additional CPUs at the 120th second of
each experiment.
We first identified the baseline states of Snort and calculated values of αb and (1−

β)b for each considered configuration of the IDS. The baseline state of Snort for all
configurations was at 3 CPUs allocated to the VM where the IDS was deployed. This
results in To = 120, Tb = 0, Tu = 120 for all operating points. We then calculated values
of the HF metric such that we disabled penalization of overprovisioning and enabled
penalization, or rewarding, of underprovisioning (i.e., so = 0, su = 1,HFo = 0); that
is, the goal of this study is to identify the optimal configuration of Snort for which
underprovisioning is most beneficial.
In Table 6.3, we present the operating points O1,2,..6, the impact that underprovi-

sioning has had on the attack detection accuracy exhibited by Snort, and values of the
HF metric associated with each operating point. One can observe that underprovi-
sioning has been beneficial in all considered scenarios since it has caused significant
reductions of the number of false positives issued by Snort (see column ‘|∆(1− α)|’
and the negative values of the HF metric). Negative values of the HF metric indicate
that an SUT is rewarded for underprovisioning that has caused significant reduction
of the false positive rate exhibited by the IDS, which outweighs other behaviors of the
SUT that the HF metric penalizes (see Section 6.3.1).

Underprovisioning has been most beneficial when the SUT was configured at theO5

136

6.4 Case Studies

Ta
bl
e
6.
3:

ID
S
co
nfi

gu
ra
tio

ns
:O

pe
ra
tin

g
po

in
ts
an

d
as
so
ci
at
ed

va
lu
es

of
th
e
H
F
m
et
ri
c
[s
ee

ca
pt
io
n
of

Ta
bl
e
6.
2
fo
ra

de
sc
ri
pt
io
n
of

th
e

fo
rm

in
w
hi
ch

op
er
at
in
g
po

in
ts

ar
e
pr
es
en

te
d]
.

ID
S
co

nfi
gu

ra
tio

n
[s
ec
on

ds
=
12

0]
O
pe

ra
tin

g
po

in
t

Im
pa

ct
M

et
ri
c
va

lu
es

|∆
(1
−
α

)|
|∆
β
|

H
F

co
un

t=
6

O
1
(I
→

(0
.0

8
×

1
0
−
2
,0
.3

3
3
);
H

[1
2
0
,0
,1

2
0
])
→

(0
.0

7
2
×

1
0
−
2
,0
.3

3
2
)

0
.7

5
3
×

1
0
−
4

0
.2

6
8
×

1
0
−
4
−

0
.3

6
4
×

1
0
−
4

co
un

t=
5

O
2
(I
→

(0
.1

1
×

1
0
−
2
,0
.4

1
6
);
H

[1
2
0
,0
,1

2
0
])
→

(0
.1

0
2
×

1
0
−
2
,0
.4

1
5
)

0
.7

8
8
×

1
0
−
4

0
.5

7
2
×

1
0
−
4
−

0
.3

7
9
×

1
0
−
4

co
un

t=
4

O
3
(I
→

(0
.1

3
×

1
0
−
2
,0
.5

);
H

[1
2
0
,0
,1

2
0
])
→

(0
.1

2
2
×

1
0
−
2
,0
.4

9
9
)

0
.7

3
3
×

1
0
−
4

0
.9

9
9
×

1
0
−
4
−

0
.3

5
×

1
0
−
4

co
un

t=
3

O
4
(I
→

(0
.1

7
×

1
0
−
2
,0
.6

2
4
);
H

[1
2
0
,0
,1

2
0
])
→

(0
.1

6
8
×

1
0
−
2
,0
.6

2
3
)

0
.1
×

1
0
−
4

0
.8

7
9
×

1
0
−
3
−

0
.7

3
8
×

1
0
−
6

co
un

t=
2

O
5
(I
→

(0
.2

4
×

1
0
−
2
,0
.8

3
3
);
H

[1
2
0
,0
,1

2
0
])
→

(0
.2

3
×

1
0
−
2
,0
.8

3
2
)

0
.9

5
2
×

1
0
−
4

0
.7

9
5
×

1
0
−
3
−

0
.4

4
6
×

1
0
−
4

D
ef
au

lt
co
nfi

gu
ra
tio

n
O

6
(I
→

(0
.2

6
×

1
0
−
2
,0
.9

5
8
);
H

[1
2
0
,0
,1

2
0
])
→

(0
.2

5
1
×

1
0
−
2
,0
.9

5
7
)

0
.8

0
5
×

1
0
−
4

0
.2

9
7
×

1
0
−
3
−

0
.3

9
×

1
0
−
4

137

Chapter 6: Quantifying Attack Detection Accuracy

operating point (HF = −0.446× 10−4, count=2; −0.446× 10−4 is the smallest value of
all values of the HF metric presented in Table 6.3). Therefore, one may conclude that
the optimal operating point of Snort, such that underprovisioning is most beneficial, is
when the IDS was configured such that count is set to 2.

TheHFmetric andROC curves In the area of IDS evaluation, it is a common practice
to use ROC curves for analyzing the relationship between the true positive (1 − β)
and false positive rate (α) exhibited by an IDS under test (see Section 6.1). The HF
metric expresses 1− β and α (see Equation 6.1). Therefore, values of the HF metric
can be associated with each IDS operating point depicted using an ROC curve. Thus,
evaluation of an IDS with respect to values of the HF metric can be combined with
ROC curve analysis. This allows for a visual and comprehensive overview of the attack
detection accuracy of the IDS and the impact that the underlying hypervisor has had
on the accuracy exhibited by the IDS.

In Figure 6.4, we depict an ROC curve expressing the relationship betweenα and 1−β
exhibited by Snort for the considered configurations of the IDS (see Table 6.3). The ROC
curve is annotated with the values of the HFmetric (in square brackets) associated with
the IDS configuration points. This allows for a visual, straightforward identification of
the IDS operating point such that the SUT, which includes the underlying hypervisor,
performs optimally (i.e., the IDS operating point with the lowest value of the HFmetric
associated with it, marked using � in Figure 6.4). We note that an IDS evaluator, based
on subjective criteria, may consider another IDS operating point optimal (e.g., the
one at which Snort exhibits the highest true positive rate). However, in such a case,
the evaluator would still have insight into the impact of the hypervisor on the attack
detection accuracy of the IDS when configured at this operating point because of the
value of the HF metric associated with it.

0.5 1 1.5 2 2.5 3

·10−3

0

0.2

0.4

0.6

0.8

1

False positive rate (α)

T
ru
e
p
os
it
iv
e
ra
te

(1
−
β
)

[−0.364× 10−4]
[−0.379× 10−4]

[−0.35× 10−4]

[−0.738× 10−6]

[−0.446× 10−4]

[−0.39× 10−4]

Figure 6.4: An ROC curve and values of the HFmetric associated with each IDS operating point.

138

6.5 Summary

Multiple ROC curves, each depicting α and 1 − β exhibited by a single IDS, may
be used for comparing multiple IDSs. For example, an IDS may be considered better
than the other IDSs if it features higher 1− β at all operating points along the ROC
curve [MVK+15]. However, such an analysis may be misleading if the ROC curves
intersect. In such a case, if the compared IDSs are in virtualized environments featuring
elasticity, the IDSs may be compared in a straightforward manner based on values of
the HF metric; that is, the IDS that performs optimally considering the impact of the
hypervisor on its attack detection accuracy, is the IDS with the lowest value of the HF
metric associated with its optimal operating point (see criterion C6, Section 6.3.3).

6.5 Summary

Avirtualized environmentmay be elastic, that is, virtualized resourcesmay be allocated
to, or deallocated from, VMs during operation by the hypervisor applying a given
resource provisioning policy. Elasticity might have significant impact on the attack
detection accuracy exhibited by an IDS in a virtualized environment featuring elasticity
(e.g., an IDS deployed as a VNF). Conventional metrics for quantifying IDS attack
detection accuracy (i.e., IDS evaluation metrics) do not express this impact, which
might lead to inaccurate measurements.

In this chapter, we first provided an overview of conventional IDS evaluation metrics.
We demonstrated the impact that elasticity may have on IDS attack detection accuracy
and we showed how the use of conventional IDS evaluation metrics may lead to
practically challenging and inaccurate measurements. We then proposed a novel
metric (i.e., the HF metric) and measurement methodology, which take elasticity into
account. We designed the HF metric with respect to a set of criteria for the accurate
and practically useful evaluation. For example, the HF metric penalizes resource
underprovisioning causing the reduction of the true positive rate exhibited by a given
IDS. Themetric andmeasurementmethodologywe proposed aremeant to complement
conventional IDS evaluation metrics and are useful when it comes to assessing the
attack detection accuracy of an IDS that is deployed in a virtualized environment
featuring elasticity and performs real-time monitoring. We demonstrated the practical
use of the HF metric through a set of case studies.

139

Chapter 7

Conclusions and Outlook
In this chapter, we conclude this thesis with a summary of the contributions presented
in the previous chapters. In addition, we discuss future work on improving the security
of virtualized environments and on evaluating intrusion detection systems (IDSs) in
such environments.

7.1 Summary

Intrusion detection is the process of monitoring the events occurring in a computer or
networked system and analyzing those events for signs of possible incidents [SM07].
IDSs — software systems automating the intrusion detection process — are therefore
crucial security mechanisms. With the increasing variety and complexity of IDSs, the
development of evaluation methodologies, techniques, and tools has become a key
research topic that has received a considerable amount of attention [MVK+15]. The
benefits of IDS evaluation are manyfold. For instance, one may compare multiple IDSs
in terms of their attack detection accuracy in order to deploy an IDS that operates
optimally in a given environment, thus reducing the risks of a security breach. Further,
one may tune an already deployed IDS by varying its configuration parameters and
investigating their influence through evaluation tests. This enables comparison of the
evaluation results with respect to the configuration space of the IDS, which can help
to identify an optimal configuration.

Given the significant amount of existing practical and theoretical work related to IDS
evaluation, a structured classification and a scientifically rigorous analysis is needed
to improve the general understanding of the topic and to provide an overview of
the current state of the field. Such an overview would be benefitial for identifying
and contrasting advantages and disadvantages of different IDS evaluation methods
and practices. It would also help identifying requirements and best practices for
evaluating current as well as future IDSs. To this end, in Chapter 2, we first provided
the background knowledge essential for understanding the topic of intrusion detection
and IDS evaluation. We discussed different types of attacks and put intrusion detection
into a common context with other security mechanisms. We also defined different
types of IDSs. We systematized the latter according to the monitored platform, the
attack detection method, the monitoring method, and the deployment architecture.
In addition, we demonstrated the wide applicability of IDS evaluation by discussing

141

Chapter 7: Conclusions and Outlook

its relevance to: (i) researchers, who typically perform small-scale evaluation studies
to compare novel IDSs with other IDSs in terms of selected IDS properties that are
subject of research; (ii) industrial software architects, who typically evaluate IDSs by
carrying out internationally standardized tests of a large scale; and (iii) IT security
officers, who evaluate IDSs in order to select an IDS that is optimal for protecting
a given environment, or to optimize the configuration of an already deployed IDS.
Finally, we provided a historical overview of major developments in the area of IDS
evaluation ordering them chronologically.

After providing the essential background knowledge, in Chapter 3, we systematized
existing knowledge on IDS evaluation by defining an IDS evaluation design space
that puts existing work into a common context. The IDS evaluation design space
that we presented is structured into three parts: workload, metrics, and measurement
methodology. For each part of the design space, we comparedmultiple approaches and
methods that IDS evaluation practitioners can employ; that is, we provided guidelines
for the selection of particular workloads, metrics, and measurement methodologies
to use in a given scenario based on the established goals and ability to meet specific
requirements. Throughout our discussions on workloads, we identified, and provided
links to, commonly used tools, including, for example, workload drivers and trace
capturing & replay tools, exploit repositories, and trace repositories. Throughout
our discussions on measurement methodologies, we demonstrated how different IDS
evaluation approaches are applied in practice. We covered approaches for evaluating
the IDS properties attack coverage, resistance to evasion techniques, attack detection
accuracy, resource consumption, performance overhead, and workload processing
capacity (cf. Chapter 3).
Virtualization allows the creation of logical instances of physical devices. In a

virtualized system, governed by a hypervisor, resources are shared among virtual
machines (VMs) running on top of the hypervisor. Virtualized environments are
becoming increasingly ubiquitous with the growing proliferation of virtualized data
centers and cloud environments.
While virtualization provides many benefits, such as reduction of costs through

server consolidation, it also introduces some new challenges. More specifically, the
introduction of a hypervisor is a critical aspect introducing new threats and vulnera-
bilities, such as attacks targeting the hypervisor. For example, hypercalls (i.e., software
traps from a kernel of a fully or partially paravirtualized VM to the hypervisor) can
enable intrusion into vulnerable hypervisors, initiated from a malicious VM kernel, in
a procedural manner through hypervisors’ hypercall interfaces. The exploitation of
a vulnerability of a hypercall handler may lead to altering the hypervisor’s memory
enabling, for example, the execution of malicious code with hypervisor privileges.

Despite the importance of hypercall vulnerabilities, there is not much publicly avail-
able information on them. Publicly disclosed vulnerability reports describing hypercall
vulnerabilities (e.g., CVE-2013-4494 [CVEi]) are typically the sole source of information
and provide only high-level descriptions. With the goal of increasing the amount of
publicly available information on vulnerabilities of hypervisors’ hypercall handlers
(i.e., hypercall vulnerabilities) and attacks triggering them (i.e., hypercall attacks), in

142

7.1 Summary

Chapter 4, we analyzed a set of 35 hypercall vulnerabilities. Our vulnerability analysis
approach consisted of analyzing publicly available reports describing the considered
vulnerabilities, for example, Common Vulnerabilities and Exposures (CVE) reports
and security advisories, reverse-engineering the patches fixing the vulnerabilities, and
developing proof-of-concept code, which allowed us to trigger the vulnerabilities and
closely observe all stages of the life cycle of a typical hypercall attack. It also allowed us
to systematize attackers’ activities into attack models. Among other things, models of
hypercall attacks facilitate the development of approaches for improving the security
of hypercall interfaces where mimicking attackers targeting these interfaces is needed,
for example, discovery of vulnerabilities by fuzzing (cf. Chapter 4).
The wide adoption of virtualization has led to the emergence of novel IDSs specif-

ically designed to operate in virtualized environments (i.e., hypervisor-based IDSs,
such as Xenini [MM11]). These IDSs have components both inside the hypervisor
and in a designated VM. The increased adoption of virtualization has also led to the
practice of deploying conventional IDSs as virtual network functions (VNFs). Some of
these IDSs have the functionality to detect hypercall attacks, such as Xenini [MM11]
and the de-facto standard host-based IDS Open Source Security (OSSEC) [oss]. In the
context of this thesis, under hypercall attack, we understand not only attacks triggering
hypercall vulnerabilities, but also other malicious hypercall activities, for example,
covert channel operations [WDW+14] (see Section 1.3).

Workloads that contain hypercall attacks are crucial for evaluating the attack detec-
tion accuracy of IDSs designed to detect hypercall attacks. However, the generation
of such workloads is challenging since publicly available scripts that demonstrate
hypercall attacks are rare [MPA+14], [HL09] (cf. Chapter 1). An approach towards
addressing this issue is attack injection (see Section 1.2.1). In Chapter 5, we presented
an approach for the evaluation of IDSs deployed in virtualized environments using
attack injection. We presented hInjector, a tool for generating IDS evaluation work-
loads that contain virtualization-specific attacks (i.e., attacks leveraging or targeting
the hypervisor via its hypercall interface — hypercall attacks). Such workloads were
previously not available, which significantly hindered IDS evaluation efforts. We de-
signed hInjector with respect to three main criteria: (i) injection of realistic attacks
with respect to representative attack models, which we presented in Chapter 4; (ii)
injection of attacks during regular system operation, and (iii) injection of attacks in
a non-disruptive manner. These criteria are crucial for the representative, rigorous,
and practically feasible evaluation of IDSs. We demonstrated the application of our
approach and showed its practical usefulness by evaluating a representative IDS de-
signed to detect hypercall attacks. We used hInjector to inject attacks that trigger real
vulnerabilities as well as IDS evasive attacks.

A virtualized environment may be elastic, that is, virtualized resources may be
allocated to, or deallocated from, VMs during operation by the hypervisor applying
a given resource provisioning policy. Elasticity might have significant impact on the
attack detection accuracy exhibited by an IDS in a virtualized environment featuring
elasticity (i.e., a hypervisor-based IDS or an IDS deployed as a VNF). Conventional
metrics for quantifying IDS attack detection accuracy (i.e., IDS evaluation metrics) do

143

Chapter 7: Conclusions and Outlook

not express this impact, which might lead to inaccurate measurements. To this end,
in Chapter 6, we first provided a compact overview of conventional IDS evaluation
metrics. Note that we provided an extensive analysis of conventional IDS evaluation
metrics in Section 3.3 of Chapter 3. We then demonstrated the impact that elasticitymay
have on IDS attack detection accuracy and we showed how the use of conventional IDS
evaluation metrics may lead to practically challenging and inaccurate measurements.
Furthermore, we proposed a novel metric, that is, the hypervisor factor (HF) metric,
and measurement methodology that take elasticity into account. We designed the
metric with respect to a set of criteria for the accurate and practically feasible evaluation
of IDSs. For example, the HF metric penalizes resource underprovisioning causing
the reduction of the true positive rate exhibited by a given IDS. We demonstrated the
practical use of the HF metric through a set of case studies (cf. Chapter 6).

We stress that robust IDS evaluation techniques and accurate metrics for quantifying
the attack detection accuracy of IDSs are essential not only to evaluate specific IDSs,
but also as a driver of innovation in the field of intrusion detection by enabling the
identification of issues and the improvement of existing intrusion detection techniques
and systems.

7.2 Outlook

The results presented in this thesis provide the basis for several opportunities for
future work, summarized in the sections below. We structure the discussions in
this section with respect to the previous chapters of this thesis, where we presented
our research contributions (i.e., Chapter 3, Chapter 4, Chapter 5, and Chapter 6). In
Section 7.2.5, we discuss system evaluation scenarios that can be studied using the
methods presented in Chapter 5 and Chapter 6, in some of which these methods can
be applied in combination.

7.2.1 Future Topics in IDS Evaluation

We now discuss relevant future topics in the area of IDS evaluation, which we surveyed
in Chapter 3. We focus on open issues and challenges that apply to evaluating novel
IDSs, more specifically high-speed IDSs, hypervisor-based IDSs, and IDSs for detecting
advanced persistent threats (APTs)/zero-day attacks (see Section 2.1.2).

High-speed IDSs Due to the ever-increasing amount of network traffic, much at-
tention has been given to designing high-speed network-based IDSs (see, for exam-
ple, [LP13]). These IDSs use workload processing components specifically designed
for efficiently processing high-rate workloads (e.g., pattern matchers, see Section 3.4.2).
When it comes to designing high-speed network-based IDSs and evaluating their work-
load processing capacity, current work is biased in favor of designing novel pattern
matchers and evaluating their impact on IDS capacity [LL13]. Lin et al. [LL13] pro-
filed the source code of the IDSs Snort [Roe99] and Bro [TBNSM] in order to identify

144

7.2 Outlook

performance bottlenecks. They discovered that the workload processing components
used for detecting current IDS evasive attacks (e.g., packet reassembly mechanisms)
are often bigger performance bottlenecks than pattern matchers. This indicates that
novel white-box IDS evaluation methods and tests targeting the previously mentioned
components should be designed to better understand how these components affect the
workload processing capacity of IDSs. This is challenging since it requires in-depth
knowledge on the designs of tested IDSs. Further, in contrast to current practice in IDS
capacity testing (see Section 3.4.3), the needed tests would involve the generation of
workloads that contain modern IDS evasive attacks in order to exercise the targeted
workload processing components.

Hypervisor-based IDSs IDSs specifically designed for deployment and operation
in virtualized environments (i.e., hypervisor-based IDSs) are becoming common with
the growing proliferation of virtualized data centers. Such IDSs are deployed in the
virtualization layer, usually with components inside the hypervisor and in a designated
VM (see [JXZ+11] and Section 1.1). This enables them to monitor the network and/or
host activities of all co-located VMs at the same time. Next, we list key issues related
to evaluating hypervisor-based IDSs:

(i) Challenging generation of workload traces: A typical hypervisor-based IDS combines
hardware-level information about VMs (e.g., CPU register values) with high-level
domain-specific knowledge (e.g., kernel data structures, see [SSG08]) to detect attacks.
As a result, we argue that it is a significant challenge to capture workload trace files
that contain the exact information required by a hypervisor-based IDS. Given the
complexity of recording procedures, it is expected that replay procedures would also
be challenging. Thus, a systematic classification structuring the various types of in-
formation used by hypervisor-based IDSs would be an important contribution. This
can be used as a basis to design configurable recording and replay mechanisms. We
discussed this issue in detail in Section 3.5.1.

(ii) Challenging definition of a baseline workload profile: A hypervisor-based IDS mon-
itors the activities of multiple VMs at the same time. In modern data centers, the
number of VMs co-located on a hypervisor can vary due to VMmigration— a new VM
may arrive or an existing one may be removed from a hypervisor due to, for example,
load balancing. Thus, one can expect that in a real-world setting, the VMs’ activities
monitored by a hypervisor-based IDS would change drastically over time. Given this
diversity, we argue that it is challenging to define a baseline workload profile that is
representative of a “normal" workload for a given virtualized environment, which is
needed for IDS training (see Section 2.1.2). A solution would be the development of a
model allowing to estimate the characteristics of the VMs’ activities monitored by a
hypervisor-based IDS for different VM deployment scenarios, and identify baseline
workload profiles. We discussed this issue in detail in Section 3.5.1.

IDSs for detecting APTs/zero-day attacks The detection of APTs is becoming an
increasingly important topic due to the escalating number of incidents and severity of

145

Chapter 7: Conclusions and Outlook

APTs. An APT is a carefully executed attack with the objective of intruding a given
domain and remaining undetected for an extended period of time. The execution of
an APT consists of multiple steps, such as executing a zero-day attack and deploying
malware to establish a command & control channel. Therefore, the detection of APTs is
performed by composite IDSs consisting of mechanisms for detecting a variety of mali-
cious activities in a coordinated manner, for example, host-, anomaly-based IDSs for
detecting zero-day attacks, and network-, misuse-based IDSs for discovering command
& control channels. An example of such an IDS is Deep Discovery by TrendMicro [DD].

The rigorous and realistic evaluation of IDSs designed to detect APTs/zero-day
attacks is an issue that has not been thoroughly addressed so far. Since mechanisms
used for detecting APTs are anomaly- or misuse-based IDSs, their attack detection
accuracies can be quantified using the security-related metrics we discussed in Sec-
tion 3.3 of this thesis. However, the generation of IDS evaluation workloads that
contain APTs/zero-day attacks is an open issue. One of the first methodologies for
evaluating IDSs designed to detect APTs/zero-day attacks has been published only
recently by NSS Labs (for more information onNSS Labs see Section 2.2.2) [NSSb]. This
methodology involves the use of high-interaction honeypots for capturing zero-day
attacks that can be executed as part of IDS evaluation workloads.
Given the increasing demand for approaches to evaluate IDSs designed to detect

APTs/zero-day attacks, the focus of the IDS evaluation community may shift in the
near future towards addressing related issues. For instance, of great importance is
the design and evaluation of novel honeypots that capture zero-day attacks such that
the attacks can be used as IDS evaluation workloads with minimal investment of time.
An example is a high-interaction honeypot that specializes in constructing “ground
truth” (e.g., a honeypot that can distinguish different attack sessions in order to assign
a unique identifier to each session). Current honeypots do not support the automatic
construction of “ground truth”, which at this time is performed manually by a human
expert and therefore is very time-consuming and error-prone (see Section 3.2.6).
The development of approaches for the generation of representative command &

control traffic is also important. With the proliferation of cloud environments, attackers
have started using cloud services (e.g., Google Apps) as command & control channels
in order to evade IDSs— communication with such services is normally part of regular
production traffic, and is therefore often considered trusted and not a priority for
analysis [TMI]. The development of activity models involving the use of popular cloud
services that can be used as a basis for the generation of command & control traffic to
record traces (i.e., IDS evaluation workloads in trace form, see Section 3.2.6), would
enable the rigorous evaluation of IDSs designed to detect APTs.

7.2.2 Security of Hypervisors’ Hypercall Interfaces

We now present an action plan for improving the security of hypervisors’ hypercall
interfaces, which we analyzed in Chapter 4.

• Tools for fuzzing hypercalls, which can be used for the convenient and time-

146

7.2 Outlook

efficient discovery of hypercall vulnerabilities, are lacking and should be devel-
oped. Such tools would significantly speed up the process of discovering hyper-
call vulnerabilities, especially those due to implementation errors. Hypercall
fuzzing is challenging since, unlike, for example, system calls, many hypercalls
perform operations that alter the state not only of the system executing them (i.e.,
a VM), but also of the underlying hypervisor (see Section 4.3.1).

• Our study revealed that non-implementation errors causing hypercall vulnerabil-
ities are common. As a result, we argue that methods for formally verifying the
functional correctness of hypercalls aimed at discovering non-implementation
errors causing hypercall vulnerabilities (see Section 4.2.1) should be developed
(see Section 4.3.1).

• Secure hypercall programming practices enforcing, for example, value valida-
tions of all variables used within a given hypercall handler (i.e., input parameters
and internal variables), would help to eliminate missing value validation errors.
The application of such practices would lead to the development of secure hy-
percalls, which, however, may execute more slowly. This poses the challenge of
developing hypercall programming practices such that, for example, rigorous
and frequent value validations can be performed at a reasonable performance
cost.

• Existing security mechanisms, for example, intrusion detection and prevention
systems (IDPSs), which take into account hypercall parameter values to detect
and/or prevent hypercall attacks, are not effective against hypercall attacks
carried out by executing regular hypercalls in a specific way (see Section 4.2.3).
Given that many of the current hypercall vulnerabilities can be triggered by
executing regular hypercalls in a specific way, we argue that security mechanisms
that not only consider hypercall parameter values, but also the way in which
hypercalls are executed, should be developed.

• Approaches for generating artificial workloads that contain representative hy-
percall attacks should be developed since they are crucial for the accurate and
rigorous evaluation of IDPSs designed for detecting and preventing hypercall
attacks. The development of approaches for generating workloads that contain
hypercall attacks is challenged by the lack of publicly available information on
hypercall vulnerabilities and attacks (see Section 1.3).

7.2.3 Evaluation of Intrusion Detection Systems Using Attack
Injection

In this section, we discuss further scenarios, where the IDS evaluation approach we
presented in Chapter 5, can be applied. We also discuss opportunities for future work
in the area of evaluation of IDSs designed to detect hypercall attacks.

Besides evaluating typical anomaly-based IDSs, such as Xenini (see Section 5.4), our
approach, or hInjector in particular, can be used for:

147

Chapter 7: Conclusions and Outlook

• evaluating hypercall access control (AC) systems — an example of such a system
is Xen Security Modules - Flux Advanced Security Kernel (XSM-FLASK). By
evaluating AC systems, we mean verifying AC policies for correctness. This is
performed by first executing hypercalls whose execution in hypervisor context
should be prohibited and then verifying whether their execution has indeed
been prohibited. hInjector can greatly simplify this process since it allows for
executing arbitrary hypercall activities and recording relevant information (e.g.,
information on whether invoked hypercalls have been executed in hypervisor
context, see Section 5.3.1);

• evaluating whitelisting IDSs — by whitelisting IDS, we mean IDS that fires an
alarm when it observes an activity that has not been whitelisted, either by a
user or by the IDS itself while being trained. For example, OSSEC [oss] can be
configured to whitelist the hypercall activities it observes during training — our
approach involves both rigorous IDS training and execution of arbitrary hypercall
activities (see Section 5.2); RandHyp [WCMX12] and Message Authentication
Code/Hypercall Access Table (MAC/HAT) [HL09] detect and block the execution
of hypercall invocations that originate from untrusted locations (e.g., a loadable
kernel module) — hInjector supports the injection of hypercall attacks both from
the kernel as well as from a kernel module (see Section 5.3.1).

Our work on evaluating IDSs designed to detect hypercall attacks can be continued
in several directions. The integration of VM replay mechanisms in our approach, such
as XenTT [Bur13], should be investigated. This may help to further alleviate concerns
related to the repeatability of VMs’ hypercall activities (see Section 5.2.2). Further,
the establishment of a continuous effort on analyzing publicly disclosed hypercall
vulnerabilities in order to regularly update hInjector’s attack library (see Section 5.3.2)
is an important contribution. This is because the lack of up-to-date workloads is amajor
issue in the field of IDS evaluation. In addition, a wide variety of security mechanisms
(see above) that we have not yet evaluated, can be extensively evaluated using our
approach. Finally, the application of our approach for injecting attacks involving
operations that are functionally similar to hypercalls, such as the input/output control
(ioctl) calls of the Kernel-based Virtual Machine (KVM) hypervisor, could be explored.
This would allow for evaluating in an accurate and representative manner a broader
set of security mechanisms than the one our approach is currently intended for.

7.2.4 Quantifying Attack Detection Accuracy

We now discuss possibilities for future work continuing the work presented in Chap-
ter 6, that is, the HF metric and the measurement methodology we developed.
The measurement methodology we proposed can be extended such that resource

provisioning scenarios where the hypervisor allocates or deallocates different types of
resources (e.g., both processing andmemory resources) are considered when determin-
ing the baseline state of an IDS (see Section 6.3.2). This would enable the application of
our methodology in any resource provisioning scenario. Further, the HF metric can be
extended such that penalization of overprovisioning and rewarding, or penalization,

148

7.2 Outlook

of underprovisioning can be scaled up or down by a factor configured by the user of
the metric. This would allow for further customization of the HF metric and its output
with respect to the user requirements. Finally, a set of IDS evaluation experiments
using the HF metric and the measurement methodology we proposed, and involving a
variety of IDSs and hypervisors applying various resource provisioning policies, may
be conducted. Among other scenarios, of particular interest are evaluation scenar-
ios involving IDSs that have adaptive characteristics leading to frequently changing
resource requirements, such as Workload-aware Intrusion Detection (WIND) [SJP06].

7.2.5 Future Evaluation Scenarios

In this section, we discuss evaluation scenarios involving existing systems whose attack
detection accuracy can be evaluated using the contributions presented in Chapter 5
and Chapter 6 (i.e., the proposed IDS evaluation approach as well as the HF metric
and the proposed measurement methodology). We present some of these systems
in Table 7.1, which include Bro [TBNSM], Covert Channel (C2) Detector [WDW+14],
OSSEC [oss], and sHype Access Control Mechanism (ACM) [SPB+].

Table 7.1: Systems that can be evaluated using the contributions of this thesis.

Name Hypercall Real-time IDS type

Intrusion detection
systems

Bro [TBNSM] X conventional
Collabra [BSNS11a] X X hypervisor-based
C2 Detector [WDW+14] X X hypervisor-based
OSSEC [oss] X X conventional
Snort [Roe99] X conventional
Suricata [sur] X conventional
Wizard [SSG08] X X hypervisor-based
Xenini [MM11] X X hypervisor-based

Hypercall
protection
mechanisms

MAC/HAT [HL09] X X n/a
RandHyp [WCMX12] X X n/a
sHype ACM [SPB+] X X n/a
XSM-FLASK [XSM] X X n/a

The IDS evaluation approach based on hypercall attack injection and the hInjector
tool we presented in Chapter 5 are useful for evaluating the attack detection accuracy
of IDSs that have the functionality to detect hypercall attacks (column ‘hypercall’ in
Table 7.1). To this category belong primarily hypervisor-based IDSs (‘hypervisor-based’
in column ‘IDS type’ in Table 7.1) and some conventional IDSs deployed as VNFs
(‘conventional’ in column ‘IDS type’ in Table 7.1).

The HF metric and the measurement methodology we presented in Chapter 6 are
more general and can be used to test any IDS that performs real-time monitoring (col-

149

Chapter 7: Conclusions and Outlook

umn ‘real-time’ in Table 7.1). To this category belong both hypervisor-based IDSs and
conventional IDSs deployed as VNFs, such as the de-facto standard IDSs OSSEC [oss]
and Snort [Roe99].

For IDSs that have the functionality to detect hypercall attacks and perform real-time
monitoring, our approach for injecting hypercall attacks can be applied in combination
with the HF metric and the proposed measurement methodology. Such IDSs are
marked in bold in Table 7.1.
As we mentioned in Section 7.2.3, besides IDSs, the contributions of this thesis are

useful for the evaluation of hypercall protection mechanisms (‘hypercall protection
mechanisms’ in Table 7.1), for example, AC mechanisms. These include the de-facto
standard hypercall protection mechanism XSM-FLASK [XSM], which enables manda-
tory access control of hypercalls based on policies. For instance, our hypercall attack
injection approach is useful for verifying XSM-FLASK policies, especially policies of
large sizes. For hypercall protection mechanisms that perform real-time monitoring,
our approach for injecting hypercall attacks can be applied in combination with our
metrics and measurement methodologies. Such mechanisms are marked in bold in
Table 7.1.

The wide spectrum of security mechanisms in virtualized environments whose
evaluation would benefit from the contributions of this thesis reflects the practical
implication of the thesis.

150

Appendices

151

Appendix A

Technical Information on
Vulnerabilities of Hypercall Handlers

The goal of this chapter is to provide detailed technical information on hypercall
vulnerabilities needed for the improvement of the security of hypercall interfaces (see
Chapter 4). We focus on the vulnerabilities described in the vulnerability reports
CVE-2012-3494 [CVEa], CVE-2012-3495 [CVEb], CVE-2012-3496 [CVEc], CVE-2012-
4539 [CVEd], CVE-2012-5510 [CVEe], CVE-2012-5513 [CVEf], CVE-2012-5525 [CVEg],
and CVE-2013-1964 [CVEh], which we discussed in Chapter 4 and Chapter 5 of this
thesis. These vulnerabilities are representative of the vulnerabilities that we analyzed
in terms of the errors causing them and the ways in which they can be triggered.

The vulnerabilities we consider in this chapter are from the Xen hypervisor [BDF+03],
which has the most extensive hypercall interface as opposed to other hypervisors, such
as the Kernel-based Virtual Machine (KVM) hypervisor [Kiv07]. The considered vul-
nerabilities are in the handlers of the hypercalls memory_op, gnttab_op, set_debugreg,
physdev_op, andmmuext_op. For each considered vulnerability, we provide background
information essential for understanding the vulnerability, and information on the
vulnerable hypercall handler (i.e., information about the workflow presented in pseu-
docode, and input and output data of the handler), and the error causing the vulnera-
bility. We also show how the vulnerability can be triggered and discuss the state of the
targeted hypervisor after the vulnerability has been triggered.
We stress that we provide information on a vulnerable hypercall handler to the

extent that is relevant for understanding a given vulnerability, for example, we discuss
only some input parameters of the handler. We also stress that we do not provide
proof-of-concept code for triggering the considered vulnerabilities ready for use. We
present only the hypercalls executed as part of an attack triggering a given hypercall
vulnerability, and the values of relevant hypercall parameters (i.e., parameters identify-
ing the executed hypercalls and, where applicable, parameters with values specifically
crafted for triggering the vulnerability). Finally, we stress that we do not demonstrate
vulnerability exploitation where it is possible (e.g., malicious code execution). We
focus instead on the errors causing the considered vulnerabilities, the activities for
triggering them, and the effects of triggering the vulnerabilities on the state of the
vulnerable hypervisors. We argue that the information that we provide is relevant for
better understanding the security threats that hypercall interfaces pose, which will

153

Appendix A: Technical Information on Vulnerabilities of Hypercall Handlers

help to focus approaches for improving the security of hypervisors.
The work presented in this chapter has been published in [MVP+14].

A.1 Hypercall memory_op

The memory_op hypercall is used for managing the memory of a guest virtual machine
(VM), for example, altering the layout of a given memory region. We refer the reader
to [xenb] for more information on the functionalities of thememory_op hypercall. In the
handler ofmemory_op, the different types of memory addresses that the Xen hypervisor
supports for abstracting physical memory available to guest VMs are used for accessing
locations in memory:

• virtual address - an address of a location in the virtual memory of a guest VM;
• Guest Pseudo-Physical Frame Number (GPFN) - an address of a page frame that

is a physical memory address from the perspective of a guest VM;
• Guest Machine Frame Number (GMFN) - an address of a page frame that is a

machine address from the perspective of a guest VM;
• Machine FrameNumber (MFN) - an address of a page frame that is a real machine

address.
For accessing contiguousmemory blocks, the different types of addresses mentioned

above are used for accessing extents of a given order such that an extent consists of
2order memory pages.

Mappings between the different types of memory addresses are stored in tables
for that purpose. Mappings between virtual addresses and GPFNs are stored in a
page table, between GPFNs and GMFNs in a physical-to-machine table, and between
GMFNs and GPFNs in a machine-to-physical table.
We refer the reader to [xenc] and [Chi07] for further information on how the Xen

hypervisor manages memory.

A.1.1 Vulnerability CVE-2012-3496

“XENMEM_populate_physmap in Xen 4.0, 4.1, and 4.2, and Citrix XenServer 6.0.2 and
earlier, when translating paging mode is not used, allows local paravirtualized (PV)
OS guest kernels to cause a denial of service (BUG triggered and host crash) via invalid
flags such as MEMF_populate_on_demand." [CVEc]

XENMEM_populate_physmap is an operation of the memory_op hypercall, which is
used for requesting extents from the hypervisor. XENMEM_populate_physmap is also
used for marking extents as “populate-on-demand”. Extents marked as “populate-on-
demand” can be assigned to the physical memory of a given guest VM, or removed
from it, on demand at run time.

154

A.1 Hypercall memory_op

Input:1 XENMEM_populate_physmap takes as input a structure of type xen_memo-
ry_reservation, which is defined as:

struct xen_memory_reservation {
GUEST_HANDLE(xen_pfn_t) extent_start;
unsigned int extent_order;
unsigned int address_bits;
. . .

}

extent_start stores the virtual address of the head of an array that contains mem-
ory addresses (GPFNs) at which the extents obtained from the hypervisor are to be
mapped, or addresses (GPFNs) of the beginnings of the extents that are to be marked
as “populate-on-demand”; extent_order stores the order of a single extent; address_bits
stores the flags of the XENMEM_populate_physmap hypercall operation, one of which
is MEMF_populate_on_demand. MEMF_populate_on_demand is enabled when XEN-
MEM_populate_physmap is used for marking extents as “populate-on-demand”.

Output:1 On success, XENMEM_populate_physmap returns the number of the ob-
tained extents or of the extents marked as “populate-on-demand”. In case XEN-
MEM_populate_physmap has been used for obtaining extents, the array that starts at the
virtual address stored in extent_start is populated with the memory addresses (MFNs)
of the beginnings of the obtained extents. On failure, XENMEM_populate_physmap
returns an error code (typically a negative integer value).

Workflow of the vulnerable hypercall handler:1

do_memory_op (XENMEM_populate_physmap, (struct xen_memory_reservation) res)
. . .
call populate_physmap(...)
. . .
for each GPFN in res.extent_start
if MEMF_populate_on_demand
call guest_physmap_mark_populate_on_demand(...)
call BUG_ON(...)
. . .

return
. . .

else:
. . .

. . .
return

return

1As in Xen of version 4.1.0.

155

Appendix A: Technical Information on Vulnerabilities of Hypercall Handlers

Description of the vulnerability: In guest_physmap_mark_populate_on_demand, a func-
tion invoked in the handler of XENMEM_populate_physmap, the BUG_ON macro
is used for checking whether the guest VM from where the memory_op hypercall
has been invoked has the “translated paging” mode disabled. BUG_ON is a macro
that crashes the system where it is executed if the condition that it evaluates is true.
If guest_physmap_mark_populate_on_demand is invoked from a paravirtualized guest
VM (note that paravirtualized guest VMs have the “translated paging” mode dis-
abled by default), the condition that the BUG_ON macro evaluates is true and the
hypervisor crashes. Thus, CVE-2012-3496 can be triggered by invoking the XEN-
MEM_populate_physmap hypercall operation, with the MEMF_populate_on_demand flag
enabled, from a paravirtualized guest VM.

Vulnerability fix: A patch fixing the vulnerability CVE-2012-3496 was released on 5
September 2012 and is available at [patc]. The patch replaces the BUG_ON macro with
an if clause.

Triggering CVE-2012-3496: We triggered CVE-2012-3496 in the following environ-
ment:

• guest VM: OS - Debian Squeeze (64 bit), kernel - 2.6.32-5-amd64;
• host VM: OS - Debian Squeeze (64 bit), kernel - 2.6.32-5-amd64;
• hypervisor: Xen 4.1.0.
The attack that we executed is depicted in Figure A.1.

Guest VM!
(``translated paging’’ mode disabled)!

Hypervisor!

HYPERVISOR_update_va_mapping (…)!

Crash!

.address_bits = (1<<16); //MEMF_populate_on_demand!

HYPERVISOR_memory_op!
(XENMEM_populate_physmap, &reservation);!

0

x8!

Figure A.1: An attack triggering CVE-2012-3496.

Post-attack state of the hypervisor: The hypervisor crashes when the BUG_ONmacro
is executed.

156

A.1 Hypercall memory_op

A.1.2 Vulnerability CVE-2012-5513

“The XENMEM_exchange handler in Xen 4.2 and earlier does not properly check the
memory address, which allows local PV guest OS administrators to cause a denial
of service (crash) or possibly gain privileges via unspecified vectors that overwrite
memory in the hypervisor reserved range.” [CVEf]

XENMEM_exchange is an operation of the memory_op hypercall, which is used for
modifying the layout of a memory region of a guest VM by “exchanging” extents
between the guest VM and the hypervisor. The latter is performed by remapping a set
of memory addresses (GPFNs) of beginnings of extents of the guest VM to memory
addresses (GMFNs) of beginnings of extents, requested by the guest VM and allocated
by the hypervisor for the “exchange” operation. For instance, XENMEM_exchange can
be used for defragmenting memory such that, for example, 2 extents consisting of 2
pages are exchanged for a single extent consisting of 4 pages.

Input:2 XENMEM_exchange takes as input a structure of type xen_memory_exchange
defined as:

struct xen_memory_exchange {
struct xen_memory_reservation in;
struct xen_memory_reservation out;
xen_ulong_t nr_exchanged;

}

, where xen_memory_reservation is defined as:

struct xen_memory_reservation {
GUEST_HANDLE(xen_pfn_t) extent_start;
unsigned int extent_order;
xen_ulong_t nr_extents;
. . .

}

The fields of the (struct xen_memory_exchange) in structure store information about
the extents that are to be “exchanged”. in.nr_extents stores the number of extents
to be “exchanged”; in.extent_start stores the virtual address of the head of an array
that contains the memory addresses (GMFNs) of the beginnings of the extents to be
“exchanged”; in.extent_order stores the order of a single extent.

The fields of the (struct xen_memory_exchange) out structure store information about
the extents requested from the hypervisor. out.nr_extents stores the number of requested
extents; out.extent_order stores the order of a single requested extent; out.extent_start
stores the virtual address of the head of an array that consists of GPFNs at which the

2As in Xen of version 4.1.0.

157

Appendix A: Technical Information on Vulnerabilities of Hypercall Handlers

requested extents are to be mapped in guest VM’s memory.

Output:2 On success, XENMEM_exchange returns 0. The array that starts at the address
stored in (struct xen_memory_exchange) out.extent_start is populated with the memory
addresses (GMFNs) of the beginnings of the extents allocated by the hypervisor for the
“exchange” operation. On failure, XENMEM_exchange returns an error code (typically
a negative integer value).

Workflow of the vulnerable hypercall handler:2

do_memory_op (XENMEM_exchange, (struct xen_memory_exchange) exch)
callmemory_exchange (XENMEM_exchange, (struct xen_memory_exchange) exch)
. . .
allocate extent(s) of 2exch.in.order pages
store the addresses (GMFNs) of the beginnings of the allocated extents in array mfn
. . .
call __copy_to_guest_offset(...)

populate memory beginning at exch.out.extent_start with the GMFNs in mfn
return
. . .

return
return

Description of the vulnerability: The function __copy_to_guest_offset(to, offset, from,
size), which is invoked in the handler of the XENMEM_exchange hypercall operation,
copies data from a virtual address in hypervisor context (from) to a virtual address
in guest VM context (to). For the sake of performance, __copy_to_guest_offset(to, offset,
from, size) did not perform value validation of the from and to parameters. As a result,
a malicious VM user can invoke __copy_to_guest_offset(to, offset, from, size) such that to
is an address reserved for use by the hypervisor, which leads to overwriting hypervi-
sor’s memory. CVE-2012-5513 can be triggered by invoking the XENMEM_exchange
hypercall operation with an address reserved for use by the hypervisor stored in the
(struct xen_memory_exchange) out.extent_start parameter.

Vulnerability fix: A patch fixing the vulnerability CVE-2012-5513 was released on 3
December 2012 and is available at [patf]. The patch inserts an invocation of the function
guest_handle_okay in the handler of the XENMEM_exchange hypercall operation, which
validates the values of the from and to parameters of __copy_to_guest_offset. For instance,
a valid virtual address is an address that is not reserved for use by the hypervisor.

Triggering CVE-2012-5513: We triggered CVE-2012-5513 in the following environ-
ment:

• guest VM - OS: Debian Squeeze (64 bit), kernel 2.6.32-5-amd64;
• host VM - OS: Debian Squeeze (64 bit), kernel 2.6.32-5-amd64;
• hypervisor - Xen 4.1.0.

158

A.2 Hypercall gnttab_op

The attack that we executed is depicted in Figure A.2.

Guest VM! Hypervisor!

HYPERVISOR_update_va_mapping (…)!

Crash!
.out.nr_extents = 5;!
.out.extent_start = 0xFFFF808000000000;!

HYPERVISOR_memory_op!
(XENMEM_exchange, &exchange);!

0

x32!

Figure A.2: An attack triggering CVE-2012-5513.

Post-attack state of the hypervisor: When CVE-2012-5513 is triggered, the memory
region of the hypervisor beginning at the address stored in (struct xen_memory_exchange)
out.extent_start is overwritten with the memory addresses (GMFNs) of the beginnings
of the extents allocated by the hypervisor for the “exchange” operation. Thus, an
attacker cannot control the values with which the hypervisor’s memory is overwritten.
The amount of data written to the hypervisor’s memory is (struct xen_memory_exchange)
out.nr_extents bytes.
Triggering CVE-2012-5513 may result in a crash of the hypervisor or corrupting its

state. Whether the hypervisor crashes depends on which region of the hypervisor’s
memory is overwritten. An attacker can specify a memory region for overwriting
by storing values in the parameters (struct xen_memory_exchange) out.extent_start and
(struct xen_memory_exchange) out.nr_extents. For instance, when we triggered CVE-2012-
5513 in our testbed environment, for the values of 0xFFFF808000000000 and 32, and
0xFFFF808000000000 and 16, of (struct xen_memory_exchange) out.extent_start and (struct
xen_memory_exchange) out.nr_extents, respectively, the hypervisor crashed. For the
values of 0xFFFF808000000000 and 8 of (struct xen_memory_exchange) out.extent_start
and (struct xen_memory_exchange) out.nr_extents, the hypervisor continued operating
with its memory overwritten.

A.2 Hypercall gnttab_op

The gnttab_op hypercall is used for managing grant tables. Grant tables provide a
mechanism for sharing memory between guest VMs (domains in Xen terminology)
running on top of a Xen hypervisor; that is, it enables the sharing of page frames by
granting page frame access permissions to domains or transferring ownerships of

159

Appendix A: Technical Information on Vulnerabilities of Hypercall Handlers

pages between domains. Each domain maintains a grant table, which is shared with
the hypervisor. A grant table consists of grant table entries (i.e., grants) indexed by grant
references (i.e., grefs). In order to access a page frame for which it needs an access
permission, a domain first has to acquire the grant that grants the access permission
from the domain that has issued the grant. When an acquired grant is not needed
anymore, it is released.
There are version 1 and version 2 grant tables. The format of a grant table entry

of a version 1 grant table is [gref][domid][frame][flags], where gref is a grant reference,
domid is the identification number of domain to which permissions are granted, frame
is the MFN of the page frame for which permissions are granted, and flags are the
permissions granted (e.g., read, write, or read and write permissions), which are also
referred to as status of a grant table entry.
Grant tables of version 2, in addition to grants of the format mentioned above,

support transitive grants. Transitive grants are used for granting transitive permissions
such that a domain issues a grant that refers to a grant issued by another domain.
For the sake of performance, the status of grant table entries of a grant table of

version 2 are stored in status frames, which are separate from the frames where the rest
of the grant table entries are stored.
There are shared and active grants. Shared grants are grants issued by a domain.

Active grants are grants that are in use (i.e., that are acquired) at a given time. A
transitive active grant has the fields trans_domain and trans_gref, where trans_domain is
the domain that has issued the grant to which the transitive grant refers, and trans_gref
is the reference of the grant to which the transitive grant refers.
For in-depth information on the grant table mechanism of the Xen hypervisor, we

refer the reader to [xenc] and [Chi07].

A.2.1 Vulnerability CVE-2012-4539

“Xen 4.0 through 4.2, when running 32-bit x86 PV guests on 64-bit hypervisors, allows
local guest OS administrators to cause a denial of service (infinite loop and hang
or crash) via invalid arguments to GNTTABOP_get_status_frames, aka Grant table
hypercall infinite loop DoS vulnerability.” [CVEd]

GNTTABOP_get_status_frames is an operation of the grant_table_op hypercall, which
is used for retrieving MFNs of status frames (i.e., status frame MFNs) of a domain.

Input:3 GNTTABOP_get_status_frames takes as input a structure of type gnttab_get_status
_frames defined as:

struct gnttab_get_status_frames {
uint32_t nr_frames;

3As in Xen of version 4.1.2.

160

A.2 Hypercall gnttab_op

domid_t dom;
int16_t status;
XEN_GUEST_HANDLE(uint64_t) frame_list;

}

nr_frames stores the number of requested status frame MFNs; dom stores the iden-
tification number of the domain whose status frame MFNs are requested; frame_list
stores the virtual address of the head of an array where status frame MFNs are to be
stored upon successful completion of the GNTTABOP_get_status_frames operation.

Output:3 On success, a return code is stored in (struct gnttab_get_status_frames) status
and the list starting at the address stored in struct gnttab_get_status_frames) frame_list is
populated with status frame MFNs. On failure, XENMEM_populate_physmap returns
an error code (typically a negative integer value).

Workflow of the vulnerable hypercall handler:3

compat_grant_table_op(GNTTABOP_get_status_frames, (struct gnttab_get_status_frames) gf,
int count = 1)

rc = 0
i = 0
for i < count and rc = 0
. . .
if count = 1

call gnttab_get_status_frames(gf, ...)
. . .
if gf.nr_frames > the number of status frames of domain gf.dom

gf.status = GNTST_general_error
else

. . .
gf.status = GNTST_okay

return
if gf.status = GNTST_okay

increment i to gf.nr_frames
. . .

return

Description of the vulnerability: In the hypercall handler compat_grant_table_op, a for
cycle loops until the value of the variable i, which is initialized to 0, is smaller than the
value of the input parameter count, which has to be 1. In compat_grant_table_op, the
value of the variable i is incremented to the value of the input parameter (struct gnt-
tab_get_status_frames) nr_frames only if (struct gnttab_get_status_frames) status stores the
value of the constant variableGNTST_okay. The value of (struct gnttab_get_status_frames)
status is set in the function gnttab_get_status_frames, which is invoked in compat_grant_ta-
ble_op. gnttab_get_status_frames sets the value of (struct gnttab_get_status_frames) status to
the value of GNTST_okay only if the value of the input parameter (struct gnttab_get_sta-

161

Appendix A: Technical Information on Vulnerabilities of Hypercall Handlers

tus_frames) nr_frames is smaller than the number of status frames of the domain whose
identification number is stored in the parameter (struct gnttab_get_status_frames) dom.

CVE-2012-4539 can be triggered by invoking GNTTABOP_get_status_frames such that
the value of the input parameter (struct gnttab_get_status_frames) nr_frames is greater
than the number of status frames of the domain whose identification number is stored
in the parameter (struct gnttab_get_status_frames) dom. This results in infinite looping
of the for cycle in compat_grant_table_op.
In order to trigger CVE-2012-4539, one has to set the value of (struct gnttab_get_sta-

tus_frames) nr_frames to a value greater than dnr_grants×sizeof(uint16_t)PAGE_SIZE e, where nr_grants
is the number of grants issued by the domain whose identification number is stored
in (struct gnttab_get_status_frames) dom, PAGE_SIZE is the size of a single page of the
domain, and uint16_t is the size of a variable of type unsigned 16-bit integer. Since the
erroneous code is in the handler compat_grant_table_op, CVE-2012-4539 can be triggered
only from a 64-bit guest VM running on top of a 32-bit host VM.

Vulnerability fix: A patch fixing the vulnerability CVE-2012-4539 was released on 13
November 2012 and is available at [patd]. The patch modifies compat_grant_table_op
such that the value of i is set to 1, which is equal to the value of count, if the value of
(struct gnttab_get_status_frames) status is not equal to the value of GNTST_okay. This
prevents the for cycle in compat_grant_table_op from looping indefinitely.

Triggering CVE-2012-4539: We triggered CVE-2012-4539 in the following environ-
ment:

• guest VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
• host VM - OS: Ubuntu Precise (64 bit), kernel 3.8.0-29-generic;
• hypervisor - Xen 4.1.2.

The attack that we executed is depicted in Figure A.3.

Guest VM!
(64 bit)!

Hypervisor!
(32 bit host VM)!

Crash!
.nr_frames = 2;!

HYPERVISOR_gnttab_op!
(GNTTABOP_get_status_frames, &gf)!

Figure A.3: An attack triggering CVE-2012-4539.

Post-attack state of the hypervisor: When we triggered CVE-2012-4539 in our testbed
environment, the guest VM from where we invoked GNTTABOP_get_status_frames
hanged. When we issued the xm/xl destroy command to shutdown the non-responsive
guest VM, the hypervisor crashed. The hypervisor did not crash when we issued the

162

A.2 Hypercall gnttab_op

xm/xl shutdown command to shutdown, and the xm/xl reboot command to reboot, the
non-responsive guest VM.

A.2.2 Vulnerability CVE-2012-5510

“Xen 4.x, when downgrading the grant table version, does not properly remove the
status page from the tracking list when freeing the page, which allows local guest
OS administrators to cause a denial of service (hypervisor crash) via unspecified
vectors.” [CVEe]

The GNTTABOP_set_version is an operation of the grant_table_op hypercall, which is
used for downgrading (from version 2 to version 1) or upgrading (from version 1 to
version 2) grant tables.

Input:4 GNTTABOP_set_version takes as input a structure of type gnttab_set_version
defined as:

struct gnttab_set_version {
uint32_t version;

}

version stores the version to which the grant table of the domain from where GNT-
TABOP_set_version is invoked is to be set.

Output:4 On success, GNTTABOP_set_version returns 0 and the version of the grant
table from where GNTTABOP_set_version has been invoked is stored in (struct gnt-
tab_set_version) version. On failure, GNTTABOP_set_version returns an error code
(typically a negative integer value).

Workflow of the vulnerable hypercall handler:4

do_grant_table_op(GNTTABOP_set_version, ...)
call gnttab_set_version(...)
. . .
if upgrading grant table
call gnttab_populate_status_frames(...)

allocate status frames
return

if downgrading grant table
call gnttab_unpopulate_status_frames(...)

release status frames
return

. . .

4As in Xen of version 4.1.2.

163

Appendix A: Technical Information on Vulnerabilities of Hypercall Handlers

return
return

Description of the vulnerability: The function gnttab_unpopulate_status_frames, which
is invoked in the handler of the GNTTABOP_set_version hypercall operation, releases
allocated status frames when a grant table is downgraded. However, this function
does not fully perform the procedure for releasing status frames; that is, it does not
remove the nodes that are associated with the status frames being released from the
xenpage_list linked list. xenpage_list is a list of nodes that contain information about
frames allocated from the hypervisor’s heap memory space for the needs of a given
guest VM.
Since gnttab_unpopulate_status_frames does not remove from xenpage_list the nodes

associated with the status frames, subsequent allocation of the same frames leads
to adding nodes to xenpage_list that are duplicates of the nodes that have not been
removed by gnttab_unpopulate_status_frames. This is effectively a corruption of xen-
page_list. The gnttab_populate_status_frames function, which is invoked in the handler
of GNTTABOP_set_version when a grant table is upgraded, may be used for allocating
the same frames that have been released when a grant table has been downgraded.
CVE-2012-5510 can be triggered by continuously allocating and releasing status

frames, which eventually leads to corruption of xenpage_list; that is, CVE-2012-5510
can be triggered by continuously upgrading and downgrading a grant table. When a
corruption of xenpage_list occurs depends on the amount of free heap memory of the
targeted hypervisor as well as the memory allocating mechanism used.

Vulnerability fix: A patch fixing the vulnerability CVE-2012-5510 was released on
3 December 2012 and is available at [pate]. The patch modifies the function gnt-
tab_unpopulate_status_frames such that it inserts an invocation of the function put_page.
put_page removes from xenpage_list the nodes associated with the status frames being
released when a grant table is downgraded.

Triggering CVE-2012-5510: We triggered CVE-2012-5510 in the following environ-
ment:

• guest VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
• host VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
• hypervisor - Xen 4.1.2.

The attack that we executed is depicted in Figure A.4.
Post-attack state of the hypervisor: Depending on the use of xenpage_list after it
has been corrupted, triggering CVE-2012-5510 may result in crash of the targeted
hypervisor or may corrupt its state. The hypervisor crashed when we triggered CVE-
2012-5510 in our testbed environment.

164

A.2 Hypercall gnttab_op

Guest VM! Hypervisor!

HYPERVISOR_grant_table_op!
(GNTTABOP_set_version, &gsv , …)!

Crash!

HYPERVISOR_grant_table_op!
(GNTTABOP_set_version, &gsv , …)!

.!

.!0x58!

.version=1;!

.version=2;!

0

HYPERVISOR_grant_table_op!
(GNTTABOP_set_version, &gsv , …)!

.version=1;!

Figure A.4: An attack triggering CVE-2012-5510.

A.2.3 Vulnerability CVE-2013-1964

“Xen 4.0.x and 4.1.x incorrectly releases a grant reference when releasing a non-v1,
non-transitive grant, which allows local guest administrators to cause a denial of
service (host crash), obtain sensitive information, or possible have other impacts via
unspecified vectors.” [CVEh]

GNTTABOP_copy is an operation of the grant_table_op hypercall, which is used for
copying memory pages from a source domain (SD) (i.e., the domain to which the page
being copied is allocated) to a destination domain (DD) (i.e., the domain to which
the page is copied) with respect to the data read and write permissions set by the
SD and/or the DD using grant tables. GNTTABOP_copy can be invoked from the
SD, the DD, or a domain that is neither the SD or the DD. The domain from where
GNTTABOP_copy is invoked is called the local domain, whereas the other domains
involved in copying pages are called remote domains.

Input:5 GNTTABOP_copy takes as input a structure of type gnttab_copy defined as:

struct gnttab_copy {

5As in Xen of version 4.1.2.

165

Appendix A: Technical Information on Vulnerabilities of Hypercall Handlers

struct {
union {
grant_ref_t ref;
xen_pfn_t gmfn;

} u;
domid_t domid;
. . .

} source, dest;
uint16_t len;
uint16_t flags;
int16_t status;

}

source.u.gmfn stores the GMFN of the page that is to be copied if the SD is a local
domain; dest.u.gmfn stores the GMFN of the page of the DD to which a page of the
SD is to be copied if the DD is a local domain; source.u.ref stores the grant reference
of the grant that grants access to the page that is to be copied if the SD is a remote
domain; dest.u.ref stores the grant reference of the grant that grants access to the page
of the DD to which a page from the SD is to be copied in case the DD is a remote
domain; (source./dest.)u.domid stores the identification number of the SD/DD; len stores
the number of bytes to be copied; flags stores a value indicating whether the SD and
the DD are local or remote domains.

Output:5 On success,GNTTABOP_copy returns 0. On failure,GNTTABOP_copy returns
an error code (typically a negative integer value). (struct gnttab_copy) status stores a
value indicating the status of the page copying operation.

Workflow of the vulnerable hypercall handler:5

i← the domain invoking GNTTABOP_copy
d← the DD

do_grant_table_op(GNTTABOP_copy, struct grant_table_op op, ...)
call gnttab_copy(op, ...)
call __gnttab_copy(op, ...)
. . .
if the DD is remote

call __acquire_grant_for_copy
. . .
act = active grant table entry (op.dest.ref)
. . .
if the grant to be acquired is non−transitive
. . .
act.trans_domain = i
act.trans_gref = 0

. . .
return

166

A.2 Hypercall gnttab_op

. . .
if the DD is remote
call __release_grant_for_copy(d, op.dest.ref, ...)
. . .
act = active grant table entry (op.dest.ref)
. . .
if the grant to be released is of version 2
if act.trans_domain != d
call __release_grant_for_copy(act.trans_domid, act.trans_gref, ...)

return
. . .

return
return

return

Description of the vulnerability: In the handler of the hypercall operation GNT-
TABOP_copy, the function __acquire_grant_for_copy is used for acquiring grants and
__release_grant_for_copy(d, gref, ...) for releasing grants, where d is the domain that has
issued the grant to be released and gref is the reference of the grant to be released.
In case a grant of version 2 is acquired, the hypervisor creates an active grant and
sets the values of its fields trans_domid and trans_gref to the identification number of
the domain from where GNTTABOP_copy has been invoked and 0, respectively. The
reason for the latter is to enable scenarios involving, as described in the source code of
the handler of GNTTABOP_copy: “grant being issued by one domain, sent to another
one, and then transitively granted back to the original domain”.

The way in which the scenario mentioned above is supported causes non-transitive
grants of version 2 to be released as if they were transitive grants (i.e., in a recursive
manner). The culprit of this error is that when releasing a grant in the handler of
GNTTABOP_copy, it is assumed that a transitive grant is a grant whose trans_dom field
stores a domain identification number that is not equal to the identification number
of the domain that has issued the grant being released. However, since the value of
the field trans_domid of a non-transitive grant is set to the identification number of
the domain from where GNTTABOP_copy has been invoked when the grant has been
acquired, the previously mentioned condition is also true for non-transitive grants of
version 2. As a result, when a non-transitive (active) grant of version 2 is released in
the handler of GNTTABOP_copy, at least one more grant release takes place, where the
grant with a grant reference 0, issued by the domain from where GNTTABOP_copy
has been invoked, is released.
An attacker can trigger CVE-2013-1964 by invoking GNTTABOP_copy such that,

for example, a page is copied from a local SD to a remote DD, which has issued a
non-transitive grant of version 2.

Vulnerability fix: A patch fixing the vulnerability CVE-2013-1964 was released on 18
April 2013 and is available at [path]. The patch modifies __acquire_grant_for_copy such
that the value of trans_domid is set to the identification number of the domain that

167

Appendix A: Technical Information on Vulnerabilities of Hypercall Handlers

issued the grant that is acquired. Further, the value of trans_gref is set to the reference
of the grant that is acquired. These modifications of __acquire_grant_for_copy prevent
the recursive release of non-transitive grant of version 2.

Triggering CVE-2013-1964: We triggered CVE-2013-1964 in the following environ-
ment:

• guest VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
• host VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
• hypervisor - Xen 4.1.2.

The attack that we executed is depicted in Figure A.5.

Hypervisor!

HYPERVISOR_grant_table_op!
(GNTTABOP_copy, …)!

Corrupted state!

DD!
(grant table of version 2)!

HYPERVISOR_grant_table_op!
(GNTTABOP_setup_table, …)!

0

0

SD!
(grant table of version 2)!

Figure A.5: An attack triggering CVE-2013-1964.

Post-attack state of the hypervisor: Triggering CVE-2013-1964 results in a release
of the grant with reference 0 issued by the domain from where GNTTABOP_copy is
invoked. Triggering CVE-2013-1964 may disrupt the operation of the hypervisor if
the grant released due to the triggering of CVE-2013-1964 is in use (i.e., acquired) at
the time of execution of the attack. When we triggered CVE-2013-1964 in our testbed
environment, the hypervisor continued operating in a corrupted state.

A.3 Hypercall set_debugreg

A.3.1 Vulnerability CVE-2012-3494

“The set_debugreg hypercall in include/asm-x86/debugreg.h in Xen 4.0, 4.1, and 4.2,
and Citrix XenServer 6.0.2 and earlier, when running on x86-64 systems, allows local
OS guest users to cause a denial of service (host crash) by writing to the reserved bits
of the Debug Register (DR) 7 debug control register.” [CVEa]

168

A.3 Hypercall set_debugreg

The set_debugreg hypercall is used for setting the value of the DR7 register of a
CPU allocated to a guest VM. The DR7 register is used for controlling the actions of a
CPU when program debugging is performed (e.g., for setting data and/or instruction
breakpoints). The addresses at which breakpoints are set in a given debugging session
are stored in the registers DR0 – DR3.
The layout of the DR7 register of a 64-bit machine is as follows: bit63 0 0 0 ... 0 bit31

[LEN3][R/W3] ... [LEN0][R/W0]bit15 0 0 bit13 GDbit11 0 0 bit9 GE LE bit7 [G3][L3] ..
[G0][L0]. The upper 32 bits are reserved and should always be cleared. The LENx and
R/Wx fields are used for specifying the length of the monitored data items when a data
breakpoint is set (e.g., 00: one-byte length - also when an instruction breakpoint is set,
01: two-byte length) and the type of program execution break set (e.g., 00 - instruction
break, 01 - break on data write, 11 - break on data read and write), respectively. The
global exact (GE) and/or the local exact (LE) bits are set when a data breakpoint is set
and instruct the CPU to slow down the execution of the program being debugged
so that the exact instruction that triggers the data breakpoint can be reported to the
debugging program. The Gx and Lx bits are used for enabling or disabling breakpoints
set at the addresses stored in the registers DR0 - DR3.

Input:6 set_debugreg takes as input a number of a register (an integer value, 7 is used
for specifying the DR7 register) and a value that is to be stored in the register (an
unsigned long integer value).

Output:6 On success, set_debugreg returns 0. On failure, set_debugreg returns an error
code (typically a negative integer value).

Workflow of the vulnerable hypercall handler:6

do_set_debugreg (int reg_nr, unsigned long value)
call set_debugreg(reg_nr, value)
if reg_nr = 7

value &= ~DR_CONTROL_RESERVED_ZERO
. . .
store value in DR7

return
return

Description of the vulnerability: In the handler of the set_debugreg hypercall, the
value of the variable ~DR_CONTROL_RESERVED_ZERO is applied as a mask with
the binary bitwise AND operator to the value of the second parameter of set_debugreg.
The latter is performed so that the upper 32 bits of the value that is to be stored in
the DR7 register are cleared. DR_CONTROL_RESERVED_ZERO, which stores the
value of 0x0000d800ul, translates to the binary value of bit63(0...0)bit31(0000) (0000)
(0000) (0000) (1101) (1000) (0000) (0000)bit0. The complement form of the previously
mentioned binary number is: bit63(1...1)bit31(1111) (1111) (1111) (1111) (0010) (0111)

6As in Xen of version 4.1.2.

169

Appendix A: Technical Information on Vulnerabilities of Hypercall Handlers

(1111) (1111)bit0, which is stored in the variable ~DR_CONTROL_RESERVED_ZERO.
Since they are set to 1, the upper 32 bits of ~DR_CONTROL_RESERVED_ZERO do
not clear the upper 32 bits of the value that is to be stored in the DR7 register when
applied as a mask with the binary bitwise AND operator. This results in setting one
or multiple bits of the upper 32 bits of the DR7 register to 1, which is not allowed
according to hardware specifications.

CVE-2012-3494 can be triggered by invoking set_debugreg in a way such that one or
multiple bits of the upper 32 bits of the value of the second parameter of set_debugreg
are set to 1. The bits of the second parameter of set_debugreg that are used for setting
data or instruction breakpoints (e.g., the bits of the LENx fields) should store binary
values for setting an instruction breakpoint.

Vulnerability fix: A patch fixing the vulnerability CVE-2012-3494 was released on 5
September 2012 and is available at [pata]. The patch assigns the value of ~0xffff27fful
to DR_CONTROL_RESERVED_ZERO, and thus, the variable ~DR_CONTROL_RES-
ERVED_ZERO, which is applied as a mask to the value of the second parameter of
set_debugreg, has the binary value of bit63(0...0)bit31(0000) (0000) (0000) (0000) (0010)
(0111) (1111) (1111)bit0. Since the upper 32 bits of ~DR_CONTROL_RESERVED_ZERO
are cleared, applying ~DR_CONTROL_RESERVED_ZERO as a mask to the value of
the second parameter of set_debugreg with the binary bitwise AND operator clears the
upper 32 bits of the parameter.

Triggering CVE-2012-3494: We triggered CVE-2012-3494 in the following environ-
ment:

• guest VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
• host VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
• hypervisor - Xen 4.1.2.

The attack that we executed is depicted in Figure A.6.

Guest VM! Hypervisor!

HYPERVISOR_set_debugreg(7,!
~0x0000FFFFul)!

Crash!

Figure A.6: An attack triggering CVE-2012-3494.

Post-attack state of the hypervisor: Given that in current systems the upper 32 bits of
the DR7 register are reserved and should be cleared, triggering CVE-2012-3494 results
in crash of the vulnerable hypervisor. However, an outcome different than crash of the
hypervisor may be possible if a vulnerable hypervisor is run on future hardware, as
stated in [CVEa]: “if the vulnerable hypervisor is run on future hardware, the impact

170

A.4 Hypercall physdev_op

of the vulnerability might be widened depending on the future assignment of the
currently-reserved debug register bits.”

A.4 Hypercall physdev_op

A.4.1 Vulnerability CVE-2012-3495

“The physdev_get_free_pirq hypercall in arch/x86/physdev.c in Xen 4.1.x and Citrix
XenServer 6.0.2 and earlier uses the return value of the get_free_pirq function as an
array index without checking that the return value indicates an error, which allows
guest OS users to cause a denial of service (invalid memory write and host crash) and
possibly gain privileges via unspecified vectors.” [CVEb]

PHYSDEVOP_get_free_pirq is an operation of the physdev_op hypercall, which is used
for allocating Peripheral Component Interconnect Interrupt Requests (PIRQs) for the
needs of a given guest VM. The Xen hypervisor maintains an array called pirq_irq for
each guest VM that it hosts. pirq_irq is used for marking a given PIRQ as allocated
such that the value of the constant variable PIRQ_ALLOCATED (i.e., -1) is stored in
the node of pirq_irq of index equal to the allocated PIRQ.

Input:7 PHYSDEVOP_get_free_pirq takes as input structure of type physdev_get_free_
pirq defined as:

struct physdev_get_free_pirq {
int type;
uint32_t pirq;

}

type stores the type of the PIRQ to be allocated (i.e., MAP_PIRQ_TYPE_GSI or
MAP_PIRQ_TYPE_MSI).

Output:7 On success, PHYSDEVOP_get_free_pirq returns 0 and the allocated PIRQ
is stored in (struct physdev_get_free_pirq) pirq. On failure, -28 is stored in (struct phys-
dev_get_free_pirq) pirq and XENMEM_populate_physmap returns an error code (typically
a negative integer value).

Workflow of the vulnerable hypercall handler:7

do_physdev_op (PHYSDEVOP_get_free_pirq, (struct physdev_get_free_pirq) gfp)
. . .
call gfp.pirq = get_free_pirq(...)

7As in Xen of version 4.1.2.

171

Appendix A: Technical Information on Vulnerabilities of Hypercall Handlers

allocate a PIRQ
return
pirq_irq[gfp.pirq] = PIRQ_ALLOCATED
. . .

return

Description of the vulnerability: In the handler of the PHYSDEVOP_get_free_pirq
hypercall operation, the function get_free_pirq is invoked for allocating a PIRQ. The
return value of get_free_pirq is the allocated PIRQ, if a PIRQ has been succesfully
allocated, or an error code (i.e., -28) if a PIRQ could not be allocated. The return
value of get_free_pirq is used as an index to access an element of the array pirq_irq for
marking a PIRQ as allocated. However, the return value of get_free_pirq is not checked
whether it is a PIRQ or an error code. In case get_free_pirq returns an error code, the
error code is used as an array index and as a result the value of the constant variable
PIRQ_ALLOCATED (i.e., -1) is written at the memory address &pirq_irq - 28, which is
a location in hypervisor’s memory.
CVE-2012-3495 can be triggered by attempting to allocate a PIRQ when there are

no available PIRQs. This can be achieved by invoking the hypercall operation PHYS-
DEVOP_get_free_pirq multiple times until all available PIRQs are allocated and an
attempt is made to allocate a PIRQ when there are no available PIRQs. Since PIRQs
that can be allocated to a given VM are in the range of 16 to the value of the variable
nr_pirqs_gsi, a variable in hypervisor context that stores the largest PIRQ that can be
allocated to a given VM, invoking PHYSDEVOP_get_free_pirq ((nr_pirqs_gsi - 16) + 2)
times is sufficient for triggering CVE-2012-3495.

Vulnerability fix: A patch fixing the vulnerability CVE-2012-3495 was released on 5
September 2012 and is available at [patb]. The patch inserts an if clause that checks
whether the return value of the get_free_pirq function is a PIRQ. If get_free_pirq returns
an error code, the error code is not used as an index for accessing an element of the
pirq_irq array.

Triggering CVE-2012-3495: We triggered CVE-2012-3495 in the following environ-
ment:

• guest VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
• host VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
• hypervisor - Xen 4.1.2.
The attack that we executed is depicted in Figure A.7.

Post-attack state of the hypervisor: Triggering CVE-2012-3495 results in overwrit-
ing the hypervisor’s memory at the memory address &pirq_irq - 28 with the value of
the variable PIRQ_ALLOCATED (i.e., -1). An attacker cannot control the value written
in the hypervisor’s memory. Depending on the memory layout of the hypervisor, the
hypervisor may crash or continue operating in a corrupted state.

172

A.5 Hypercall mmuext_op

Guest VM! Hypervisor!

HYPERVISOR_physdev_op!
(PHYSDEVOP_get_free_pirq, …)!

Crash!

HYPERVISOR_physdev_op!
(PHYSDEVOP_get_free_pirq, …)!

0

x17!

Figure A.7: An attack triggering CVE-2012-3495.

A.5 Hypercall mmuext_op

A.5.1 Vulnerability CVE-2012-5525

“The get_page_from_gfn hypercall function in Xen 4.2 allows local PV guest OS admin-
istrators to cause a denial of service (crash) via a crafted GFN that triggers a buffer
over-read.” [CVEg]

The get_page_from_gfn function provides information about a given memory page. It
is invoked in the handlers of multiple hypercalls of the Xen hypervisor, one of which
is the handler of theMMUEXT_CLEAR_PAGE operation of the mmuext_op hypercall.
MMUEXT_CLEAR_PAGE is an operation of the mmuext_op hypercall, which is used
for clearing memory pages/frames.

Input:8 MMUEXT_CLEAR_PAGE takes as input structure of type mmuext_op defined
as:

struct mmuext_op {
unsigned int cmd;
union {
xen_pfn_t mfn;
. . .
} arg1;
. . .

}

cmd stores a number identifying an operation of the mmuext_op hypercall (e.g.,
MMUEXT_CLEAR_PAGE); arg1.mfn stores the MFN of the page that is to be cleared.

8As in Xen of version 4.2.0.

173

Appendix A: Technical Information on Vulnerabilities of Hypercall Handlers

Output:8 On success, MMUEXT_CLEAR_PAGE returns 0. On failure, it returns an
error code (typically a negative integer value).

Workflow of the vulnerable hypercall handler:8

do_mmuext_op ((struct mmuext_op) op, ...)
struct page_info page;
call page = get_page_from_gfn(op.arg1.mfn, ...)
. . .

return

Description of the vulnerability: get_page_from_gfn reads information about a page
allocated to a guest VM from the frame table of the VM using the MFN of the page as
offset. A frame table is a memory area shared between the hypervisor and a guest VM
where information about each page allocated to the guest VM is stored in the format
of a structure of type page_info.
The MFN used by get_page_from_gfn for reading page information is provided to

get_page_from_gfn as an input parameter. The value of the MFN provided as input
parameter to get_page_from_gfn is not checked for validity. Since get_page_from_gfn uses
a MFN as an offset for reading from the frame table of a given guest VM, an invalid
MFN is a MFN that causes a buffer over-read (i.e., that is larger than the largest MFN
at which a page of the guest VM is allocated). An attacker can provide an invalid MFN
as an input parameter to get_page_from_gfn, in which case get_page_from_gfn returns
invalid page information.

In the handler of the MMUEXT_CLEAR_PAGE hypercall operation, the MFN stored
in the input parameter (struct mmuext_op) arg1.mfn is provided to get_page_from_gfn for
reading page information. CVE-2012-5525 can be triggered by invokingMMUEXT_CLE-
AR_PAGE such that an invalid MFN is stored in (struct mmuext_op) arg1.mfn.

Vulnerability fix: A patch fixing the vulnerability CVE-2012-5525 was released on 3
December 2012 and is available at [patg]. The patch inserts an invocation of the func-
tion mfn_valid in get_page_from_gfn, which verifies the validity of the MFN provided
as input to get_page_from_gfn. The patch modifies get_page_from_gfn such that if the
MFN used for reading page information is not valid, get_page_from_gfn returns NULL
instead of invalid page information.

Triggering CVE-2012-5525: We triggered CVE-2012-5525 in the following environ-
ment:

• guest VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
• host VM - OS: Ubuntu Precise (32 bit), kernel 3.8.0-29-generic;
• hypervisor - Xen 4.2.0.

The attack that we executed is depicted in Figure A.8.

174

A.5 Hypercall mmuext_op

Guest VM! Hypervisor!

HYPERVISOR_mmuext_op!
(&op, …)!

Crash!

op.cmd = 16; //MMUEXT_CLEAR_PAGE!
.arg1.mfn=0x0EEEEE;!

Figure A.8: An attack triggering CVE-2012-5525.

Post-attack state of the hypervisor: Triggering CVE-2012-5525 may result in a crash
of the targeted hypervisor or may corrupt its state. Whether the hypervisor crashes
depends on the use of the invalid page information returned from get_page_from_gfn
when CVE-2012-5525 is triggered. The hypervisor crashed when we triggered CVE-
2012-5525 in our testbed environment.

175

List of Figures

1.1 Focus and contributions of this thesis. 7

2.1 An example of a (a) remote attack - SQL injection attack, and (b) local
attack - deployment of a keylogger. 14

2.2 Intrusion detection in relation to other common security mechanisms. 15
2.3 Different types of IDSs. 16
2.4 Deployment scenario of a network-based IDS and multiple host-based

IDSs. 17
2.5 Timelime showing dates that mark major developments in the area of

IDS evaluation. 22

3.1 IDS evaluation design space: Workloads. 27
3.2 Use of vulnerability and attack injection to evaluate a network-based IDS. 34
3.3 Histogram of HTTP requests made by (a) a real user, and (b) an agent

using β−profiles. 39
3.4 Honeypots of different levels of interaction. 40
3.5 IDS evaluation design space: Metrics. 41
3.6 IDS comparison with (a) ROC curves, (b) – (c) intrusion detection effec-

tiveness metric. 45
3.7 Decision tree for calculating (a) expected cost, and (b) relative expected

cost. 47
3.8 IDS comparison with (a) expected cost and relative expected cost metric,

(b) intrusion detection capability metric. 48
3.9 Attack detection accuracy of Snort — composite metrics: (a) ROC curve

and estimated costs, and (b) CID curve. 59
3.10 (a) CPU consumption of Snort, (b) packet drop rate of Snort. 60
3.11 Performance overhead imposed by OSSEC on file (a) write, and (b) read

operations. 62
3.12 Trace recording procedure for Wizard. 66
3.13 Monitoring landscape of a hypervisor-based IDS. 68

4.1 A set of hypercall attacks. 89
4.2 Coverage of current security mechanisms with respect to hypercall

attack models. 93

5.1 Spectrum of virtualization modes. 98
5.2 (a) Approach for evaluating IDSs, (b) IDS monitoring landscape. 101
5.3 The architecture of hInjector. 105

177

List of Figures

5.4 (a) Triggering CVE-2012-3495, (b) Configuration of hInjector. 107
5.5 Overhead incurred by Injector. 108
5.6 SPECvirt_sc2013 as an IDS monitoring landscape. 110
5.7 Growth curves: (a) web, (b) network file, (c) mail, (d) batch, (e) applica-

tion, (f) database server VM. 111
5.8 Injecting attacks that trigger real vulnerabilities. 113
5.9 Injecting IDS evasive attacks triggering CVE-2013-1964: (a) “mimicry”

attack, (b) “smoke screen” attack. 115
5.10 Attack detection accuracy of Xenini. 117

6.1 Number of packets dropped over time. 124
6.2 Boundaries of: (a) the conventional SUT, and (b) novel SUT in the area

of IDS evaluation. 125
6.3 The decision tree used for constructing the HF metric. 128
6.4 An ROC curve and values of the HF metric associated with each IDS

operating point. 138

A.1 An attack triggering CVE-2012-3496. 156
A.2 An attack triggering CVE-2012-5513. 159
A.3 An attack triggering CVE-2012-4539. 162
A.4 An attack triggering CVE-2012-5510. 165
A.5 An attack triggering CVE-2013-1964. 168
A.6 An attack triggering CVE-2012-3494. 170
A.7 An attack triggering CVE-2012-3495. 173
A.8 An attack triggering CVE-2012-5525. 175

178

List of Tables

2.1 Categorization of intrusion detection systems. 19

3.1 Practices for generating pure benign workloads in executable form. . . 30
3.2 Popular exploit repositories. 31
3.3 Characterization of Metasploit’s exploit database. 33
3.4 Repositories of publicly available traces. 37
3.5 Common metrics for quantifying IDS attack detection accuracy. 42
3.6 Values of 1− β, PPVID, Cexp, Crec, and CID for IDS1 and IDS2. . . . 44
3.7 IDS evaluation design space: Measurement methodology. 51
3.8 Comparison of practices in evaluating IDS properties. 52
3.9 Attack coverage of Snort. 55
3.10 Resistance to evasion techniques of Snort. 56
3.11 Attack detection accuracy of Snort — basic metrics. 58
3.12 Overview of common trends, recommendations, and key best practices. 70
3.13 Guidelines for planning IDS evaluation studies: Workloads and metrics. 72

4.1 Analyzed hypercall vulnerabilities. 79
4.2 Origins of the considered hypercall vulnerabilities and effects of attacks

triggering the vulnerabilities. 81

5.1 Benign workload characterization. 112
5.2 Detection score of Xenini. 116
5.3 Anomaly scores for the injected non-evasive and evasive attacks. 118

6.1 Attack detection accuracy of Suricata. 123
6.2 Hypervisor configurations: Operating points and associated values of

the HF metric. 133
6.3 IDS configurations: Operating points and associated values of the HF

metric. 137

7.1 Systems that can be evaluated using the contributions of this thesis. . . 149

179

Acronyms

AC access control.
ACM Access Control Mechanism.
ACPS Advanced Cloud Protection System.
AMI Amazon Machine Image.
APT advanced persistent threat.

C2 Covert Channel.
CAIDA Cooperative Association for Internet Data Analysis.
CR Control Register.
CVE Common Vulnerabilities and Exposures.

DARPA Defense Advanced Research Projects Agency.
DD destination domain.
DEFCON Defense Readiness Condition.
DES Data Encryption Standard.
DesVM designated VM.
DoS denial-of-service.
DR Debug Register.
DVM destination VM.

EAX Extended Accumulator Register.
EC2 Amazon Elastic Compute Cloud.

GE global exact.
GMFN Guest Machine Frame Number.
GPFN Guest Pseudo-Physical Frame Number.

HF hypervisor factor.
hid hypercall identification.
HTTP Hyper Text Transfer Protocol.

I/O input/output.

181

Acronyms

IBM International Business Machines Corporation.
ID identification number.
IDPS intrusion detection and prevention system.
IDS intrusion detection system.
IMAP Internet Message Access Protocol.
ioctl input/output control.
IP Internet Protocol.
ISA Internet Security and Acceleration.
ITA Internet Traffic Archive.

J2EE Java 2 Enterprise Edition.

KDD Knowledge Discovery and Data Mining.
KVM Kernel-based Virtual Machine.

LAN local area network.
LARIAT Lincoln Adaptable Real-time Information Assurance Testbed.
LBNL/ISCI Lawrence Berkeley National Laboratory/International Computer Science

Institute.
LE local exact.
LKM loadable kernel module.

MAC/HAT Message Authentication Code/Hypercall Access Table.
MAWI Measurement and Analysis on the WIDE Internet.
MFN Machine Frame Number.
MIT Massachusetts Institute of Technology.
MVM malicious VM.

NIC network interface card.
NIST National Institute of Standards and Technology.
NPV negative predictive value.

OSEC Open Security Evaluation Criteria.
OSSEC Open Source Security.
OSVDB Open Sourced Vulnerability Database.

PIRQ Peripheral Component Interconnect Interrupt Request.
PPV positive predictive value.
PV paravirtualized.

182

Acronyms

ROC Receiver Operating Characteristic.
RSA Rivest Shamir Adleman.

SD source domain.
SNMP Simple Network Management Protocol.
SPEC Standard Performance Evaluation Corporation.
SQL Standard Query Language.
SUT system under test.
SVM source VM.

TCP/IP Transport Control Protocol/Internet Protocol.

UC University of California.

VAIT Vulnerability and Attack Injector Tool.
vCPU virtual CPU.
VM virtual machine.
VMI virtual machine introspection.
VNF virtual network function.

WIDE Widely Integrated Distributed Environment.
WIND Workload-aware Intrusion Detection.
WINE Worldwide Intelligence Network Environment.

XML Extensible Markup Language.
XSM-FLASK Xen Security Modules - Flux Advanced Security Kernel.

ZRC zero reference curve.

183

Bibliography

[AAA+10] Faeiz Alserhani, Monis Akhlaq, Irfan U. Awan, Andrea J. Cullen, and
Pravin Mirchandani. MARS: Multi-stage Attack Recognition System. In
Proceedings of the 24th IEEE International Conference on Advanced Information
Networking and Applications (AINA), pages 753–759,Washington, DC, USA,
2010. IEEE Computer Society. [see pages 5 and 73]

[aAHSBT] ab Apache HTTP Server Benchmarking Tool. http://httpd.apache.
org/docs/2.2/programs/ab.html. [see page 28]

[AAL+03] Nicholas Athanasiades, Al Abler, John Levine, Henry Owen, and George
Riley. Intrusion detection testing and benchmarking methodologies. In
Proceedings of First IEEE International Workshop on Information Assurance,
pages 63–72, 2003. [see page 25]

[Abh15] Abhik Chaudhuri, Heberto Ferrer, Hemma Prafullchandra, JD Sherry,
Kelvin Ng, Xiaoyu Ge, Yao Sing and Yiak Por (Main Contributors). Alek-
sandar Milenkoski (Minor Contributor). Best Practices for Mitigating
Risks in Virtualized Environments. Cloud Security Alliance - Virtualiza-
tion Working Group, April 2015. [see pages xii and 1]

[ABYSS10] Miriam Allalouf, Muli Ben-Yehuda, Julian Satran, and Itai Segall. Block
storage listener for detecting file-level intrusions. In 26th Symposium on
Mass Storage Systems and Technologies (MSST), pages 1–12, May 2010. [see
pages 28, 30, and 72]

[AHPP10] Eyad Alkassar, Mark A. Hillebrand, Wolfgang Paul, and Elena Petrova.
AutomatedVerification of a SmallHypervisor. InVerified Software: Theories,
Tools, Experiments, volume 6217, pages 40–54. Springer Berlin Heidelberg,
2010. [see page 91]

[ALD11] Abdulbasit Ahmed, Alexei Lisitsa, and Clare Dixon. A Misuse-based
Network Intrusion Detection System using Temporal Logic and Stream
Processing. In 5th International Conference on Network and System Security
(NSS), pages 1–8, 2011. [see page 52]

[Ale16] Aleksandar Milenkoski, Bernd Jaeger, Kapil Raina, Mason Harris, Saif
Chaudhry, Sivadon Chasiri, Veronica David, and Wenmao Liu. Security
Position Paper: Network Function Virtualization. Cloud Security Alliance
- Virtualization Working Group, March 2016. [see pages xi and 2]

[ama] Amazon Elastic Computing Cloud: Virtualization Types.
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
virtualization_types.html. [see page 99]

185

http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/virtualization_types.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/virtualization_types.html

Bibliography

[AMIA] Amazon Machine Images (AMIs). http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/AMIs.html. [see page 69]

[ASS11] Saurabh Amin, Galina A. Schwartz, and Shankar S. Sastry. On the inter-
dependence of reliability and security in Networked Control Systems. In
50th IEEEConference onDecision and Control and European Control Conference
(CDC-ECC), pages 4078–4083, Dec 2011. [see page 86]

[ATJ+10] Alberto Avritzer, Rajanikanth Tanikella, Kiran James, Robert G. Cole, and
Elaine J. Weyuker. Monitoring for security intrusion using performance
signatures. In WOSP/SIPEW, pages 93–104, 2010. [see pages 19, 26,
and 52]

[Axe00] Stefan Axelsson. The base-rate fallacy and its implications for the diffi-
culty of intrusion detection. ACM Transactions on Information and Systems
Security, 3(3):186–205, August 2000. [see pages 44, 103, and 120]

[BBCL11] Gilles Barthe, Gustavo Betarte, JuanD. Campo, and Carlos Luna. Formally
Verifying Isolation and Availability in an Idealized Model of Virtualiza-
tion. In FM 2011: Formal Methods, volume 6664, pages 231–245. Springer
Berlin Heidelberg, 2011. [see page 91]

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and AndrewWarfield. Xen and the Art of
Virtualization. SIGOPS Operating Systems Review, 37(5):164–177, October
2003. [see pages 78 and 153]

[BSNS11a] Saketh Bharadwaja, Weiqing Sun, Mohammed Niamat, and Fangyang
Shen. Collabra: A Xen Hypervisor Based Collaborative Intrusion De-
tection System. In Proceedings of the Eighth International Conference on
Information Technology: New Generations (ITNG), pages 695–700, Washing-
ton, DC, USA, 2011. IEEE Computer Society. [see pages 3, 4, 26, and 149]

[BSNS11b] Saketh Bharadwaja, Weiqing Sun, Mohammed Niamat, and Fangyang
Shen. Collabra: A Xen Hypervisor Based Collaborative Intrusion Detec-
tion System. In Proceedings of the 2011 Eighth International Conference on
Information Technology: New Generations, pages 695–700. IEEE Computer
Society, 2011. [see pages 92, 93, and 99]

[Bug] BugTraq. http://www.securityfocus.com/archive/1. [see page 31]
[Bur13] Anton Burtsev. Deterministic Systems Analysis. PhD thesis, University of

Utah, 2013. [see pages 104 and 148]
[cai] The Cooperative Association for Internet Data Analysis (CAIDA). http:

//www.caida.org/data/. [see pages 5 and 36]
[CAV+15] Diogo Carvalho, Nuno Antunes, Marco Vieira, Aleksandar Milenkoski,

and Samuel Kounev. Challenges of Assessing the Hypercall Interface
Robustness (Fast Abstract). In The 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2015). IEEE, June 2015.
[see page x]

[Chi07] David Chisnall. The Definitive Guide to the Xen Hypervisor. Prentice Hall

186

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://www.securityfocus.com/archive/1
http://www.caida.org/data/
http://www.caida.org/data/

Bibliography

Press, Upper Saddle River, NJ, USA, first edition, 2007. [see pages 154
and 160]

[CLC+10] Chien-Yi Chiu, Yuh-Jye Lee, Chien-Chung Chang, Wen-Yang Luo, and
Hsiu-Chuan Huang. Semi-supervised Learning for False Alarm Reduc-
tion. In Petra Perner, editor, Advances in Data Mining. Applications and
Theoretical Aspects, volume 6171 of Lecture Notes in Computer Science, pages
595–605. Springer Berlin Heidelberg, 2010. [see page 46]

[CLF+99] Robert K. Cunningham, R. P. Lippmann, D. J. Fried, S. L. Garfinkel, I. Graf,
K. R. Kendall, S. E. Webster, D. Wyschogrod, and M. A. Zissman. Evalu-
ating Intrusion Detection Systems without Attacking your Friends: The
1998 DARPA Intrusion Detection Evaluation. In SANS, 1999. [see pages 21,
38, and 74]

[CLLL12] Tsung-Huan Cheng, Ying-Dar Lin, Yuan-Cheng Lai, and Po-Ching Lin.
Evasion Techniques: Sneaking through Your Intrusion Detection/Preven-
tion Systems. IEEE Communications Surveys and Tutorials, 14(4):1011–1020,
2012. [see page 31]

[CM06] Simon P. Chung and Aloysius K. Mok. On random-inspection-based
intrusion detection. In Proceedings of the 8th international conference on
Recent Advances in Intrusion Detection (RAID), pages 165–184, 2006. [see
pages 28 and 52]

[CPX+13] Chun-Jen Chung, Khatkar Pankaj, Tianyi Xing, Jeongkeun Lee, and Di-
jiang Huang. NICE: Network Intrusion Detection and Countermeasure
Selection in Virtual Network Systems. IEEE Transactions on Dependable
and Secure Computing, 10(4):198–211, 2013. [see pages 30 and 52]

[CtCtF] Capture the Capture the Flag. http://cctf.shmoo.com/. [see pages 5
and 36]

[CVEa] CVE-2012-3494. http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2012-3494. [see pages 90, 153, 168, and 170]

[CVEb] CVE-2012-3495. http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2012-3495. [see pages 10, 82, 107, 153, and 171]

[CVEc] CVE-2012-3496. http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2012-3496. [see pages 86, 153, and 154]

[CVEd] CVE-2012-4539. http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2012-4539. [see pages 153 and 160]

[CVEe] CVE-2012-5510. http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2012-5510. [see pages 84, 153, and 163]

[CVEf] CVE-2012-5513. http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2012-5513. [see pages 10, 83, 153, and 157]

[CVEg] CVE-2012-5525. http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2012-5525. [see pages 10, 82, 153, and 173]

[CVEh] CVE-2013-1964. http://web.nvd.nist.gov/view/vuln/detail?

187

http://cctf.shmoo.com/
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3494
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3494
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3495
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3495
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3496
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3496
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-4539
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-4539
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-5510
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-5510
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-5513
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-5513
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-5525
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-5525
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1964
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1964

Bibliography

vulnId=CVE-2013-1964. [see pages 85, 153, and 165]
[CVEi] CVE-2013-4494. http://web.nvd.nist.gov/view/vuln/detail?

vulnId=CVE-2013-4494. [see pages 85 and 142]
[CVEj] CVE Details. http://www.cvedetails.com/. [see pages 9, 77, and 78]
[CVEC] CommonVulnerabilities and Exposures (CVE). http://cve.mitre.org/.

[see page 31]
[CWM+07] Scott E. Coull, Charles V. Wright, Fabian Monrose, Michael P. Collins,

and Michael K. Reiter. Playing Devil’s Advocate: Inferring Sensitive
Information from Anonymized Network Traces. In Proceedings of the
Network and Distributed System Security Symposium, pages 35–47, 2007.
[see page 35]

[dar] DARPA Intrusion Detection Evaluation: 1998 Testing Data - First Week
Truth. http://www.ll.mit.edu/mission/communications/cyber/
CSTcorpora/ideval/data/1998/Truth_Week_1.llist.tar.gz. [see
page 57]

[DCW+99] Robert Durst, Terrence Champion, Brian Witten, Eric Miller, and Luigi
Spagnuolo. Testing and evaluating computer intrusion detection systems.
ACMCommunications, 42(7):53–61, July 1999. [see pages 44, 45, 73, and 74]

[DD] Deep Discovery. http://www.trendmicro.com/us/enterprise/
security-risk-management/deep-discovery/. [see page 146]

[DDW99] Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of
intrusion-detection systems. Computer Networks, 31(9):805–822, 1999. [see
page 16]

[DDWL98] Hervé Debar, Marc Dacier, Andreas Wespi, and Stefan Lampart. An
Experimentation Workbench for Intrusion Detection Systems. Technical
report, IBM Research, Zurich Research Laboratory, 1998. [see pages 21,
26, and 72]

[Deh12] Alex Dehnert. Intrusion Detection Using VProbes. VMware Technical
Journal, 1(2):28–31, 2012. [see pages 52 and 65]

[DFPS08] Holger Dreger, Anja Feldmann, Vern Paxson, and Robin Sommer. Predict-
ing the resource consumption of network intrusion detection systems. In
Proceedings of the 2008 International Conference onMeasurement andModeling
of Computer Systems (SIGMETRICS), pages 437–438, New York, NY, USA,
2008. ACM. [see page 59]

[DKC+02] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai,
and Peter M. Chen. ReVirt: enabling intrusion analysis through virtual-
machine logging and replay. In 5th Symposium on Operating Systems Design
and Implementation (OSDI), pages 211–224, NewYork, NY,USA, 2002. ACM.
[see pages 28, 30, and 72]

[Dkf] Dkftpbench. http://www.kegel.com/dkftpbench/. [see page 28]
[DM02] Hervé Debar and Benjamin Morin. Evaluation of the Diagnostic Capabil-

188

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1964
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1964
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4494
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4494
http://www.cvedetails.com/
http://cve.mitre.org/
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/1998/Truth_Week_1.llist.tar.gz
http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/data/1998/Truth_Week_1.llist.tar.gz
http://www.trendmicro.com/us/enterprise/security-risk-management/deep-discovery/
http://www.trendmicro.com/us/enterprise/security-risk-management/deep-discovery/
http://www.kegel.com/dkftpbench/

Bibliography

ities of Commercial Intrusion Detection Systems. In Recent Advances in
Intrusion Detection (RAID), volume 2516, pages 177–198. Springer Berlin /
Heidelberg, 2002. [see page 26]

[DS11] Tudor Dumitras and Darren Shou. Toward a standard benchmark for
computer security research: the worldwide intelligence network envi-
ronment (WINE). In Proceedings of the First Workshop on Building Analysis
Datasets and Gathering Experience Returns for Security), pages 89–96, New
York, NY, USA, 2011. ACM. [see pages 21 and 74]

[Dun] George Dunlap. The Paravirtualization Spectrum, Part 2: From poles
to a spectrum. https://blog.xenproject.org/2012/10/31/the-
paravirtualization-spectrum-part-2-from-poles-to-a-
spectrum/#more-5564. [see page 98]

[evi16] EvIDencE: Testing Intrusion Detection Systems in Virtualized Environ-
ments; EvIDencE: Testen von Systemen zur Angriffserkennung in vir-
tualisierten Umgebungen (orig., ger.), 2016. Awarded by the German
Research Foundation; Deutsche Forschungsgemeinschaft (DFG). [see
page x]

[exp] Exploit Database by Offensive Security. http://www.exploit-db.com/.
[see page 4]

[FBAF10] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda.
MAWILab: Combining Diverse Anomaly Detectors for Automated
Anomaly Labeling and Performance Benchmarking. In ACM CoNEXT
’10, December 2010. [see pages 23 and 36]

[FHSL96] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A.
Longstaff. A Sense of Self for Unix Processes. In IEEE Symposium on
Security and Privacy, pages 120–128, May 1996. [see page 109]

[FJGS+00] Y. F. Jou, F. Gong, C. Sargor, X. Wu, S.F. Wu, H. C. Chang, and F. Wang.
Design and implementation of a scalable intrusion detection system for
the protection of network infrastructure. In Proceedings of DARPA Informa-
tion Survivability Conference and Exposition, 2000, volume 2, pages 69–83
vol.2, 2000. [see pages 30, 52, and 74]

[FM11] Leo Freitas and John McDermott. Formal methods for security in the
Xenon hypervisor. International Journal on Software Tools for Technology
Transfer, 13(5):463–489, 2011. [see page 91]

[Fos07] James C. Foster. Metasploit Toolkit for Penetration Testing, Exploit Develop-
ment, and Vulnerability Research. Syngress Publishing, 2007. [see page 56]

[FVM09] Josè Fonseca, Marco Vieira, and Henrique Madeira. Vulnerability and
attack injection for web applications. In IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 93–102, July 2009. [see
page 4]

[FVM14] Josè Fonseca, Marco Vieira, and Henrique Madeira. Evaluation of Web
Security Mechanisms using Vulnerability and Attack Injection. IEEE

189

https://blog.xenproject.org/2012/10/31/the-paravirtualization-spectrum-part-2-from-poles-to-a-spectrum/#more-5564
https://blog.xenproject.org/2012/10/31/the-paravirtualization-spectrum-part-2-from-poles-to-a-spectrum/#more-5564
https://blog.xenproject.org/2012/10/31/the-paravirtualization-spectrum-part-2-from-poles-to-a-spectrum/#more-5564
http://www.exploit-db.com/

Bibliography

Transactions on Dependable and Secure Computing, PrePrints(99):1–1, 2014.
[see pages 23, 32, 34, 73, and 100]

[GER08] Mohammed Gad El Rab. Evaluation des systèmes de détection d’intrusion.
PhD thesis, Université Paul Sabatier - Toulouse III, December 2008. [see
pages 32 and 73]

[GFD+06] Guofei Gu, Prahlad Fogla, David Dagon, Wenke Lee, and Boris Skorić.
Measuring intrusion detection capability: an information-theoretic ap-
proach. In Proceedings of the 2006 ACM Symposium on Information, computer
and communications security (ASIACCS), pages 90–101, NewYork, NY, USA,
2006. ACM. [see pages 7, 23, 26, 43, 44, 45, 46, 48, 49, 75, and 121]

[GKRB09] Nico Görnitz, Marius Kloft, Konrad Rieck, and Ulf Brefeld. Active learn-
ing for network intrusion detection. In Proceedings of the 2nd ACMworkshop
on Security and artificial intelligence (AISec), pages 47–54, New York, NY,
USA, 2009. ACM. [see page 4]

[GMV+10] Frank Gens, Robert Mahowald, Richard L. Villars, David Bradshaw, and
Chris Morris. Cloud Computing 2010: An IDCUpdate, 2010. [see pages 1,
2, and 63]

[GPB+03] John L. Griffin, Adam Pennington, John S. Bucy, Deepa Choundappan,
Nithya Muralidharan, and Gregory R. Ganger. On the Feasibility of
Intrusion Detection inside Workstation Disks, 2003. [see pages 28 and 30]

[GR03] Tal Garfinkel and Mendel Rosenblum. A Virtual Machine Introspection
Based Architecture for Intrusion Detection. In Proceedings of the Network
and Distributed Systems Security Symposium, pages 191–206, 2003. [see
pages 18, 52, 64, and 72]

[GU01] John E. Gaffney and Jacob W. Ulvila. Evaluation of intrusion detectors: a
decision theory approach. In Proceedings of the 2001 IEEE Symposium on
Security and Privacy, pages 50–61, 2001. [see pages 7, 23, 43, 46, 75, 116,
121, and 127]

[HBK+17] Nikolas Herbst, Steffen Becker, Samuel Kounev, Heiko Koziolek, Martina
Maggio, Aleksandar Milenkoski, and Evgenia Smirni. Metrics and Bench-
marks for Self-Aware Computing Systems. In Samuel Kounev, Jeffrey O.
Kephart, Aleksandar Milenkoski, and Xiaoyun Zhu, editors, Self-Aware
Computing Systems. Springer Verlag Berlin Heidelberg, Germany, 2017. To
Appear. [see page xi]

[HH05] Simon Hansman and Ray Hunt. A taxonomy of network and computer
attacks. Computers and Security, 24(1):31 – 43, 2005. [see page 13]

[HKR13] Nikolas R. Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in Cloud
Computing: What it is, and What it is Not (Short Paper). In Proceedings
of the 10th International Conference on Autonomic Computing (ICAC 2013).
USENIX, June 2013. [see page 6]

[HL09] Cuong H. Le. Protecting Xen Hypercalls: Intrusion Detection/Prevention
in a Virtualization Environment. Master’s thesis, University of British

190

Bibliography

Columbia, Vancouver, Canada, 2009. [see pages 8, 92, 93, 97, 99, 143, 148,
and 149]

[hon] Honeyd. http://www.honeyd.org/. [see page 5]
[HS11] Amin Hassanzadeh and Radu Stoleru. Towards Optimal Monitoring

in Cooperative IDS for Resource Constrained Wireless Networks. In
Proceedings of 20th International Conference on Computer Communications
and Networks (ICCCN), pages 1–8, August 2011. [see pages 51, 52, and 53]

[Htt] Httpbench. http://freecode.com/projects/httpbench. [see page 28]
[HVO06] William G. J. Halfond, Jeremy Viegas, and Alessandro Orso. A Classifica-

tion of SQL-Injection Attacks and Countermeasures. In Proceedings of the
IEEE International Symposium on Secure Software Engineering, Arlington,
VA, USA, March 2006. [see page 14]

[HW02] Mike Hall and Kevin Wiley. Capacity verification for high speed network
intrusion detection systems. InProceedings of the 5th International Conference
on Recent Advances in Intrusion Detection (RAID), pages 239–251, Berlin,
Heidelberg, 2002. Springer-Verlag. [see pages 6, 7, 61, and 122]

[Hyp] Hypervisor Top-Level Functional Specification: Windows Server
2012. https://msdn.microsoft.com/en-us/virtualization/hyperv_
on_windows/develop/tlfs. [see page 83]

[IDE] DARPA Intrusion Detection Evaluation. https://www.ll.mit.edu/
ideval/. [see pages 5, 25, and 36]

[IFB] Iozone Filesystem Benchmark. http://www.iozone.org/. [see pages 28
and 62]

[inj] 1337day Exploit Database. http://0day.today/. [see page 4]
[ISA] Microsoft Internet Security and Acceleration Server 2006. https:

//technet.microsoft.com/de-de/library/bb898433.aspx. [see
page 20]

[ita] The Internet Traffic Archive (ITA). http://ita.ee.lbl.gov/html/
traces.html. [see pages 5 and 36]

[JADAD06] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Antfarm: tracking processes in a virtual machine environment.
In Proceedings of the annual conference on USENIX ’06 Annual Technical Con-
ference, pages 1–1, Berkeley, CA, USA, 2006. USENIX Association. [see
page 64]

[JMK17] K. R. Jayaram, Aleksandar Milenkoski, and Samuel Kounev. Software Ar-
chitectures for Self-Protection in IaaS Clouds. In Samuel Kounev, Jeffrey O.
Kephart, Aleksandar Milenkoski, and Xiaoyun Zhu, editors, Self-Aware
Computing Systems. Springer Verlag Berlin Heidelberg, Germany, 2017. To
Appear. [see page xi]

[JXZ+09] Hai Jin, Guofu Xiang, Feng Zhao, Deqing Zou, Min Li, and Lei Shi. VM-
Fence: a customized intrusion prevention system in distributed virtual

191

http://www.honeyd.org/
http://freecode.com/projects/httpbench
https://msdn.microsoft.com/en-us/virtualization/hyperv_on_windows/develop/tlfs
https://msdn.microsoft.com/en-us/virtualization/hyperv_on_windows/develop/tlfs
https://www.ll.mit.edu/ideval/
https://www.ll.mit.edu/ideval/
http://www.iozone.org/
http://0day.today/
https://technet.microsoft.com/de-de/library/bb898433.aspx
https://technet.microsoft.com/de-de/library/bb898433.aspx
http://ita.ee.lbl.gov/html/traces.html
http://ita.ee.lbl.gov/html/traces.html

Bibliography

computing environment. In Proceedings of the 3rd International Conference
on Ubiquitous InformationManagement and Communication (ICUIMC), pages
391–399, NewYork, NY, USA, 2009. ACM. [see pages 16, 19, 28, 52, and 64]

[JXZ+11] Hai Jin, Guofu Xiang, Deqing Zou, Song Wu, Feng Zhao, Min Li, and
Weide Zheng. A VMM-based intrusion prevention system in cloud com-
puting environment. The Journal of Supercomputing, pages 1–19, 2011. [see
pages 1, 26, 28, 30, 52, 63, 72, and 145]

[Kat97] Jeffrey Katcher. PostMark: a new file system benchmark. Network Appli-
ance Tech Report TR3022, October 1997. [see page 28]

[KGL04] Anita Komlodi, John R. Goodall, and Wayne G. Lutters. An Information
Visualization Framework for Intrusion Detection. In CHI ’04 Extended
Abstracts on Human Factors in Computing Systems, page 1743, New York,
NY, USA, 2004. ACM. [see page 21]

[Kiv07] Avi Kivity. KVM: the Linux Virtual Machine Monitor. In OLS ’07: The
2007 Ottawa Linux Symposium, pages 225–230, July 2007. [see pages 78
and 153]

[KKMZ17] Samuel Kounev, Jeffrey O. Kephart, Aleksandar Milenkoski, and Xiaoyun
Zhu. Self-Aware Computing Systems. Springer Verlag Berlin Heidelberg,
Germany, 2017. To Appear. [see page ix]

[Kon11] Jinzhu Kong. AdjointVM: a new intrusion detection model for cloud com-
puting. Energy Procedia, 13(0):7902–7911, 2011. International Conference
on Energy Systems and Electrical Power (ESEP). [see pages 1 and 63]

[KVV05] Christopher Kruegel, Fredrik Valeur, and Giovanni Vigna. Intrusion De-
tection and Correlation - Challenges and Solutions, volume 14 of Advances in
Information Security. Springer, 2005. [see page 15]

[KZ05] Pradeep Kannadiga and Mohammad Zulkernine. DIDMA: A Distributed
Intrusion Detection System Using Mobile Agents. In Sixth International
Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, pages 238–245, 2005. [see page 52]

[lbn] LBNL/ICSI Enterprise Tracing Project. http://www.icir.org/
enterprise-tracing/. [see pages 5, 35, and 36]

[LDP11] Flavio Lombardi and Roberto Di Pietro. Secure virtualization for cloud
computing. Journal of Network and Computer Applications, 34(4):1113–1122,
July 2011. [see pages 1, 5, 20, 28, 29, 52, 63, 64, 69, and 72]

[LGT08] Michael Le, Andrew Gallagher, and Yuval Tamir. Challenges and Oppor-
tunities with Fault Injection in Virtualized Systems. In VPACT, 2008. [see
page 100]

[LHF+00] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba,
and Kumar Das. The 1999 DARPA off-line intrusion detection evaluation.
Computer Networks, 34(4):579–595, October 2000. [see pages 5 and 26]

[LL13] Po-Ching Lin and Jia-Hau Lee. Re-examining the performance bottle-

192

http://www.icir.org/enterprise-tracing/
http://www.icir.org/enterprise-tracing/

Bibliography

neck in a NIDS with detailed profiling. Journal of Network and Computer
Applications, 36(2):768 – 780, 2013. [see page 144]

[LMJ07] Marcus Laureano, Carlos Maziero, and Edgard Jamhour. Protecting host-
based intrusion detectors through virtual machines. Computer Networks,
51(5):1275–1283, April 2007. [see pages 30, 52, and 53]

[LP13] Hoang Le and Viktor K. Prasanna. A Memory-Efficient and Modular
Approach for Large-Scale String Pattern Matching. IEEE Transactions on
Computers, 62(5):844–857, May 2013. [see page 144]

[LS09] Dirk Leinenbach and Thomas Santen. Verifying the Microsoft Hyper-V
Hypervisor with VCC. In Proceedings of the 2nd World Congress on Formal
Methods, pages 806–809. Springer-Verlag, 2009. [see page 90]

[LTfPA] LMbench Tools for Performance Analysis. http://www.bitmover.com/
lmbench/. [see page 30]

[MAW] MAWILab. http://www.fukuda-lab.org/mawilab/index.html. [see
page 23]

[McH00] JohnMcHugh. Testing Intrusion Detection Systems: a critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed by
Lincoln Laboratory. ACM Transactions on Information and System Security,
3(4):262–294, November 2000. [see pages 3 and 36]

[Men12] Yuxin Meng. Measuring intelligent false alarm reduction using an ROC
curve-based approach in network intrusion detection. In IEEE Interna-
tional Conference on Computational Intelligence for Measurement Systems and
Applications (CIMSA), pages 108–113, July 2012. [see pages 46, 47, and 75]

[MFER] Metasploit Framework: Exploit Ranking. https://github.com/rapid7/
metasploit-framework/wiki/Exploit-Ranking. [see page 32]

[MHL+03] Peter Mell, Vincent Hu, Richard Lippmann, Josh Haines, and Marc Ziss-
man. An Overview of Issues in Testing Intrusion Detection Systems, 2003.
[see pages 6, 7, 23, 29, 54, 74, 119, and 122]

[mic] Internet Security and Acceleration Server 2006: Common Criteria Eval-
uation. https://www.commoncriteriaportal.org/files/epfiles/
0453b.pdf. [see page 20]

[MIK+13] Aleksandar Milenkoski, Alexandru Iosup, Samuel Kounev, Kai Sachs,
Piotr Rygielski, JasonDing,WalfredoCirne, and FlorianRosenberg. Cloud
Usage Patterns: A Formalism for Description of Cloud Usage Scenarios.
Technical Report SPEC-RG-2013-001 v.1.0.1, SPECResearchGroup - Cloud
Working Group, Standard Performance Evaluation Corporation (SPEC),
7001 Heritage Village Plaza Suite 225, Gainesville, VA 20155, USA, May
2013. [see page xi]

[MIK+16] Aleksandar Milenkoski, Alexandru Iosup, Samuel Kounev, Kai Sachs,
Diane E. Mularz, Jonathan A. Curtiss, Jason J. Ding, Florian Rosenberg,
and Piotr Rygielski. CUP: A Formalism for Expressing Cloud Usage
Patterns for Experts and Non-Experts. IEEE Cloud Computing, 2016. To

193

http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/
http://www.fukuda-lab.org/mawilab/index.html
https://github.com/rapid7/metasploit-framework/wiki/Exploit-Ranking
https://github.com/rapid7/metasploit-framework/wiki/Exploit-Ranking
https://www.commoncriteriaportal.org/files/epfiles/0453b.pdf
https://www.commoncriteriaportal.org/files/epfiles/0453b.pdf

Bibliography

Appear. [see page x]
[MJA+16] Aleksandar Milenkoski, K. R. Jayaram, Nuno Antunes, Marco Vieira, and

Samuel Kounev. Quantifying the Attack Detection Accuracy of Intrusion
Detection Systems in Virtualized Environments. In Proceedings of The 27th
IEEE International Symposium on Software Reliability Engineering (ISSRE
2016), Washington DC, USA, October 2016. IEEE, IEEE Computer Society.
To Appear. [see pages ix and 120]

[MJK17] Aleksandar Milenkoski, K. R. Jayaram, and Samuel Kounev. Benchmark-
ing Intrusion Detection Systems with Adaptive Provisioning of Virtu-
alized Resources. In Samuel Kounev, Jeffrey O. Kephart, Aleksandar
Milenkoski, and Xiaoyun Zhu, editors, Self-Aware Computing Systems.
Springer Verlag Berlin Heidelberg, Germany, 2017. To Appear. [see
pages x and 120]

[MK12] Aleksandar Milenkoski and Samuel Kounev. Towards Benchmarking
Intrusion Detection Systems for Virtualized Cloud Environments (Work-
in-Progress Paper). In Proceedings of the 7th International Conference for
Internet Technology and Secured Transactions (ICITST 2012), pages 562–563,
New York, USA, December 2012. IEEE. [see pages x and 6]

[MKA+13] AleksandarMilenkoski, Samuel Kounev, Alberto Avritzer, Nuno Antunes,
and Marco Vieira. On Benchmarking Intrusion Detection Systems in
Virtualized Environments. Technical Report SPEC-RG-2013-002 v.1.0,
SPEC Research Group - IDS Benchmarking Working Group, Standard
Performance Evaluation Corporation (SPEC), 7001 Heritage Village Plaza
Suite 225, Gainesville, VA 20155, USA, June 2013. [see pages xi and 2]

[ML12] Yuxin Meng and Wenjuan Li. Adaptive Character Frequency-Based Ex-
clusive Signature Matching Scheme in Distributed Intrusion Detection
Environment. In IEEE 11th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom), pages 223–230, June
2012. [see pages 5, 20, 30, and 40]

[MM11] Carlo Maiero and Marino Miculan. Unobservable intrusion detection
based on call traces in paravirtualized systems. In Proceedings of the In-
ternational Conference on Security and Cryptography (SECRYPT), 2011. [see
pages 3, 8, 10, 98, 99, 109, 116, 143, and 149]

[MOL+11] Noman Mohammed, Hadi Otrok, Wang Lingyu, Mourad Debbabi, and
Prabir Bhattacharya. Mechanism Design-Based Secure Leader Election
Model for IntrusionDetection inMANET. IEEE Transactions on Dependable
and Secure Computing, 8(1):89–103, January-February 2011. [see pages 5
and 20]

[MP13] Chirag Modi and Dhiren Patel. A Novel Hybrid-network Intrusion De-
tection System (H-NIDS) in Cloud Computing. In IEEE Symposium on
Computational Intelligence in Cyber Security (CICS), pages 23–30, April 2013.
[see page 19]

194

Bibliography

[MPA+13] Aleksandar Milenkoski, Bryan D. Payne, Nuno Antunes, Marco Vieira,
and Samuel Kounev. HInjector: InjectingHypercall Attacks for Evaluating
VMI-based Intrusion Detection Systems. In Poster Reception at the 2013
Annual Computer Security Applications Conference (ACSAC 2013), Maryland,
USA, 2013. Applied Computer Security Associates (ACSA). [see pages x,
78, and 93]

[MPA+14] Aleksandar Milenkoski, Bryan D. Payne, Nuno Antunes, Marco Vieira,
and Samuel Kounev. AnAnalysis of Hypercall Handler Vulnerabilities. In
Proceedings of The 25th IEEE International Symposium on Software Reliability
Engineering (ISSRE 2014). IEEE, 2014. [see pages ix, 8, 78, 97, 99, 107,
and 143]

[MPA+15] Aleksandar Milenkoski, Bryan D. Payne, Nuno Antunes, Marco Vieira,
Samuel Kounev, Alberto Avritzer, and Matthias Luft. Evaluation of In-
trusion Detection Systems in Virtualized Environments Using Attack
Injection. In The 18th International Symposium on Research in Attacks, Intru-
sions, and Defenses (RAID 2015). Springer, November 2015. [see pages ix
and 98]

[MR04] Roy A. Maxion and Rachel R. Roberts. Proper Use of ROC Curves in
Intrusion/Anomaly detection. Technical Report CS-TR-871, School of
Computing Science, University of Newcastle upon Tyne, November 2004.
[see page 6]

[MS01] Patrick Mueller and Greg Shipley. To Catch a Thief, August 2001. [see
page 26]

[MVK+15] Aleksandar Milenkoski, Marco Vieira, Samuel Kounev, Alberto Avritzer,
and Bryan D. Payne. Evaluating Computer Intrusion Detection Systems:
A Survey of Common Practices. ACMComputing Surveys, 48(1):12:1–12:41,
Sep 2015. [see pages ix, 25, 124, 139, and 141]

[MVP+14] Aleksandar Milenkoski, Marco Vieira, Bryan D. Payne, Nuno Antunes,
and Samuel Kounev. Technical Information on Vulnerabilities of Hy-
percall Handlers. Technical Report SPEC-RG-2014-001 v.1.0, SPEC Re-
searchGroup - IDS BenchmarkingWorkingGroup, Standard Performance
Evaluation Corporation (SPEC), 7001 Heritage Village Plaza Suite 225,
Gainesville, VA 20155, USA, August 2014. [see pages xi and 154]

[MWBI] MindCraft WebStone Benchmark Information. http://www.mindcraft.
com/webstone/. [see page 30]

[NAEKF11] Khalid Nasr, Anas Abou El Kalam, and Christian Fraboul. An IDS
Evaluation-Centric Taxonomy of Wireless Security Attacks. In Advances in
Network Security and Applications, volume 196 of Communications in Com-
puter and Information Science, pages 402–413. Springer Berlin Heidelberg,
2011. [see page 13]

[NBH08] Kara Nance, Matt Bishop, and Brian Hay. Virtual Machine Introspection:
Observation or Interference? IEEE Security and Privacy, 6:32–37, 2008.

195

http://www.mindcraft.com/webstone/
http://www.mindcraft.com/webstone/

Bibliography

[see page 64]
[neo] Neohapsis Open Security Evaluation Criteria (OSEC). http://osec.

neohapsis.com/. [see page 26]
[Nes] Nessus. http://www.tenable.com/products/nessus-vulnerability-

scanner. [see page 32]
[NGI] NGIPS Test Methodology: v2.0. https://www.nsslabs.com/research-

advisory/library/industry/methodologies/ngips-test-
methodology-v2-0/. [see page 23]

[nid] Nidsbench - a network intrusion detection system testing suite. http:
//www.ussrback.com/UNIX/IDS/nidsbench/nidsbench.html. [see
page 25]

[Nik] Nikto2. http://cirt.net/nikto2. [see page 31]
[NKF12] Khalid Nasr, Anas A. Kalam, and Christian Fraboul. Performance Anal-

ysis of Wireless Intrusion Detection Systems. In Internet and Distributed
Computing Systems, pages 238–252. Springer, 2012. [see pages 4, 32, and 44]

[nssa] NSSLabs. https://www.nsslabs.com/. [see page 20]
[NSSb] NSSLabs. Breach Detection Test Methodology. https://www.nsslabs.

com/linkservid/E12A4AD5-5056-9046-931193F7191C0AF7/. [see
page 146]

[oss] Open Source SEcurity (OSSEC). http://www.ossec.net/. [see pages 3,
8, 16, 18, 19, 99, 143, 148, 149, and 150]

[OSVDO] Open Sourced Vulnerability Database (OSVDB). http://www.osvdb.
org/. [see page 31]

[pata] Xen Security Advisory 12 (CVE-2012-3494). http://lists.xen.
org/archives/html/xen-announce/2012-09/msg00000.html. [see
page 170]

[patb] Xen Security Advisory 13 (CVE-2012-3495). http://lists.xen.
org/archives/html/xen-announce/2012-09/msg00001.html. [see
page 172]

[patc] Xen Security Advisory 14 (CVE-2012-3496). http://lists.xen.
org/archives/html/xen-announce/2012-09/msg00002.html. [see
page 156]

[patd] Xen Security Advisory 24 (CVE-2012-4539). http://lists.xen.
org/archives/html/xen-announce/2012-11/msg00002.html. [see
page 162]

[pate] Xen Security Advisory 26 (CVE-2012-5510). http://lists.xen.
org/archives/html/xen-announce/2012-12/msg00001.html. [see
page 164]

[patf] Xen Security Advisory 29 (CVE-2012-5513). http://lists.xen.
org/archives/html/xen-announce/2012-12/msg00004.html. [see
page 158]

196

http://osec.neohapsis.com/
http://osec.neohapsis.com/
http://www.tenable.com/products/nessus-vulnerability-scanner
http://www.tenable.com/products/nessus-vulnerability-scanner
https://www.nsslabs.com/research-advisory/library/industry/methodologies/ngips-test-methodology-v2-0/
https://www.nsslabs.com/research-advisory/library/industry/methodologies/ngips-test-methodology-v2-0/
https://www.nsslabs.com/research-advisory/library/industry/methodologies/ngips-test-methodology-v2-0/
http://www.ussrback.com/UNIX/IDS/nidsbench/nidsbench.html
http://www.ussrback.com/UNIX/IDS/nidsbench/nidsbench.html
http://cirt.net/nikto2
https://www.nsslabs.com/
https://www.nsslabs.com/linkservid/E12A4AD5-5056-9046-931193F7191C0AF7/
https://www.nsslabs.com/linkservid/E12A4AD5-5056-9046-931193F7191C0AF7/
http://www.ossec.net/
http://www.osvdb.org/
http://www.osvdb.org/
http://lists.xen.org/archives/html/xen-announce/2012-09/msg00000.html
http://lists.xen.org/archives/html/xen-announce/2012-09/msg00000.html
http://lists.xen.org/archives/html/xen-announce/2012-09/msg00001.html
http://lists.xen.org/archives/html/xen-announce/2012-09/msg00001.html
http://lists.xen.org/archives/html/xen-announce/2012-09/msg00002.html
http://lists.xen.org/archives/html/xen-announce/2012-09/msg00002.html
http://lists.xen.org/archives/html/xen-announce/2012-11/msg00002.html
http://lists.xen.org/archives/html/xen-announce/2012-11/msg00002.html
http://lists.xen.org/archives/html/xen-announce/2012-12/msg00001.html
http://lists.xen.org/archives/html/xen-announce/2012-12/msg00001.html
http://lists.xen.org/archives/html/xen-announce/2012-12/msg00004.html
http://lists.xen.org/archives/html/xen-announce/2012-12/msg00004.html

Bibliography

[patg] Xen Security Advisory 32 (CVE-2012-5525). http://lists.xen.
org/archives/html/xen-announce/2012-12/msg00002.html. [see
page 174]

[path] Xen Security Advisory 50 (CVE-2013-1964). http://lists.xen.
org/archives/html/xen-announce/2013-04/msg00006.html. [see
page 167]

[PBSL13] Diego Perez-Botero, Jakub Szefer, and Ruby B. Lee. Characterizing Hy-
pervisor Vulnerabilities in Cloud Computing Servers. In Proceedings of
the 2013 International Workshop on Security in Cloud Computing, pages 3–10.
ACM, 2013. [see page 1]

[PCKI11] Cuong Pham, Daniel Chen, Zbigniew Kalbarczyk, and Ravishankar Iyer.
CloudVal: A Framework for Validation of Virtualization Environment in
Cloud Infrastructure. In Proceedings of IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 189–196, 2011. [see
page 100]

[PCOM97] Nicholas Puketza, Mandy Chung, Ronald A. Olsson, and Biswanath
Mukherjee. A Software Platform for Testing Intrusion Detection Systems.
IEEE Software, 14(5):43–51, September 1997. [see pages 21, 26, and 72]

[PKSZ04] Swapnil Patil, Anand Kashyap, Gopalan Sivathanu, and Erez Zadok. FS:
An In-Kernel Integrity Checker and Intrusion Detection File System. In
Proceedings of the 18th USENIX Conference on System Administration (LISA),
pages 67–78, Berkeley, CA, USA, 2004. USENIX Association. [see pages 28,
30, and 72]

[PR] TCPDUMP/LIBPCAP Public Repository. http://www.tcpdump.org/.
[see page 26]

[pst] PacketStorm. http://packetstormsecurity.com/. [see page 4]
[PtsM] Penetration testing software: Metasploit. http://www.metasploit.com/.

[see pages 4 and 32]
[PZC+96] Nicholas J. Puketza, Kui Zhang, Mandy Chung, Biswanath Mukherjee,

and Ronald A. Olsson. A Methodology for Testing Intrusion Detection
Systems. IEEE Transactions on Software Engineering, 22(10):719–729, Octo-
ber 1996. [see page 21]

[Ran01] Marcus J. Ranum. Experiences Benchmarking Intrusion Detection Sys-
tems. White Paper, 2001. [see pages 3 and 23]

[RAR12] Kannaiya N. Raja, Srinivasan Arulanandam, and Raja Rajeswari. Two-
Level Packet Inspection Using Sequential Differentiate Method. In Inter-
national Conference on Advances in Computing and Communications (ICACC),
pages 42–45, 2012. [see pages 5, 36, 52, 73, and 74]

[RCF+01] Lee M. Rossey, Robert K. Cunningham, David J. Fried, Jesse C. Rabek,
Richard P. Lippmann, Joshua W. Haines, and Marc A. Zissman. LARIAT:
Lincoln Adaptable Real-time Information Assurance Testbed. In IEEE
Proceedings of Aerospace Conference, pages 2671–2682, 2001. [see page 25]

197

http://lists.xen.org/archives/html/xen-announce/2012-12/msg00002.html
http://lists.xen.org/archives/html/xen-announce/2012-12/msg00002.html
http://lists.xen.org/archives/html/xen-announce/2013-04/msg00006.html
http://lists.xen.org/archives/html/xen-announce/2013-04/msg00006.html
http://www.tcpdump.org/
http://packetstormsecurity.com/
http://www.metasploit.com/

Bibliography

[RJX08] Ryan Riley, Xuxian Jiang, andDongyan Xu. Guest-Transparent Prevention
of Kernel Rootkits with VMM-Based Memory Shadowing. In Proceedings
of the 11th International Symposium on Recent Advances in Intrusion Detection
(RAID), pages 1–20, Berlin, Heidelberg, 2008. Springer-Verlag. [see
pages 28, 30, and 52]

[Roe99] Martin Roesch. Snort - Lightweight Intrusion Detection for Networks. In
Proceedings of the 13th USENIX conference on System Administration (LISA),
pages 229–238. USENIX Association, 1999. [see pages 2, 11, 16, 17, 18, 19,
49, 52, 54, 56, 144, 149, and 150]

[RRL+12] Jason Reeves, Ashwin Ramaswamy, Michael Locasto, Sergey Bratus, and
Sean Smith. Intrusion detection for resource-constrained embedded con-
trol systems in the power grid. International Journal of Critical Infrastructure
Protection, 5(2):74–83, 2012. [see pages 4, 26, 28, 30, 52, 72, and 74]

[RW] Joanna Rutkowska and Rafał Wojtczuk. Xen 0wning Trilogy: Part Two
(presentation slides). http://invisiblethingslab.com/resources/
bh08/part2.pdf. [see pages 8, 87, 94, and 99]

[Sam15] Samuel Kounev, Xiaoyun Zhu, Jeffrey O. Kephart, and Marta
Kwiatkowska, editors. Aleksandar Milenkoski, assistant editor. Model-
driven Algorithms and Architectures for Self-Aware Computing Systems.
Dagstuhl Reports, 2015. Dagstuhl, Germany. [see page xi]

[SB10] IBM Smart Business. Dispelling the vapor around cloud computing.
Whitepaper, 2010. [see page 67]

[SC] SC Magazine: IDS/IPS Group Test. http://www.scmagazine.com/
idsips/grouptest/241/. [see page 23]

[seca] SecuriTeam Exploit Database. http://www.securiteam.com/exploits/.
[see page 4]

[secb] SecurityFocus. http://www.securityfocus.com/. [see page 4]
[Shi99] R. Shirey. Internet Security Glossary (RFC 2828). http://tools.ietf.

org/html/draft-shirey-security-glossary-01, January 1999. [see
page 13]

[SHK+15] Simon Spinner, Nikolas R. Herbst, Samuel Kounev, Xiaoyun Zhu, Lei
Lu, Mustafa Uysal, and Rean Griffith. Proactive Memory Scaling of
Virtualized Applications. In Proceedings of the 2015 IEEE 8th International
Conference on Cloud Computing (IEEE CLOUD 2015), pages 277–284. IEEE,
June 2015. [see page 119]

[SJP06] Sushant Sinha, Farnam Jahanian, and Jignesh M. Patel. WIND: Workload-
aware INtrusion Detection. In Proceedings of the 9th International Conference
on Recent Advances in Intrusion Detection (RAID), pages 290–310, Berlin,
Heidelberg, 2006. Springer Verlag. [see pages 5, 20, 26, 40, 52, 54, and 149]

[SK11] Sundararajan Subashini and Vinayav Kavitha. A survey on security issues
in service delivery models of cloud computing. Journal of Network and
Computer Applications, 34(1):1–11, 2011. [see page 1]

198

http://invisiblethingslab.com/resources/bh08/part2.pdf
http://invisiblethingslab.com/resources/bh08/part2.pdf
http://www.scmagazine.com/idsips/grouptest/241/
http://www.scmagazine.com/idsips/grouptest/241/
http://www.securiteam.com/exploits/
http://www.securityfocus.com/
http://tools.ietf.org/html/draft-shirey-security-glossary-01
http://tools.ietf.org/html/draft-shirey-security-glossary-01

Bibliography

[SM] Snort Manual. http://manual.snort.org/node16.html. [see page 59]
[SM07] Karen Scarfone and Peter Mell. Guide to Intrusion Detection and Preven-

tion Systems (IDPS), 2007. NIST Special Publication 900-94. [see pages 13,
16, and 141]

[SP07] Vidar E. Seeberg and Slobodan Petrovic. A New Classification Scheme for
Anonymization of Real Data Used in IDS Benchmarking. In The Second
International Conference onAvailability, Reliability and Security (ARES), pages
385–390, April 2007. [see page 35]

[SP10] Robin Sommer and Vern Paxson. Outside the Closed World: On Using
Machine Learning For Network Intrusion Detection. In Proceedings of the
IEEE Symposium on Security and Privacy, 2010. [see pages 36 and 53]

[SPB+] Reiner Sailer, Ronald Perez, Stefan Berger, Ramon Caceres, and
Leendert van Doorn. Towards Enterprise-level Security with
Xen – sHype Access Control module (ACM) (presentation slides).
http://pdub.net/proj/usenix08boston/xen_drive/resources/
xensummit/slides/sailer_xensummit_sept07.pdf. [see page 149]

[spea] SPECvirt sc 2013. http://www.spec.org/virt_sc2013/. [see pages 12
and 109]

[SPEb] SPEC CPU 2000. http://www.spec.org/cpu2000/. [see page 28]
[SPEc] SPECweb99. http://www.spec.org/web99/. [see page 30]
[SSG08] Abhinav Srivastava, Kapil Singh, and Jonathon Giffin. Secure Observation

of Kernel Behavior. http://hdl.handle.net/1853/25464, 2008. [see
pages 28, 30, 52, 53, 65, 66, 69, 72, 74, 99, 145, and 149]

[SSTG12] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali Ghorbani. Toward
developing a systematic approach to generate benchmark datasets for
intrusion detection. Computers and Security, 31(3):357–374, 2012. [see
pages 23, 37, 38, 39, and 74]

[SSWX13] Bo Sun, Xuemei Shan, Kui Wu, and Yang Xiao. Anomaly Detection Based
Secure In-Network Aggregation for Wireless Sensor Networks. IEEE
Systems Journal, 7(1):13–25, 2013. [see page 52]

[Sta02] William Stallings. Cryptography andNetwork Security: Principles and Practice.
Pearson Education, 2002. [see page 13]

[SUBP08] Jaydip Sen, Arijit Ukil, Debasis Bera, and Arpan Pal. A distributed in-
trusion detection system for wireless ad hoc networks. In 16th IEEE
International Conference on Networks (ICON), pages 1–6, 2008. [see pages 51,
52, and 53]

[sur] Suricata - Open source IDS / IPS / NSM engine. http://suricata-
ids.org/. [see pages 11, 16, and 149]

[SYB04] Joel Sommers, Vinod Yegneswaran, and Paul Barford. A framework for
malicious workload generation. In Proceedings of the 4th ACM SIGCOMM
Conference on Internet Measurement (IMC), pages 82–87, New York, NY,

199

http://manual.snort.org/node16.html
http://pdub.net/proj/usenix08boston/xen_drive/resources/xensummit/slides/sailer_xensummit_sept07.pdf
http://pdub.net/proj/usenix08boston/xen_drive/resources/xensummit/slides/sailer_xensummit_sept07.pdf
http://www.spec.org/virt_sc2013/
http://www.spec.org/cpu2000/
http://www.spec.org/web99/
http://hdl.handle.net/1853/25464
http://suricata-ids.org/
http://suricata-ids.org/

Bibliography

USA, 2004. ACM. [see page 3]
[TBASoU] The Berkeley Automounter Suite of Utilities. http://www.am-utils.

org/. [see page 30]
[TBNSM] The Bro Network SecurityMonitor. http://www.bro.org/. [see pages 16,

144, and 149]
[TCM05] Katrina Tsipenyuk, Brian Chess, and Gary McGraw. Seven pernicious

kingdoms: a taxonomy of software security errors. IEEE Security and
Privacy, 3(6):81–84, Nov 2005. [see page 80]

[tcpa] tcpmkpub. http://www.icir.org/enterprise-tracing/tcpmkpub.
html. [see page 35]

[Tcpb] Tcpreplay. http://tcpreplay.synfin.net/. [see pages 26 and 57]
[tLmp] top: Linux man page. http://linux.die.net/man/1/top. [see page 60]
[TMI] Trend Micro Inc. Detecting APT Activity with Network Traffic Analysis.

http://www.trendmicro.com/cloud-content/us/pdfs/security-
intelligence/white-papers/wp-detecting-apt-activity-with-
network-traffic-analysis.pdf. [see page 146]

[tri] Tripwire, Inc. http://www.tripwire.com/. [see page 16]
[Uni] Unixbench. http://code.google.com/p/byte-unixbench/. [see

page 28]
[UoC] University of California. KDD CUP’99 Data. http://kdd.ics.uci.edu/

databases/kddcup99/kddcup99.html. [see pages 5 and 36]
[vpr] VProbe Toolkit. http://vprobe-toolkit.sourceforge.net/. [see

page 65]
[w3a] w3af. http://w3af.org/. [see page 32]
[WCMX12] Feifei Wang, Ping Chen, Bing Mao, and Li Xie. RandHyp: Preventing

Attacks via Xen Hypercall Interface. In Information Security and Privacy
Research, volume 376, pages 138–149. Springer Berlin Heidelberg, 2012.
[see pages 92, 93, 99, 148, and 149]

[WCS+02] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg
Kroah-Hartman. Linux Security Modules: General Security Support for
the Linux Kernel. In Proceedings of the 11th USENIX Security Symposium,
pages 17–31, Berkeley, CA, USA, 2002. USENIX Association. [see pages 28
and 30]

[WDW+14] Jing Z. Wu, Liping Ding, Yanjun Wu, Nasro Min-Allah, Samee U. Khan,
and Yongji Wang. C2Detector: A Covert Channel Detection Framework
in Cloud Computing. Security and Communication Networks, 7(3):544–557,
2014. [see pages 99, 112, 143, and 149]

[WLR] Felix Wilhelm, Matthias Luft, and Enno Rey. Compromise-as-a-
Service. https://www.ernw.de/download/ERNW_HITBAMS14_HyperV_
fwilhelm_mluft_erey.pdf. [see page 99]

200

http://www.am-utils.org/
http://www.am-utils.org/
http://www.bro.org/
http://www.icir.org/enterprise-tracing/tcpmkpub.html
http://www.icir.org/enterprise-tracing/tcpmkpub.html
http://tcpreplay.synfin.net/
http://linux.die.net/man/1/top
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-detecting-apt-activity-with-network-traffic-analysis.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-detecting-apt-activity-with-network-traffic-analysis.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-detecting-apt-activity-with-network-traffic-analysis.pdf
http://www.tripwire.com/
http://code.google.com/p/byte-unixbench/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://vprobe-toolkit.sourceforge.net/
http://w3af.org/
https://www.ernw.de/download/ERNW_HITBAMS14_HyperV_fwilhelm_mluft_erey.pdf
https://www.ernw.de/download/ERNW_HITBAMS14_HyperV_fwilhelm_mluft_erey.pdf

Bibliography

[Wor] Worldwide Intelligence Network Environment: Data Shar-
ing. http://securityresponse.symantec.com/about/profile/
universityresearch/sharing.jsp. [see page 21]

[WS02] David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion
detection systems. In Proceedings of the 9th ACM conference on Computer
and Communications security (CCS), pages 255–264, 2002. [see pages 103
and 118]

[xena] Manpage for XenTrace. http://man.cx/xentrace. [see pages 3 and 110]
[xenb] Xen Interface Manual. http://pdub.net/proj/usenix08boston/xen_

drive/resources/developer_manuals/interface.pdf. [see page 154]
[xenc] Xen Wiki. http://wiki.xenproject.org/wiki/Main_Page. [see

pages 154 and 160]
[xend] Xenaccess - A Virtual Machine Introspection Library for Xen. http:

//code.google.com/p/xenaccess/. [see page 64]
[XSM] XSM-FLASK. http://wiki.xen.org/wiki/Xen_Security_Modules_:

_XSM-FLASK. [see pages 91, 92, 149, and 150]
[YD11] Senhua Yu and Dipankar Dasgupta. An effective network-based Intru-

sion Detection using Conserved Self Pattern Recognition Algorithm aug-
mented with near-deterministic detector generation. In 2011 IEEE Sympo-
sium on Computational Intelligence in Cyber Security (CICS), pages 17–24,
2011. [see pages 5, 26, 36, and 73]

[YL13] William Young and Nancy Leveson. Systems Thinking for Safety and
Security. In Proceedings of the 29th Annual Computer Security Applications
Conference (ACSAC 2013), pages 1–8. ACM, 2013. [see page 86]

[YMLFK13] Yuxin Meng and Lam-For Kwok. Towards an Information-Theoretic
Approach for Measuring Intelligent False Alarm Reduction in Intrusion
Detection. In 12th IEEE International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom), pages 241–248, July
2013. [see pages 49 and 75]

[Zan06] Stefano Zanero. My IDS is better than yours. Or is it? BlackHat Briefing,
February 2006. [see page 25]

[ZWGW08] Youhui Zhang, Hongyi Wang, Yu Gu, and Dongsheng Wang. IDRS:
Combining File-level Intrusion Detection with Block-level Data Recovery
based on iSCSI. In Third International Conference on Availability, Reliability
and Security (ARES), pages 630–635, March 2008. [see pages 28, 30, and 52]

201

http://securityresponse.symantec.com/about/profile/universityresearch/sharing.jsp
http://securityresponse.symantec.com/about/profile/universityresearch/sharing.jsp
http://man.cx/xentrace
http://pdub.net/proj/usenix08boston/xen_drive/resources/developer_manuals/interface.pdf
http://pdub.net/proj/usenix08boston/xen_drive/resources/developer_manuals/interface.pdf
http://wiki.xenproject.org/wiki/Main_Page
http://code.google.com/p/xenaccess/
http://code.google.com/p/xenaccess/
http://wiki.xen.org/wiki/Xen_Security_Modules_:_XSM-FLASK
http://wiki.xen.org/wiki/Xen_Security_Modules_:_XSM-FLASK

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Problem Statement: Shortcomings of Existing Approaches
	Workloads
	Metrics and Measurement Methodologies

	Contributions of this Thesis
	Outline

	Foundations
	Intrusion Detection Systems
	Attacks and Common Security Mechanisms
	Intrusion Detection Systems: A Systematization

	Evaluation of Intrusion Detection Systems
	Application Scenarios
	Historical Overview

	Summary

	IDS Evaluation Design Space: A Survey of Common Practices
	Related Work
	Workloads
	Pure Benign Executable Form Workload Drivers
	Pure Benign Executable Form Manual Generation
	Pure Malicious Executable Form Exploit Database
	Pure Malicious Executable Form Vulnerability and Attack Injection
	Pure Malicious/Pure Benign/Mixed Trace Form Trace Acquisition
	Pure Malicious/Pure Benign/Mixed Trace Form Trace Generation

	Metrics
	Security-related Basic
	Security-related Composite

	Measurement Methodology
	Attack Detection-related Properties
	Resource Consumption-related Properties
	Workload Processing Capacity
	Performance Overhead

	Summary: Open Challenges and IDS Evaluation Guidelines
	Open Challenges: Evaluating Hypervisor-based IDSs
	IDS Evaluation Guidelines

	An Analysis of Hypercall Handler Vulnerabilities
	Sample Set of Hypercall Vulnerabilities
	Analysis of the Hypercall Attack Surface
	Hypervisor's Perspective: Origins of Hypercall Vulnerabilities
	Hypervisor's Perspective: Effects of Hypercall Attacks
	Attacker's Perspective: Attack Models

	Extending the Frontiers
	Vulnerability Discovery and Secure Programming Practices
	Security Mechanisms

	Summary: Lessons Learned

	Evaluation of Intrusion Detection Systems Using Attack Injection
	Background and Related Work
	Approach
	Planning
	Testing

	hInjector
	hInjector Architecture
	hInjector Design Criteria
	Injector: Performance Overhead

	Case Study
	Case Study: Planning
	Case Study: Testing

	Summary

	Quantifying Attack Detection Accuracy
	Related Work
	Elasticity and Accuracy
	Metric and Measurement Methodology
	Metric Design
	Metric Construction
	Properties of the HF Metric

	Case Studies
	Hypervisor Configurations
	IDS Configurations

	Summary

	Conclusions and Outlook
	Summary
	Outlook
	Future Topics in IDS Evaluation
	Security of Hypervisors' Hypercall Interfaces
	Evaluation of Intrusion Detection Systems Using Attack Injection
	Quantifying Attack Detection Accuracy
	Future Evaluation Scenarios

	Appendices
	Technical Information on Vulnerabilities of Hypercall Handlers
	Hypercall memory_op
	Vulnerability CVE-2012-3496
	Vulnerability CVE-2012-5513

	Hypercall gnttab_op
	Vulnerability CVE-2012-4539
	Vulnerability CVE-2012-5510
	Vulnerability CVE-2013-1964

	Hypercall set_debugreg
	Vulnerability CVE-2012-3494

	Hypercall physdev_op
	Vulnerability CVE-2012-3495

	Hypercall mmuext_op
	Vulnerability CVE-2012-5525

	List of Figures
	List of Tables
	Acronyms
	Bibliography

